Files
uni/year4/semester2/CT421/assignments/assignment2/code/ipd.py
2025-03-17 00:41:01 +00:00

277 lines
12 KiB
Python
Executable File

#!/usr/bin/python3
import argparse
import random
import copy
# Each strategy is defined as follows:
# [first move, reaction to defection, reaction to co-operation]
# where 0 is defection and 1 is co-operation
# I don't actually know the names for all of these strategies so I'm going to make some up:
strategies = [
[0, 0, 0], # Always defect.
[0, 0, 1], # Grim tit-for-tat.
[0, 1, 0], # Defect at first, then do opposite of what opponent did last.
[0, 1, 1], # Defect at first, then always co-operate.
[1, 0, 0], # Feint co-operation, then always defect.
[1, 0, 1], # Tit-for-tat.
[1, 1, 0], # Co-operate at first, then do opposite of what opponent did last.
[1, 1, 1] # Always co-operate.
]
def initialise_population(size):
"""
Initialises a population of strategies for the Iterated Prisoner's Dilemma.
Args:
size (int): The size of the population
Returns:
population (list): A list of strategies
"""
# Since there are only 8 possible strategies, to initialise the population just perform a random over-sampling of the space.
return [copy.deepcopy(strategy) for strategy in random.choices(strategies, k=size)]
def fitness(agent, num_iterations, noise_level):
"""
Play the Iterated Prisoner's Dilemma against a number of fixed strategies and return its score.
Args:
agent1 (list): the strategy of agent1.
iterations (int): the number of iterations to play.
noise_level (float): the probability that the opponent's last move will be misrepresented to the agent
Returns:
fitness (int): the score obtained by agent1.
"""
fitness = 0
fixed_strategies = [
[0, 0, 0], # Always defect.
# [0, 0, 1], # Grim tit-for-tat.
# [0, 1, 0], # Grim opposite day: defect at first, then do opposite of what opponent did last.
# [0, 1, 1], # Self-sabotage: defect at first, then always co-operate.
# [1, 0, 0], # Feint co-operation, then always defect.
[1, 0, 1], # Tit-for-tat.
# [1, 1, 0], # Opposite day: co-operate at first, then do opposite of what opponent did last.
[1, 1, 1], # Always co-operate.
]
for fixed_strategy in fixed_strategies:
agent_last_move = None
fixed_strategy_last_move = None
for iteration in range(num_iterations):
if (iteration == 0):
agent_move = agent[0]
fixed_strategy_move = fixed_strategy[0]
else:
# Set an agent's move to its reaction to co-operation if the other agent's last move was co-operation (1), else set it to its reaction to defection.
agent_move = agent[2] if fixed_strategy_last_move else agent[1]
fixed_strategy_move = fixed_strategy[2] if agent_last_move else fixed_strategy[1]
agent_last_move = agent_move if random.random() > noise_level else 1 - agent_move
fixed_strategy_last_move = fixed_strategy_move if random.random() > noise_level else 1 - fixed_strategy_move
match (agent_move, fixed_strategy_move):
case (0, 0):
fitness += 1
case (0, 1):
fitness += 5
case (1, 0):
fitness += 0
case (1, 1):
fitness += 3
return fitness
def list_fitnesses(population, num_iterations, noise_level):
"""
Calculate the fitness of each agent in a population.
Args:
population (list): the population of strategies.
iterations (int): the number of iterations to play.
noise_level (float): the probability that the opponent's last move will be misrepresented to the agent
Returns:
fitnesses (list): the fitness of each agent.
"""
fitnesses = []
for agent in population:
fitnesses.append(fitness(agent, num_iterations, noise_level))
return fitnesses
def get_best(population, fitnesses, generation):
"""
Get the best agent in a population, given a list of fitnesses.
Args:
population (list): the population of strategies.
fitnesses (list): the fitness of each agent.
Returns:
best_agent (list): the best agent.
"""
best_index = fitnesses.index(max(fitnesses))
best_agent = {
"strategy": list(population[best_index]),
"fitness": fitnesses[best_index],
"generation": generation
}
return best_agent
def tournament_selection(population, fitnesses, num_survivors, tournament_size=3):
"""
Select agents from a population based on their fitness.
Args:
population (list): the population of strategies.
fitnesses (list): the fitness of each agent.
num_survivors (int): the number of agents to select.
Returns:
survivors (list): the selected agents.
"""
survivors = []
for _ in range(num_survivors):
tournament = random.sample(list(zip(population, fitnesses)), tournament_size)
winner = max(tournament, key=lambda agent: agent[1])
survivors.append(copy.deepcopy(winner[0])) # Deep copy to prevent unintended modifications
return survivors
def crossover(parents, crossover_rate, num_offspring):
"""
Perform single-point crossover on selected parents.
Args:
parents (list): List of selected strategies.
crossover_rate (float): Probability of crossover occurring.
num_offspring (int): Number of offspring to generate.
Returns:
offspring (list): List of new strategies.
"""
offspring = []
while len(offspring) < num_offspring:
if random.random() < crossover_rate:
p1, p2 = random.sample(parents, 2)
crossover_point = random.randint(1, 2)
child1 = copy.deepcopy(p1[:crossover_point] + p2[crossover_point:])
child2 = copy.deepcopy(p2[:crossover_point] + p1[crossover_point:])
offspring.extend([child1, child2])
else:
offspring.append(copy.deepcopy(random.choice(parents)))
return offspring[:num_offspring]
def mutate(offspring, mutation_rate):
"""
Perform bit-flip mutation on offspring.
Args:
offspring (list): List of offspring strategies.
mutation_rate (float): Probability of mutation occurring per individual.
Returns:
mutated_offspring (list): List of mutated strategies.
"""
mutated_offspring = copy.deepcopy(offspring) # Deep copy to prevent modifying original offspring
for i in range(len(mutated_offspring)):
if random.random() < mutation_rate:
mutation_point = random.randint(0, 2)
mutated_offspring[i][mutation_point] = 1 - mutated_offspring[i][mutation_point]
return mutated_offspring
def evolve(size, num_generations, give_up_after, num_iterations, selection_proportion, crossover_rate, mutation_rate, noise_level):
"""
Evolves strategies over a number of generations for the Iterated Prisoner's Dilemma.
Args:
size (int): Initial population size
num_generations (int): Number of generations
give_up_after (int): Number of generations to give up after if best solution has remained unchanged
selection_proportion (float): The proportion of the population to be selected (survive) on each generation
crossover_rate (float): Probability of a selected pair of solutions to sexually reproduce
mutation_rate (float): Probability of a selected offspring to undergo mutation
noise_level (float): The probability that the opponent's last move will be misrepresented to the agent
Returns:
results (str): The results of the evolution in TSV format
"""
population = initialise_population(size)
fitnesses = list_fitnesses(population, num_iterations, noise_level)
current_best = get_best(population, fitnesses, 0)
results = ["Generation\tBestFitness\tBestStrategy\tAvgFitness\t000\t001\t010\t011\t100\t101\t110\t111"]
results.append(f"0\t{current_best['fitness']}\t{"".join(map(str, current_best['strategy']))}\t{sum(fitnesses) / len(fitnesses)}\t{population.count([0,0,0])}\t{population.count([0,0,1])}\t{population.count([0,1,0])}\t{population.count([0,1,1])}\t{population.count([1,0,0])}\t{population.count([1,0,1])}\t{population.count([1,1,0])}\t{population.count([1,1,1])}")
for generation in range(1, num_generations):
population = tournament_selection(population, fitnesses, int(len(population) *selection_proportion))
offspring = crossover(population, crossover_rate, size - len(population))
population += mutate(offspring, mutation_rate)
fitnesses = list_fitnesses(population, num_iterations, noise_level)
generation_best = get_best(population, fitnesses, generation)
if (generation_best['fitness'] > current_best['fitness']):
current_best = generation_best
print(f"New best strategy: {current_best['strategy']}, {current_best['fitness']}")
results.append(f"{generation}\t{current_best['fitness']}\t{"".join(map(str, current_best['strategy']))}\t{sum(fitnesses) / len(fitnesses)}\t{population.count([0,0,0])}\t{population.count([0,0,1])}\t{population.count([0,1,0])}\t{population.count([0,1,1])}\t{population.count([1,0,0])}\t{population.count([1,0,1])}\t{population.count([1,1,0])}\t{population.count([1,1,1])}")
if (generation - current_best['generation'] >= give_up_after):
break
print(f"Best strategy: {current_best['strategy']}")
print(f"Fitness: {current_best['fitness']}")
print(f"Generation: {current_best['generation']}")
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Program to evolve strategies for the Iterated Prisoner's Dilemma")
parser.add_argument("-s", "--size", type=int, help="Initial population size", required=False, default=75)
parser.add_argument("-g", "--num-generations", type=int, help="Number of generations", required=False, default=500)
parser.add_argument("-a", "--give-up-after", type=int, help="Number of generations to give up after if best solution has remained unchanged", required=False, default=50)
parser.add_argument("-i", "--num-iterations", type=int, help="Number of iterations of the dilemma between two agents", required=False, default=10)
parser.add_argument("-p", "--selection-proportion", type=float, help="The proportion of the population to be selected (survive) on each generation", required=False, default=0.2)
parser.add_argument("-c", "--crossover-rate", type=float, help="Probability of a selected pair of solutions to sexually reproduce", required=False, default=0.8)
parser.add_argument("-m", "--mutation-rate", type=float, help="Probability of a selected offspring to undergo mutation", required=False, default=0.1)
parser.add_argument("-o", "--output-file", type=str, help="File to write TSV results to", required=False, default="output.tsv")
parser.add_argument("-n", "--noise-level", type=float, help="The probability that the opponent's last move will be misrepresented to the agent", required=False, default=0)
args=parser.parse_args()
results = evolve(args.size, args.num_generations, args.give_up_after, args.num_iterations, args.selection_proportion, args.crossover_rate, args.mutation_rate, args.noise_level)
for strategy in strategies:
print(str(strategy) + ": " + str(fitness(strategy, args.num_iterations, args.noise_level)))
if (args.output_file):
with open(args.output_file, "w") as f:
for result in results:
f.write(result + "\n")