Files
uni/year4/semester2/CT420/assignments/assignment2/code/benchmarks/merged.c
2025-03-19 22:57:22 +00:00

172 lines
5.5 KiB
C

// Compile code with gcc -o merged merged.c -lrt -Wall -O2
// Execute code with sudo ./merged
#include <stdio.h> // Standard I/O functions
#include <stdlib.h> // Standard library functions
#include <time.h> // Time-related functions
#include <signal.h> // Signal handling
#include <sys/mman.h> // Memory locking
#include <unistd.h> // POSIX standard functions
#include <sched.h> // Scheduling policies
#include <errno.h> // Error handling
#include <string.h> // String manipulation
#include <limits.h> // Limits of integral types
// Constants
#define ITERATIONS 10000 // Number of benchmark iterations
#define NS_PER_SEC 1000000000L // Nanoseconds per second
// Global Variables
timer_t timer_id; // Timer identifier
volatile sig_atomic_t timer_expired = 0; // Flag for timer expiration
volatile sig_atomic_t signal_received = 0; // Flag for signal reception
struct timespec start, end, sleep_time; // Time structures for benchmarking
// Function to save benchmark results to a CSV file
void save_results(const char *filename, long long *data) {
FILE *file = fopen(filename, "w");
if (!file) {
perror("fopen");
exit(EXIT_FAILURE);
}
fprintf(file, "Iteration,Latency/Jitter (ns)\n");
for (int i = 0; i < ITERATIONS; i++) {
fprintf(file, "%d,%lld\n", i, data[i]);
}
fclose(file);
}
// Signal handler for signal-based latency measurement
void signal_handler(int signum) {
signal_received = 1; // Mark signal as received
clock_gettime(CLOCK_MONOTONIC, &end); // Capture end time
}
// Timer signal handler
void timer_handler(int signum) {
timer_expired = 1; // Mark timer as expired
clock_gettime(CLOCK_MONOTONIC, &end); // Capture end time
}
// Configures real-time scheduling with FIFO priority
void configure_realtime_scheduling() {
struct sched_param param;
param.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
perror("sched_setscheduler");
exit(EXIT_FAILURE);
}
}
// Locks memory to prevent paging for real-time performance
void lock_memory() {
if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
perror("mlockall");
exit(EXIT_FAILURE);
}
}
// Measures jitter of nanosleep function
void benchmark_nanosleep() {
long long jitter_data[ITERATIONS];
sleep_time.tv_sec = 0;
sleep_time.tv_nsec = 1000000; // 1 ms sleep
for (int i = 0; i < ITERATIONS; i++) {
clock_gettime(CLOCK_MONOTONIC, &start);
nanosleep(&sleep_time, NULL);
clock_gettime(CLOCK_MONOTONIC, &end);
jitter_data[i] = ((end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec)) - sleep_time.tv_nsec;
}
save_results("nanosleep.csv", jitter_data);
}
// Measures latency of sending and handling a signal
void benchmark_signal_latency() {
long long latency_data[ITERATIONS];
signal(SIGUSR1, signal_handler); // Register signal handler
for (int i = 0; i < ITERATIONS; i++) {
clock_gettime(CLOCK_MONOTONIC, &start);
kill(getpid(), SIGUSR1); // Send signal to itself
while (!signal_received); // Wait for signal to be handled
latency_data[i] = (end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec);
signal_received = 0;
}
save_results("signal_latency.csv", latency_data);
}
// Measures jitter of a real-time timer
void benchmark_timer() {
long long jitter_data[ITERATIONS];
struct sigevent sev;
sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIGRTMIN;
sev.sigev_value.sival_ptr = &timer_id;
if (timer_create(CLOCK_MONOTONIC, &sev, &timer_id) == -1) {
perror("timer_create");
exit(EXIT_FAILURE);
}
struct itimerspec its;
its.it_value.tv_sec = 0;
its.it_value.tv_nsec = 1000000; // 1 ms
its.it_interval = its.it_value;
signal(SIGRTMIN, timer_handler);
if (timer_settime(timer_id, 0, &its, NULL) == -1) {
perror("timer_settime");
exit(EXIT_FAILURE);
}
clock_gettime(CLOCK_MONOTONIC, &start);
for (int i = 0; i < ITERATIONS; i++) {
while (!timer_expired) {
struct timespec ts = {0, 100};
nanosleep(&ts, NULL);
}
clock_gettime(CLOCK_MONOTONIC, &end);
jitter_data[i] = ((end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec)) - its.it_interval.tv_nsec;
timer_expired = 0;
start = end;
}
save_results("timer.csv", jitter_data);
}
// Measures jitter of usleep function
void benchmark_usleep() {
long long jitter_data[ITERATIONS];
for (int i = 0; i < ITERATIONS; i++) {
clock_gettime(CLOCK_MONOTONIC, &start);
usleep(1000); // Sleep for 1 ms
clock_gettime(CLOCK_MONOTONIC, &end);
jitter_data[i] = ((end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec)) - 1000000;
}
save_results("usleep.csv", jitter_data);
}
// Main function to execute all benchmarks
int main() {
configure_realtime_scheduling(); // Set high priority scheduling
lock_memory(); // Prevent memory paging
printf("Getting nanosleep benchmark\n");
benchmark_nanosleep();
printf("Getting signal benchmark\n");
benchmark_signal_latency();
printf("Getting timer benchmark\n");
benchmark_timer();
printf("Getting usleep benchmark\n");
benchmark_usleep();
return 0;
}