
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct404 2024–11–12

Assignment 2: Image Processing & Analysis

1 A Morphological Image Processing Pipeline for Medical Images

Figure 1: Original Skin Biopsy Image

1.1 Conversion to A Single-Channel Image

1 # Task 1: A Morphological image processing pipeline for medical images

2 # Task 1.1: Conversion to a single channel image

3 import cv2

4

5 # read in original image (in BGR format)

6 image = cv2.imread("../../Task1.jpg")

7

8 # convert to greyscale

9 greyscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

10 cv2.imwrite("./output/greyscale.jpg", greyscale)

11

12 # convert to blue channel only

13 b_channel = image.copy()

14 b_channel[:, :, 1] = 0

15 b_channel[:, :, 2] = 0

16 cv2.imwrite("./output/b_channel.jpg", b_channel)

17

18 # convert blue channel to greyscale

19 b_channel_greyscale = cv2.cvtColor(b_channel, cv2.COLOR_BGR2GRAY)

20 b_channel_greyscale_contrast = b_channel_greyscale.std()

21 cv2.imwrite("./output/b_channel_greyscale.jpg", b_channel_greyscale)

22

23 # convert to green channel only

24 g_channel = image.copy()

25 g_channel[:, :, 0] = 0

1

mailto://a.hayes18@universityofgalway.ie


26 g_channel[:, :, 2] = 0

27 cv2.imwrite("./output/g_channel.jpg", g_channel)

28

29 # convert green channel to greyscale

30 g_channel_greyscale = cv2.cvtColor(g_channel, cv2.COLOR_BGR2GRAY)

31 g_channel_greyscale_contrast = g_channel_greyscale.std()

32 cv2.imwrite("./output/g_channel_greyscale.jpg", g_channel_greyscale)

33

34 # convert to red channel only

35 r_channel = image.copy()

36 r_channel[:, :, 0] = 0

37 r_channel[:, :, 1] = 0

38 cv2.imwrite("./output/r_channel.jpg", r_channel)

39

40 # convert red channel to greyscale

41 r_channel_greyscale = cv2.cvtColor(r_channel, cv2.COLOR_BGR2GRAY)

42 r_channel_greyscale_contrast = r_channel_greyscale.std()

43 cv2.imwrite("./output/r_channel_greyscale.jpg", g_channel_greyscale)

44

45 # assess objectively which allows most contrast

46 print("Blue Channel Greyscale Contrast: " + str(b_channel_greyscale_contrast))

47 print("Green Channel Greyscale Contrast: " + str(g_channel_greyscale_contrast))

48 print("Red Channel Greyscale Contrast: " + str(r_channel_greyscale_contrast))

Listing 1: 1_single_channel_conversion.py

Since the image has predominant hues of pink-purple, we would expect the green-channel-only image to be the one that yields
the highest contrast, as pink & purple colours are made up primarily by the blue & red channels: the dominance of these
channels results in little variance in intensity within these channels, and therefore green will have the highest intensity variance.
This is proven true by the text output of the above code, where the standard deviation of the greyscale image based off the green
channel alone is by far the highest:

Figure 2: Output of 1_single_channel_conversion.py

Figure 3: Original image

Figure 4: Greyscale original

Figure 5: B-Channel

Figure 6: B-Greyscale

Figure 7: G-Channel

Figure 8: G-Greyscale

Figure 9: R-Channel

Figure 10: R-Greyscale

My selected single-channel image is the greyscale version of the green-channel-only image, as it yields the greatest contrast:

2



Figure 11: Selected single-channel image: greyscale green-channel-only

1.2 Image Enhancement

1 # Task 1.2: Image Enhancement

2 import cv2

3

4 # read in chosen single-channel greyscale image

5 image = cv2.imread("./output/g_channel_greyscale.jpg", cv2.IMREAD_GRAYSCALE)

6

7 # apply histogram equalisation

8 equalised_image = cv2.equalizeHist(image)

9 equalised_image_contrast = equalised_image.std()

10 cv2.imwrite("./output/histogram_equalised.jpg", equalised_image)

11

12 # apply contrast stretching

13 stretched_image = cv2.normalize(image, None, 0, 255, cv2.NORM_MINMAX)

14 stretched_image_contrast = stretched_image.std()

15 cv2.imwrite("./output/contrast_stretched.jpg", stretched_image)

16

17 print("Histogram Equalisation Contrast: " + str(equalised_image_contrast))

18 print("Contrast Stretching Contrast: " + str(stretched_image_contrast))

Listing 2: 2_image_enhancement.py

Figure 12: Output of 2_image_enhancement.py

I chose to use the histogram equalisation technique as it gave the best contrast, as seen from the calculated standard deviation in
contrast above and in the output images below.

3



Figure 13: Histogram-equalised image Figure 14: Contrast-stretched image

1.3 Thresholding

1 # Task 1.3: Thresholding

2 import cv2

3

4 # read in chosen enhanced image

5 image = cv2.imread("./output/histogram_equalised.jpg", cv2.IMREAD_GRAYSCALE)

6

7 # perform otsu thresholding to find the optimal threshold

8 threshold_value, otsu_thresholded = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

9 cv2.imwrite("./output/otsu.jpg", otsu_thresholded)

10

11 print("Threshold value used: " + str(threshold_value))

Listing 3: 3_thresholding.py

Figure 15: Output of 3_thresholding.py

I used Otsu’s algorithm to find the optimal threshold value that best separated the foreground (objects of interest) from the
background. As can be seen from the above output, the optimal value chosen was 129.

Figure 16: Image with Otsu thresholding

4



1.4 Noise Removal

1 # Task 1.4: Noise Removal

2 import cv2

3

4 # read in thresholded image

5 image = cv2.imread("./output/otsu.jpg", cv2.IMREAD_GRAYSCALE)

6

7 # try several different sizes of structuring element (must be odd)

8 for kernel_size in range(1, 32, 2):

9 # define a disk-shaped structuring element

10 structuring_element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))

11

12 # apply morphological opening to remove noise

13 opened_image = cv2.morphologyEx(image, cv2.MORPH_OPEN, structuring_element)

14 cv2.imwrite(f"./output/kernel_size_{kernel_size}.jpg", opened_image)

Listing 4: 4_noise_removal.py

Figure 17: kernel_size = 1 Figure 18: kernel_size = 3 Figure 19: kernel_size = 5 Figure 20: kernel_size = 7

Figure 21: kernel_size = 9 Figure 22: kernel_size = 11 Figure 23: kernel_size = 13 Figure 24: kernel_size = 15

Figure 25: kernel_size = 17 Figure 26: kernel_size = 19 Figure 27: kernel_size = 21 Figure 28: kernel_size = 23

Figure 29: kernel_size = 25 Figure 30: kernel_size = 27 Figure 31: kernel_size = 29 Figure 32: kernel_size = 31

I chose to go with kernel_size = 25 as it seemed to give the optimal balance between removing noise without significantly
reducing the size of the remaining fat globules .

5



Figure 33: Chosen noise threshold: kernel_size = 25

1.5 Extraction of Binary Regions of Interest / Connected Components

6



2 Filtering of Images in Spatial & Frequency Domains

Figure 34: Original Facial Image

2.1 Spatial Domain

5 # Task 2.1: Spatial Domain

6 image = cv2.imread("../../Task2.jpg")

7

8 kernel_size = (15, 15)

9 variance = 2

10

11 smoothed_image = cv2.GaussianBlur(image, kernel_size, variance)

12

13 cv2.imwrite("./output/1_spatial_domain.jpg", smoothed_image)

Listing 5: Task 2.1 section of task2.py

After some experimentation, I chose parameter values of kernel_size = (15,15) and variance = 2 as, in my opinion, these
yielded the best balance between blurring imperfections like wrinkles without causing the entire image to become too blurry.

7



Figure 35: Output of 1_spatial_domain.jpg

2.2 Frequency Domain Filtering

15 # Task 2.2: Frequency Domain Low-Pass Filter

16 gaussian_kernel = cv2.getGaussianKernel(kernel_size[0], variance)

17 gaussian_kernel_2d = gaussian_kernel @ gaussian_kernel.T

18 fft_gaussian = np.fft.fft2(gaussian_kernel_2d)

19

20 # shift zero frequency component to center

21 fft_gaussian_shifted = np.fft.fftshift(fft_gaussian)

22

23 # calculate the magnitude spectrum for visualization

24 magnitude_spectrum = np.log(np.abs(fft_gaussian_shifted) + 1)

25

26 # Plot the magnitude spectrum (Frequency Domain Representation)

27 plt.imshow(magnitude_spectrum, cmap='gray')

28 plt.axis('off')

29 plt.savefig("./output/2_frequency_domain_low-pass_filter.jpg", bbox_inches='tight', pad_inches=0)

Listing 6: Task 2.2 section of task2.py

8



Figure 36: Zero-centered low-pass filter of Gaussian Kernel

9


	A Morphological Image Processing Pipeline for Medical Images
	Conversion to A Single-Channel Image
	Image Enhancement
	Thresholding
	Noise Removal
	Extraction of Binary Regions of Interest / Connected Components

	Filtering of Images in Spatial & Frequency Domains
	Spatial Domain
	Frequency Domain Filtering


