
CS4423-W07-Part-2

February 27, 2025

Table of Contents

0.1 Modules for this notebook

1 Computing Degree Centrality

1.1 Computing it in netwprkx

2 Eigenvector Centrality

2.1 Computing Eigenvalues with eigh

2.2 The Power Method

2.3 Computing it in networkx

3 Closeness Centrality

4 Betweenness Centrality

5 Example: 15th-century Florentine marriages

5.1 The example

5.2 Compute centralities

5.3 Drawing graphs based on centrality

6 Code corner (not covered in class explicitly)

CS4423-Networks: Week 7 (26+27 Feb 2025)

1 Part 2: Computing Centrality Measures
Niall Madden, School of Mathematical and Statistical Sciences
University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at
https://www.niallmadden.ie/2425-CS4423/#Week07

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

1

1.0.1 Modules for this notebook

[1]: import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "gold"} # gold nodes today

np.set_printoptions(precision=3) # just display arrays to 3 decimal places
np.set_printoptions(suppress=True) # avoid scientific notation (better for␣

↪matrices)

from queue import Queue # Use this in computing distances
import yaml # for saving and diplaying data, especially dictionaries
import pandas as pd # summarising data
import matplotlib.pyplot as plt

1.1 Computing Degree Centrality
Computing the Degree Centrality of a graph is easy, and there are many ways to do it. Here we’ll
look at one way involving the adjancy matrix, since the core idea will be used again for Closeness
Centraility

We’ll start with an example: where 𝑑𝑒𝑔(5) = 4, 𝑑𝑒𝑔(4) = 3 and 𝑑𝑒𝑔(3) = 2.
As an extra trick, we’ll force networkx to order the nodes lexigraphically, by * Creating an empty
graph * adding the nodes first (in the order I want) * then add the edges.

[2]: G1 = nx.Graph() # empty graph
G1.add_nodes_from(range(6)) # add nodes 0,1,2,3,4,5 in that oder
EdgeList = [[5,0],[5,1],[5,2],[5,3],[4,3],[4,2],[4,1]]
G1.add_edges_from(EdgeList)

[3]: nx.draw(G1,**opts)

2

Compute the adjacency matrix, 𝐴1 (as as numpy array), and then multiply by a vector of ones,
thus computing the row sums of 𝐴1. Then we normalise:

[4]: A1 = nx.adjacency_matrix(G1).toarray();
n = G1.order()
e = np.ones((n,1)) # vector of ones
n = G1.order()
degree_vector = A1@e/(n-1) # normalised
for i in range(6):

print(f"Node {i} has degree {degree_vector[i]}")

Node 0 has degree [0.2]
Node 1 has degree [0.4]
Node 2 has degree [0.4]
Node 3 has degree [0.4]
Node 4 has degree [0.6]
Node 5 has degree [0.8]

1.1.1 Computing it in netwprkx

Though it is hardly needed, one can compute the degree cenrality of this network using the
nx.degree_centrality() method. Note that this returns a dictionary:

3

[5]: CD = nx.degree_centrality(G1)
print(CD)
print(f"\nThe degree centrality of Node 3 is {CD[3]:.3f}")

{0: 0.2, 1: 0.4, 2: 0.4, 3: 0.4, 4: 0.6000000000000001, 5: 0.8}

The degree centrality of Node 3 is 0.400

1.2 Eigenvector Centrality
To compute the Eigenvector Centrality of nodes in network, 𝐺: * Compute the adjacency matrix,
𝐴. * Compute the largest, positive eigenvalue of 𝐴 (since 𝐴 is symmetric, this is unique) * It has
a corresponding positive eigenvector, ⃗𝑣, which we can scale so that 𝑣𝑣 = 1. * 𝑣𝑖 is the Eigenvector
Centrality node 𝑖.

1.2.1 Computing Eigenvalues with eigh

We can use np.linalg.eig() which computes the eigenvalues and eigenvectors of a matrix:
l, V = np.linalg.eig(A) computes * l : an array of length 𝑛 containing the eigenvalues of 𝐴.
(Note: we can’t call this array lambda, since that is a keyword in Python. * V: a 𝑛 × 𝑛 matrix;
column 𝑖 of 𝑉 is the eigenvector corresponding to the eigenvalues 𝜆𝑖.

(Note: since 𝐴 s symmetric, it can be faster to use the np.linalg.eigh() function)

[6]: l, V = np.linalg.eig(A1)
print(f"The eigenvalues of A are {l}")

The eigenvalues of A are [-2.558 -0.677 0.677 2.558 0. 0.]

We can see that there is an eigenvalue listed which is positive, amd larger than the rest. Let’s look
at the corresponding eigenvector. We make have to scale by −1, if the enties are negative:

[7]: i_max = np.argmax(l) # get index of largest eigenvalue
v = V[:,i_max]*np.sign(V[0,i_max]) # set v to be corresponding e'vec; ensure␣

↪it is positive
print("v=",v)

v= [0.211 0.39 0.39 0.39 0.457 0.54]

[8]: for i in range(6):
print(f"Node {i} has eigenvector centrality {v[i]:7.4}")

Node 0 has eigenvector centrality 0.211
Node 1 has eigenvector centrality 0.3897
Node 2 has eigenvector centrality 0.3897
Node 3 has eigenvector centrality 0.3897
Node 4 has eigenvector centrality 0.4571
Node 5 has eigenvector centrality 0.5395

4

1.2.2 The Power Method

There are subfields in the Numerical Linerar Algebra dedicated to computing estimates for eigen-
values and eigenvectors. When we only need one eigenvalue, and it is the largest, use the Power
method:

1. start with any 𝑢 = (1, 1, … , 1), say;
2. keep replacing 𝑢 ← 𝐴𝑢 until 𝑢/‖𝑢‖ becomes stable …

Questions Does this work? Meaning: * Does the sequence actually converge? * Does it return
the correct values?

We won’t study the theory of that - but will check an example.

Here is an implementation. We’ll just do 10 iterations. By rights, we should use a while loop to
iterate until successive estimates are sufficiently close to each other.

[9]: n = G1.order()
u = np.ones((n,1)); u=u/np.linalg.norm(u)
for i in range(10):

v = A1 @ u # update u
l = v[0]/u[0] # appriximate the eigenvalue
u = v/np.linalg.norm(v) # normalise it

The result we get is as follows (compare yourself with the value computed earlier)

[10]: print(u)

[[0.242]
[0.447]
[0.447]
[0.447]
[0.378]
[0.447]]

1.2.3 Computing it in networkx

To compute eigenvector centraility in networkx, we can use the nx.eigenvector_centrality
function, which returns a dictionary.

[11]: CE = nx.eigenvector_centrality(G1)
print(yaml.dump(CE)) # looks better than "print(CV)"

print(f"\nThe Eigenvector centrality of Node 3 is {CE[3]:.3f}")

0: 0.21095390422598534
1: 0.38965701954264753
2: 0.38965701954264753
3: 0.38965701954264753
4: 0.45705572814102585
5: 0.5395375177211617

5

https://en.wikipedia.org/wiki/Power_iteration
https://en.wikipedia.org/wiki/Power_iteration

The Eigenvector centrality of Node 3 is 0.390

1.3 Closeness Centrality
We learned yesterday that the normalised closeness centrality of node 𝑖 is

𝐶𝐶
𝑖 = 𝑛 − 1

∑𝑛
𝑗=1 𝑑𝑖𝑗

.

To compute this, for all nodes, we could construct the distance matrix for the graph. For that, we
need to compute the distance between every pair of nodes. As we learned last week. that can be
done with BFS. We learned how to do that in Week 6 (Part 1). Here is a different implementation…

• The following python function implements BFS for shortest distance from a previous lecture.

• It takes a graph 𝐺 = (𝑋, 𝐸) and a vertex 𝑥 ∈ 𝑋 as its arguments.
• It returns a dictionary, which assigns to each node its distance to 𝑥.

[12]: def distances(G, x):
1. init: set up the dictionary and a queue
dists = { y: None for y in G } # distances
Q = Queue() # queue of nodes to be visited
dists[x] = 0
Q.put(x)

2. loop
while not Q.empty():

y = Q.get()
for z in G.neighbors(y):

if dists[z] is None:
dists[z] = dists[y] + 1
Q.put(z)

3. stop here
return dists

Let’s check it works for Node 0

[13]: distances(G1,0)

[13]: {0: 0, 1: 2, 2: 2, 3: 2, 4: 3, 5: 1}

Next we use these values to build the distance matrix, 𝐷1

[14]: D1 = np.zeros_like(A1)
for i in range(n):

d_i = distances(G1,i)
D1[i,:]=list(d_i.values())

6

[15]: print(D1)

[[0 2 2 2 3 1]
[2 0 2 2 1 1]
[2 2 0 2 1 1]
[2 2 2 0 1 1]
[3 1 1 1 0 2]
[1 1 1 1 2 0]]

Now compute the distance sum vector, ⃗𝑠
[16]: n=G1.order()

s = D1 @ np.ones((n,1))
print(s)

[[10.]
[8.]
[8.]
[8.]
[8.]
[6.]]

Finally, compute the Closeness Centrality vector:

[17]: CC = (n-1)/s # note: using entrywise division
print(CC)

[[0.5]
[0.625]
[0.625]
[0.625]
[0.625]
[0.833]]

[]:

Compare with the networkx function:

[18]: print(nx.closeness_centrality(G1))

{0: 0.5, 1: 0.625, 2: 0.625, 3: 0.625, 4: 0.625, 5: 0.8333333333333334}

1.4 Betweenness Centrality
From yesterday: the betweenness centrality, 𝑐𝐵

𝑖 of node 𝑖 is defined as

𝑐𝐵
𝑖 = ∑

𝑗
∑

𝑘

𝑛𝑖(𝑗, 𝑘)
𝑛(𝑗, 𝑘) , 𝑗 ≠ 𝑘 ≠ 𝑖

where * 𝑛(𝑗, 𝑘) denotes the number of shortest paths from node 𝑗 to node 𝑘, and * 𝑛𝑖(𝑗, 𝑘) denotes
the number of those shortest paths passing through node 𝑖.

7

Them the normalised betweenness centrality, 𝐶𝐵
𝑖 of node 𝑖 is

𝐶𝐵
𝑖 = 𝑐𝐵

𝑖
(𝑛 − 1)(𝑛 − 2)

Before we delve into the algorithms, let’s take a simple network to study:

[19]: G4 = nx.Graph()
G4.add_edges_from(['ab','ac','bd','cd','de','df']) # Example
nx.draw(G4,**opts)

The quantities, particularly, 𝑛𝑖(𝑗, 𝑘), can take some work to compute. Yet again, we use a variant
on BFS.

First for any given any node, we need to compute all its predecessors on the shortest paths
between it and every other node. That is, if z is a predecessor of x if it is a neighbour x, and on
the shortest path between x and y.

This is then used to count the number of shortest paths between a pair of nodes.

Our function works as follows: 1. Takes the graph G and node x as inputs 2. Returns a dictionary,
preds where preds[y] is the list of predecessors of x in the paths from y to x.

8

[20]: def predecessors(G, x):
""" Computes the predecssors of Node x in G"""
1. init: set up the two dictionaries and queue
dists = { y: None for y in G } # distances
preds = { y: [] for y in G }
Q = Queue()
dists[x] = 0 #
Q.put(x)

2. loop
while not Q.empty():

y = Q.get()
for z in G.neighbors(y):

if dists[z] is None:
dists[z] = dists[y] + 1
preds[z].append(y)
Q.put(z)

elif dists[z] > dists[y]:
preds[z].append(y)

3. stop here
return preds

Let’s check it it works by computing all the predecessors of a:

[21]: p = predecessors(G4,'a') ## check our work
print(p)

{'a': [], 'b': ['a'], 'c': ['a'], 'd': ['b', 'c'], 'e': ['d'], 'f': ['d']}

Using the predecessor lists with respect to 𝑥, the shortest paths from 𝑥 to 𝑦 can be enumerated
recursively: * if 𝑦 = 𝑥: the shortest path from 𝑥 to itself is the empty path starting and ending at 𝑥.
* else, if 𝑦 ≠ 𝑥 then each shortest path from 𝑥 to 𝑦 travels through exactly one of 𝑥’s predecessors
… and ends in 𝑦.

[22]: def shortest_paths(G, x, y):
if x == y:

return [[x]]
paths = []
pred_x_y = predecessors(G, x)[y] # predicessors of x in paths x to y
print(f"preds of {y} are {pred_x_y}") # uncomment for more info
for z in pred_x_y:

for path in shortest_paths(G, x, z):
paths.append(path + [y])

return paths

Check if it works

[23]: shortest_paths(G4, 'a', 'f')

9

[23]: [['a', 'b', 'd', 'f'], ['a', 'c', 'd', 'f']]

Finally, we can compute the betweenness of a node:

[24]: def betweeness(G):
CB = { i : 0.0 for i in G }
n = G.order()
for i in G:

for j in G:
for k in G:

paths_jk = shortest_paths(G, j, k)
n_jk = len(paths_jk)
n_i_jk = 0
for p in paths_jk:

if i in p[1:-1]: # exclude enpoint
n_i_jk+=1

CB[i] += n_i_jk/n_jk
CB[i] /= ((n-1)*(n-2)) # normalise

return(CB)

[25]: betweeness(G4)

[25]: {'a': 0.05, 'b': 0.15, 'c': 0.15, 'd': 0.75, 'e': 0.0, 'f': 0.0}

Naturally, this can also be done in networkx:

[26]: nx.betweenness_centrality(G4)

[26]: {'a': 0.05,
'b': 0.15000000000000002,
'c': 0.15000000000000002,
'd': 0.75,
'e': 0.0,
'f': 0.0}

1.5 Example: 15th-century Florentine marriages
There is a famous network used to represent the marriage network of sixteen families in Florence,
originally developed to showed how the Medici family gained power and took control of Florence
by creating a high number of inter-marriages with the other families; see Wikipedia

1.5.1 The example

[27]: FFG = nx.florentine_families_graph()
print(f"There are {FFG.order()} nodes and {FFG.size()} links in the network.")
pos = nx.spring_layout(FFG, seed=0) # record for layer use.
nx.draw(FFG, **opts, pos=pos)

10

https://en.wikipedia.org/wiki/Strategic_network_formation

There are 15 nodes and 20 links in the network.

1.5.2 Compute centralities

Let’s compute the centralities of each (using networkx methods):

[28]: CD = nx.degree_centrality(FFG)
CE = nx.eigenvector_centrality(FFG)
CC = nx.closeness_centrality(FFG)
CB = nx.betweenness_centrality(FFG)

Let’s display the results in a pandas data frameL

[29]: pd.DataFrame({
'Key': list(CD.keys()),
'Degree': list(CD.values()),
'Eigenv': list(CE.values()),
'Closen': list(CC.values()),
'Betwee': list(CB.values())

}).sort_values('Degree', ascending=False)

11

[29]: Key Degree Eigenv Closen Betwee
1 Medici 0.428571 0.430315 0.560000 0.521978
4 Strozzi 0.285714 0.355973 0.437500 0.102564
12 Guadagni 0.285714 0.289117 0.466667 0.254579
2 Castellani 0.214286 0.259020 0.388889 0.054945
3 Peruzzi 0.214286 0.275722 0.368421 0.021978
6 Ridolfi 0.214286 0.341554 0.500000 0.113553
7 Tornabuoni 0.214286 0.325847 0.482759 0.091575
8 Albizzi 0.214286 0.243961 0.482759 0.212454
11 Bischeri 0.214286 0.282794 0.400000 0.104396
5 Barbadori 0.142857 0.211706 0.437500 0.093407
9 Salviati 0.142857 0.145921 0.388889 0.142857
0 Acciaiuoli 0.071429 0.132157 0.368421 0.000000
10 Pazzi 0.071429 0.044815 0.285714 0.000000
13 Ginori 0.071429 0.074925 0.333333 0.000000
14 Lamberteschi 0.071429 0.088793 0.325581 0.000000

1.5.3 Drawing graphs based on centrality

We’ll finish by plotting the graphs again, but this time using the centralities measures to control
the node sizes:

[30]: node_sizes = [CD[node]*6000 for node in FFG.nodes()]
nx.draw(FFG, with_labels=True, node_size=node_sizes, node_color='skyblue',␣

↪pos=pos)
plt.title('Degree')

[30]: Text(0.5, 1.0, 'Degree')

12

[31]: node_sizes = [CE[node] * 6000 for node in FFG.nodes()]
nx.draw(FFG, with_labels=True, node_size=node_sizes, node_color='plum', pos=pos)
plt.title('Eigevector')

[31]: Text(0.5, 1.0, 'Eigevector')

13

[32]: node_sizes = [CC[node]*6000 for node in FFG.nodes()]
nx.draw(FFG, with_labels=True, node_size=node_sizes, node_color='yellow',␣

↪pos=pos)
plt.title('Closeness')

[32]: Text(0.5, 1.0, 'Closeness')

14

[33]: node_sizes = [CB[node]*6000 for node in FFG.nodes()]
nx.draw(FFG, with_labels=True, node_size=node_sizes, node_color='lime', pos=pos)
plt.title('Betweenness')

[33]: Text(0.5, 1.0, 'Betweenness')

15

[34]: node_sizes = [CC[node]*6000 for node in FFG.nodes()]
node_colors = [CC[node] for node in FFG.nodes()]
nx.draw(FFG, with_labels=True, node_size=node_sizes, node_color=node_colors,␣

↪cmap=plt.cm.cool, font_size=10, pos=pos)
plt.title('Closeness (colour and size)')

[34]: Text(0.5, 1.0, 'Closeness (colour and size)')

16

1.6 Code corner (not covered in class explicitly)
This is a list a list of functions, and coding ideas, used in this notebook.

How to make a dictionary from two lists: one of keys, one of values, using zip. In this case, we’ll
make one based on the list of nodes, and vector of degree centralities:

[35]: degree_vector # Note this is a (6,1) array, not a (6,) array: need to flatten

[35]: array([[0.2],
[0.4],
[0.4],
[0.4],
[0.6],
[0.8]])

[36]: CD_dict = dict(zip(range(6), list(degree_vector.flatten())))
print(CD_dict)

{0: 0.2, 1: 0.4, 2: 0.4, 3: 0.4, 4: 0.6, 5: 0.8}

17

Finished here Thursday

18

	Part 2: Computing Centrality Measures
	Modules for this notebook
	Computing Degree Centrality
	Computing it in netwprkx

	Eigenvector Centrality
	Computing Eigenvalues with eigh
	The Power Method
	Computing it in networkx

	Closeness Centrality
	Betweenness Centrality
	Example: 15th-century Florentine marriages
	The example
	Compute centralities
	Drawing graphs based on centrality

	Code corner (not covered in class explicitly)

