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This course covers ideas and methods from abstract algebra

and discrete mathematics that are indispensible in all sciences:

I logic and sets
I permutations and polynomials
I mathematical induction and probability.

Blackboard will be used for posting Algebra learning materials,

announcements, etc.



References

I Norman L. Biggs, Discrete Mathematics, Oxford University

Press.
I Mark V. Lawson, Algebra & Geometry: An Introduction to

University Mathematics, Taylor & Francis.
I Online! many sources available for the individual topics.

Assessment

I Continuous: six online assignments.
I End-of-semester examination, covering all topics studied

during the semester.



Logic

Logic is the study of methods to reason validly: obtaining justified

conclusions from assumed premises.

Example. A certain island has two types of inhabitants: knights

and knaves (every inhabitant is either a knight or a knave).

Knights always tell the truth.

Knaves always lie.

You talk to two inhabitants, called A and B.

A says: “Exactly one of us is a knave”.

B says: “At least one of us is a knight”.

Who is telling the truth?

Solution. To solve this puzzle, we use a truth table.



In two columns on the left, list all possible truth values (T: true, F:

false) of the claims ‘X is a knight’ (X = A or B).

Then in another two columns, write the corresponding truth values

for each row of the statements SA := “Exactly one is a knave”;

SB := “At least one is a knight”.

A B SA SB

T T F T

T F T T

F T T T

F F F F

As knights always tell the truth and knaves always lie, a solution is

a row where column X matches column SX, for X = A and X = B.

Row 4 is the unique solution: both are knaves, both are lying. �



The atoms of logic are called propositions. A proposition is a

statement that has one and only one truth value (T or F).

e.g., 1 + 1 = 2: T and 2 + 2 = 5: F (in R).

e.g., ‘A is a knight’, ‘B is a knave’ in the puzzle above.

e.g., ‘This statement is false’ is not a proposition. Can’t be

assigned T or F (try it!). Cf. Liar’s Paradox, Barber’s Paradox.

Self-contradictions.

e.g., All humans have two eyes. [Premise]

John is a human. [Premise]

Therefore, John has two eyes. [Conclusion]



Connectives

Compound statements are built up recursively from atoms joined

together using connectives; e.g.,

‘and’ ∧ [conjunction]

‘or’ ∨ [disjunction]

‘not’ ¬ [negation].

These are three basic Boolean operators: multivariable functions

whose values and arguments are Booleans (T or F). ∧,∨ are binary

Boolean operators; ¬ is unary.

Each connective is defined by its truth table.



Truth table definition of ∧:

a b a ∧ b

T T T

T F F

F T F

F F F

a, b are propositional variables. So, a∧ b is true only when a and b

are both true.

4 = 22 rows in the table since ∧ is a binary operator.

Table shows that a ∧ b always has the same truth value as b ∧ a;

i.e., ∧ is commutative.

The table for ∧ can be used to evaluate longer expressions

a ∧ (b ∧ c), (a ∧ b) ∧ c, etc. (Exercise: prove that these two

expressions always have the same truth value. Need 23 = 8 rows in

the truth table.)



Truth table definition of ∨:

a b a ∨ b

T T T

T F T

F T T

F F F

So a ∨ b is true only when either a or b is true.

Again, 4 rows in the table since the operator is binary.

Also again, the table shows that the connective is commutative:

a ∨ b always has the same truth value as b ∨ a.

And ∨ is associative, i.e., a ∨ (b ∨ c) always has the same truth

value as (a ∨ b) ∨ c. [Exercise: prove it.]



¬, negation, is a unary operator, so has just 2 rows in its truth

table:
a ¬a
T F

F T

¬(¬a) always has same truth value as a: ¬ is an self-inverse

operator.

Another important binary connective is implication, denoted →.

a b a → b

T T T

T F F

F T T

F F T

N.B. T → F should be false, as indicated: if premises in a true

implication are true then the conclusion should true.



Recall the definition of the implication connective → (“if...then”) :

a b a→ b

T T T

T F F

F T T

F F T

If the premise a fails to be satisfied (last two rows of the table)

then the conclusion can be true or false without invalidating the

argument; the compound statement is vacuously true if the

premises are false.

e.g., interpret “If Earth is 2000 years old then I am President” as

true;

also interpret “If Earth is 2000 years old then I am not President”

as true (premise is false in both cases).



e.g.,

If it rains then I am carrying an umbrella

is T on clear days, and on rainy days when I have an umbrella; F

otherwise (i.e., the single case that it is a rainy day and I don’t

have any umbrella).

Just remember

I T can never imply F

I F can imply anything.

(Cf. definition of empty set ∅ in set theory.)

Truth table also shows that a→ b is not the same as b→ a.



The biconditional connective ↔ (iff: “if and only if”) is defined by

the truth table

a b a↔ b

T T T

T F F

F T F

F F T

This is really (a→ b) ∧ (b→ a); compare the truth tables

(exercise).

Iff statements are common in mathematics; e.g.,

a positive integer is prime iff it is greater than 1 and its

only positive integer divisors are itself and 1.

and, e.g.,

a positive integer n is odd iff n2 is odd.



Tautologies and contradictions

A tautology is a statement that is always true, regardless of the

truth values of constituent propositional variables.

A proposition is a contradiction if its truth value is F for all possible

combinations of the truth values of its propositional variables.

We can determine whether a given statement is a tautology, a

contradiction, or neither, by truth table.

e.g., a ∨ ¬a, a→ (b→ a), ¬(¬a)→ a are all tautologies.

e.g., a ∧ a is not a tautology, nor a contradiction: it is T if a is T,

and F if a is F.

e.g., p ∧ ¬p, a ∧ F are both contradictions.



Example. (¬a→ ¬b)→ (b→ a) is a tautology.

Use the truth table definitions of ¬ and → to construct truth table

for this compound statement.

a b ¬a ¬b ¬a→ ¬b b→ a (¬a→ ¬b)→ (b→ a)

T T F F T T T

T F F T T T T

F T T F F F T

F F T T T T T

Final column (all T) means that the statement is a tautology.

Indeed, (¬a→ ¬b)↔ (b→ a) is a tautology (check: the truth

table above only needs modifying in a new final column, using

definition of ↔).



Two statements are (logically) equivalent if they have the same

truth value for each assignment of truth values to constituent

propositions; otherwise, they are inequivalent.

If p and q are equivalent then we write p ≡ q; if p and q are

inequivalent then we write p 6≡ q.

e.g., if p is a tautology then p ≡ T.

e.g., if p is a contradiction then p ≡ F.

e.g., a→ b 6≡ b→ a.

e.g., commutativity of ∧, ∨: a ∧ b ≡ b ∧ a, a ∨ b ≡ b ∨ a.

e.g., associativity of ∧, ∨: (a ∧ b) ∧ c ≡ a ∧ (b ∧ c),

(a ∨ b) ∨ c ≡ a ∨ (b ∨ c).



Example. We can decide logical equivalence by truth table.

The following shows that a→ b ≡ ¬a ∨ b

a b a→ b ¬a ¬a ∨ b

T T T F T

T F F F F

F T T T T

F F T T T

e.g.,

If you don’t attend lectures then you will fail.

is equivalent to

Either you attend lectures, or you will fail.



Some other important equivalences are below. Again, all can be

proved by truth table.

Distributivity of ∧ over ∨, and vice versa:

I a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)

I a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c).

De Morgan’s Laws:

I ¬(a ∨ b) ≡ ¬a ∧ ¬b

I ¬(a ∧ b) ≡ ¬a ∨ ¬b.

Strictly speaking, negation does not distribute over ∧, ∨: it flips

each connective to the other.



Note that the second De Morgan law follows from the first (and

vice versa). Assuming the first law ¬(a ∨ b) ≡ ¬a ∧ ¬b and

applying ¬ to both sides:

¬¬(a ∨ b) ≡ ¬(¬a ∧ ¬b).

Then use that ¬¬ is the identity:

a ∨ b ≡ ¬(¬a ∧ ¬b).

Replacing a by ¬a and b by ¬b:

¬a ∨ ¬b ≡ ¬(¬¬a ∧ ¬¬b).

Finally, using ¬¬ = id again:

¬a ∨ ¬b ≡ ¬(a ∧ b),

which is the second De Morgan law.



Variations of p→ q

I q → p is the converse of p→ q.

I ¬p→ ¬q is the inverse of p→ q.

I ¬q → ¬p is the contrapositive of p→ q.

Note:

1. p→ q ≡ ¬q → ¬p.

2. converse ≡ inverse (follows from 1. by swapping q, p).

3. An implication is not equivalent to its converse; hence is not

equivalent to its inverse.

e.g. (1., equivalence of implication with its contrapositive):

“I’m sad when it rains” ≡ “If I’m not sad then it’s not raining.”



Example (proof that an implication ≡ its contrapositive). Recall

a→ b ≡ ¬a ∨ b. Label this equivalence (α). Then

¬q → ¬p ≡ ¬¬q ∨ ¬p (α)

≡ q ∨ ¬p ¬¬ = id

≡ ¬p ∨ q ∨ commutative

≡ p→ q (α).

Example. Proof that p→ q 6≡ ¬p→ ¬q:

p q ¬p ¬q p→ q ¬p→ ¬q
T T F F T T

T F F T F T
...

...
...

...
...

...



Predicates

We begin with a little set theory. A set is a collection of elements

(no other structure assumed).

Let S be a set. If x is an element S then we write x ∈ S. If x is

not an element of S then we write x 6∈ S.

Each set is specified entirely by its elements. Thus, two sets A and

B are equal, denoted A = B, if and only if a ∈ A implies a ∈ B
and b ∈ B implies b ∈ A.

Standard notation expresses the elements that define the set in

some explicit way, usually between braces. E.g., {1, . . . , 99};
{x, y, z}; {a ∈ Z | a is divisible by 2}, ∅. (Note that some sources

use ‘:’ in place of ‘|’ in the definition of a set.)

A set is finite if it has just a finite number of elements. E.g., {0, 1}
is finite; the set R of real numbers is not.



A predicate P (x) is a statement involving a variable x, that

becomes a proposition (i.e., has truth value T or F) when x is

replaced by a value (in the domain of P ). So a predicate is a

special kind of function.

Example. Let E(n) be the predicate “n is even”, where n ∈ Z.

The statement is either T or F, depending on n; e.g., E(14) ≡ T;

E(13) ≡ F.

Predicates can be combined by connectives. E.g., if P (n) = “n is

prime”, then E(n) ∧ P (n) ≡ T for just one n, namely 2.

Predicates can have more than one variable. E.g., L(x, y) = x < y

for x, y ∈ R.



Quantifying predicates

Predicates can also be turned into propositions by quantification.

Let P (x) be a predicate and S be a set.

Universal quantification: ∀x ∈ S, P (x) is the proposition

“for all elements x of S, the proposition P (x) has value T”.

Existential quantification: ∃x ∈ S, P (x) is the proposition

“for some element x of S (there exists an x), the proposition P (x)

has value T”.

Note: if S = {x1, x2, . . . , xn} then

I ∃x ∈ S, P (x) is equivalent to P (x1) ∨ P (x2) ∨ · · · ∨ P (xn),
I ∀x ∈ S, P (x) is equivalent to P (x1) ∧ P (x2) ∧ · · · ∧ P (xn).



Negation of quantifiers/duality: a universal quantifier negates to

existential quantifier, and vice versa. We can think of this

phenomenon as De Morgan laws for quantifiers:

¬(∀x ∈ S, P (x)) ≡ ∃x ∈ S,¬P (x).

¬(∃x ∈ S, P (x)) ≡ ∀x ∈ S,¬P (x).

Example. With obvious interpretations, “Not all Martians are

green” is ¬(∀x ∈M,G(x)) ≡ ∃x ∈M,¬G(x), i.e., there is a

Martian who is not green.

Example. “It isn’t true that some Martians are green” is

¬(∃x ∈M,G(x)) ≡ ∀x ∈M,¬G(x), i.e., no Martian is green.



Example (proof of De Morgan for quantifiers when S is finite).

Say S = {x1, . . . , xn}. Then

¬(∀x ∈ S, P (x)) ≡ ¬(P (x1) ∧ · · · ∧ P (xn))
≡ ¬P (x1) ∨ · · · ∨ ¬P (xn)
≡ ∃x ∈ S,¬P (x).

Where we used De Morgan for ∧,∨ in the second line.



Validity of arguments

A (logical) argument is a list of statements, ending in a conclusion.

More formally, an argument is a list p1, p2, . . . , pn,∴ c where the

p1, . . . , pn are premises and c is the conclusion.

An argument is valid if the conclusion follows necessarily from the

premises.

The validity of an argument depends only on its logical form, not

on the content.

The argument p1, p2, . . . , pn,∴ c is valid iff the proposition

(p1 ∧ p2 ∧ · · · ∧ pn)→ c is a tautology.



A method to test argument validity

1. Identify the premises and the conclusion.

2. Construct a truth table showing the truth values of all

premises and the conclusion.

3. A critical row of the truth table is a row of the truth table in
which all the premises are true. Identify the critical rows and
check them as follows.

I If the conclusion is true in every critical row then the

argument structure is valid. (∀)
I If there is a critical row in which the conclusion is false, then

the argument is invalid. (∃)

This method is justified simply from the definition of → and ∧:

the only way a→ b fails to be T is when a ≡ T and b ≡ F; the

only way x ∧ y is T is when both x and y are T.



Example. Premises: p1 = (p→ q ∨ ¬r), p2 = (q → p ∧ r).

Conclusion: c = (p→ r).

Check validity of p1, p2,∴ c by the above method:

p q r ¬r q ∨ ¬r p ∧ r p1 p2 c

T T T F T T T T T

T T F T T F T F

T F T F F T F T

T F F T T F T T F
...

...
...

...
...

...
...

...
...

Fourth row is a critical row in which c is F; thus, the argument is

invalid. (Exercise. Complete the truth table. Are there any other

critical rows with c ≡ F?)



Example. (Modus ponens): p→ q, p,∴ q.

e.g.: If Socrates is human then he is mortal. Socrates is human.

Therefore, Socrates is mortal.

Proof by truth table:

p q p→ q p q

T T T T T

T F F T

F T T F

F F T F

Or, use the equivalence p→ q ≡ ¬p ∨ q proved earlier.



Example. (Modus tollens): p→ q,¬q,∴ ¬p.

e.g.: If pigs can fly then they have wings. Pigs don’t have wings.

Therefore, pigs cannot fly.

Proof by truth table:

p q p→ q ¬q ¬p
T T T F

T F F T

F T T F

F F T T T

Or, use the equivalence p→ q ≡ ¬p ∨ q.



Example. (Transitivity of implication): p→ q, q → r,∴ p→ r.

Proof by truth table:

p q r p→ q q → r p→ r

T T T T T T

T T F F

T F T F

T F F F

F T T T T T

F T F F

F F T T T T

F F F T T T



Common logical fallacies

The converse fallacy: p→ q, q,∴ p.

e.g.:

If Socrates is human then he is mortal.

Socrates is mortal.

∴ Socrates is human.

This is wrong, as, e.g., the truth table method shows:

p q p→ q q p

T T T T T

T F F

F T T T F



The inverse fallacy: p→ q,¬p,∴ ¬q.

e.g.:

If pigs can fly then they have wings.

Pigs cannot fly.

∴ Pigs do not have wings.

Again, wrong:

p q p→ q ¬p ¬q
T T T F

T F F

F T T T F



Example. Recall the knights and knaves puzzle.

Knights always tell the truth; knaves always lie.

A says: “Exactly one of us is a knave”.

B says: “At least one of us is a knight”.

Each of A, B is either a knight or a knave.

We can now formalize the argument to solve this puzzle.

Let a, b respectively be the propositions ‘A is a knight’, ‘B is a

knight’. Premises:

1. a→ ¬b (from A’s statement)

2. ¬a→ ¬b (from A’s statement)

3. b→ a ∨ b (from B’s statement)

4. ¬b→ ¬a ∧ ¬b (from B’s statement).



From a ∨ ¬a, 1. (a→ ¬b), 2. (¬a→ ¬b), and modus ponens, we

conclude ¬b. So B is definitely a knave.

Next, combining ¬b with 4. (¬b→ ¬a ∧ ¬b), we conclude (by

modus ponens) ¬a ∧ ¬b.

Hence A and B are both knaves.



Set theory

Recall our understanding of a set as being completely determined

by the elements that it contains.

A set B is a subset of a set A if each element of B is also an

element of A.

If B is a subset of A then we write B ⊆ A.

Thus, B ⊆ A if b ∈ A for all b ∈ B.

Also note that A = B if and only if A ⊆ B and B ⊆ A. Equality

of sets is often proved by proving both these containments.

All sets are assumed to be subsets of a universal set, or universe U .

A set is finite if it has just finitely many elements. The size (or

cardinality) of a finite set is the number of its elements.



Let A,B ⊆ U .

I The union of A and B is the set

A ∪B := {x ∈ U | x ∈ A or x ∈ B} (cf. ∨ in logic).

I The intersection of A and B is the set

A ∩B := {x ∈ U | x ∈ A and x ∈ B} (cf. ∧ in logic).

I The set difference of A and B is the set

A\B := {x ∈ U | x ∈ A and x 6∈ B}.

I The complement of A (in U) is the set

A′ := {x ∈ U | x 6∈ A} (cf. ¬ in logic).

Note: A ∩A′ = ∅, A ∪A′ = U , ∅′ = U , U ′ = ∅.

The various set theory operations can be combined to produce

identities.



Example. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) for all A,B,C ⊆ U .

To prove this claim, let x ∈ A ∩ (B ∪ C).

By definition of ∩ & ∪, x ∈ A and x ∈ B or x ∈ C.

If x ∈ B then x ∈ A ∩B, so x ∈ (A ∩B) ∪ (A ∩ C).

Similarly, if x ∈ C then x ∈ A ∩ C, so x ∈ (A ∩B) ∪ (A ∩ C).

Hence A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).

For the other containment, let x ∈ (A ∩B) ∪ (A ∩ C).

Then x ∈ A ∩B or x ∈ A ∩ C.

If x ∈ A ∩ B then x ∈ A and x ∈ B, so x ∈ A and x ∈ B ∪ C.

Thus x ∈ A ∩ (B ∪ C).

Similarly, x ∈ A ∩ C implies x ∈ A ∩ (B ∪ C) again. Hence

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

Combining the two boxes proves the claim.



We list a few other set theory identities. All are either clear from

definitions, or can be proved ‘elementwise’ as in the proof at the

end of the previous lecture.

Let A,B,C ⊆ U .

I Commutative laws: A ∪B = B ∪A, A ∩B = B ∩A

I Associative laws: (A ∪B) ∪ C = A ∪ (B ∪ C),

(A ∩B) ∩ C = A ∩ (B ∩ C)

I Distributive laws: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

I Double negation: A′′ = A

I De Morgan laws: (A ∪B)′ = A′ ∩B′, (A ∩B)′ = A′ ∪B′.



Boolean algebra

Sets, together with the operations ∪, ∩, ′, and the constants ∅, U ,

behave similarly to propositions, together with analogous

operations ∨, ∧, ¬ and the constants F, T.

Both are examples of an algebraic structure with operations ·, +, ′

and constants 0, 1, called a Boolean algebra.

Each logical equivalence translates to a corresponding set identity,

and vice versa.

Duality The dual of a set identity is obtained by swapping ∪ with

∩ and swapping ∅ with U (check the previous page!).

The dual of a valid set identity is also a valid set identity. Thus

only one of them needs to be proved.



The two definitions on this page and the next fall under the theme

of ‘sets of sets’.

Let A be a set. The power set of A, denoted P (A), is the set

{X | X ⊆ A}.

That is, P (A) is the set of all subsets of A.

Example. Let A = {1, 2, 3}.
Then ∅ ∈ P (A) (the unique subset of size 0).

Subsets of size 1: {1}, {2}, {3}.
Subsets of size 2: {1, 2}, {1, 3}, {2, 3}.
A unique subset of size 3: A itself.

Hence P (A) has size 1 + 3 + 3 + 1 = 8 = 23 = 2size of A.

P (A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.



Let A be a set.

A partition of A is a set P = {P1, P2, . . .} where P1, P2, . . . are

nonempty subsets of A satisfying the following conditions:

I Pi ∩ Pj = ∅ for all i 6= j.

I A = P1 ∪ P2 ∪ · · ·
That is

I different Pi, Pj are disjoint (i.e., have no elements in

common)

I every element of A is in at least one (hence only one, by the

previous) Pi.

The subsets Pi are called parts of the partition P of A.

Example. A = {1, 2, 3} has the following partitions:

{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2, 3}}.



The Cartesian product of sets A and B is the set

A×B = {(a, b) | a ∈ A, b ∈ B}
of all (ordered) pairs (a, b).

Examples

I If A = {1, 2, 3} and B = {x, y} then A×B = {(1, x), (1, y),
(2, x), (2, y), (3, x), (3, y)}. Note: A has size 3, B has size 2,

and A×B has size 3.2 = 6.

I If A = {1, 2, 3} then A2, i.e., A×A, is {(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. Size 9 = 32.

More generally, the Cartesian product of n sets S1, S2, . . . , Sn is

S1 × S2 × · · · × Sn = {(a1, a2, . . . , an) | ai ∈ Si, 1 ≤ i ≤ n}.
Elements of S1 × S2 × · · · × Sn are called n-tuples.

Write An for A×A× · · · ×A (n factors).



Relations

Let X, Y be sets. A relation from X (called the domain) to Y

(called the codomain) is a subset R of X × Y .

If X = Y then R ⊆ X ×X is said to be a relation on X.

Example. If A = {1, 2, 3} and B = {x, y} then here are some

relations from A to B: {(1, x)}, {(2, y), (3, x)}, {(1, y), (2, y),
(3, y)}, {(1, x), (1, y), (2, x), (2, y)},...
(How many relations from this A to this B are there?)

If R is a relation from X to Y , and (x, y) ∈ R, then we say x is

related to y, and write xRy.



Let R be a relation on the set X.

I R is reflexive if xRx for all x ∈ X.

I R is symmetric if, for all x, y ∈ X, whenever xRy then yRx

too.

I R is transitive if, for all x, y, z ∈ X, whenever xRy and yRz

then xRz.

A relation R on a set X that is reflexive, symmetric, and transitive

is called an equivalence relation on X.

Example. If A = {a, b, c} then {(a, a), (b, b), (c, c)}, {(a, a), (b, b),
(c, c), (a, b), (b, a)}, {(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b),
(a, c), (c, a)} are all equivalence relations on A. In the first, each

element is related only to itself; in the second, a and b are related,

but not related to c; in the third, a, b, c are all related.



Example. Consider the relation ≤ on R.

≤ is reflexive: a ≤ a for all a ∈ R.

≤ is not symmetric: if a ≤ b then b ≤ a if and only if a = b.

≤ is transitive: if a ≤ b and b ≤ c then a ≤ c.

Example. Define a relation R on R by: xRy if and only if

x = ±y. Then R is an equivalence relation on R (confirm all three

properties on the checklist).



Example. Let A = R2 \ {(0, 0)}, i.e., the x-y plane without the

origin.

Define a relation R on A by: pRq if and only if p, q are on the

same straight line through (0, 0).

Quickly confirm that R is reflexive and symmetric.

If p, q are on the line `1 through (0, 0), and q, r are on the line `2
through (0, 0), then `1 = `2 (q 6= (0, 0) cannot be on two different

lines through the origin).

Thus p and r lie on the same line `1 = `2: R is transitive.

Consequently R is an equivalence relation on A.



Equivalence relations = partitions

Suppose that R is an equivalence relation on a set X.

For x ∈ X, denote by [x] the equivalence class of x: this is the set

of all y ∈ X such that yRx. N.B. xRy if and only if [x] = [y].

Note that [x] 6= ∅: since R is reflexive, i.e., xRx, the equivalence

class [x] always contains at least x itself.

Example. Let T be the equivalence relation on the set Z of

integers defined by xTy if and only if x+ y is even. (Check that

T = {(x, y) | x, y ∈ Z, x+ y even} is indeed an equivalence

relation on Z.)

Then for this relation T , [0] = all even integers; [1] = all odd

integers. Note that Z = [0] ∪ [1], disjoint union: a partition of Z.



Denote by X/R the set {[x] | x ∈ X} of all different equivalence

classes (also called the quotient set for the equivalence relation R

on X).

Suppose that P is a partition of X. For x ∈ X, denote by P (x)

the (unique) part of P that contains x.

Theorem

1. If R is an equivalence relation on the set X, then X/R is a

partition of X.

2. Conversely, if P is a partition of a set X, then the relation

R = {(x, y) ∈ X2 | P (x) = P (y)} is an equivalence relation

on X.



Proof.
The proofs of both 1. and 2. just walk through the definitions.

Prove only 1. here; proof of 2. is left as an exercise.

We are assuming that R is an equivalence relation on X.

Since R is reflexive, each x ∈ X is an element of its equivalence

class [x]. Therefore X = ∪x∈X [x].

Next, suppose that a ∈ [x] ∩ [y] for a, x, y ∈ X.

Then xRa and aRy. Transitivity of R implies that xRy, i.e.,

[x] = [y]. Hence, different equivalence classes must have empty

intersection—they are disjoint.

Together with X = ∪x∈X [x], this proves that the equivalence

classes comprise a partition of X.



Example. Consider the partition {{1}, {2, 3}, {4, 5, 6}} of

A = {1, 2, 3, 4, 5, 6}.

The equivalence relation on A corresponding to this partition is

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 3), (3, 2), (4, 5), (5, 4),
(4, 6), (6, 4), (5, 6), (6, 5)} ⊂ A×A.

Example. Define a relation ≡ (‘congruence modulo 3’) on Z by:

a ≡ b if and only if a− b is exactly divisible by 3. (Check that this

is an equivalence relation on Z.) Then the partition of Z
corresponding to this equivalence relation is [0] ∪ [1] ∪ [2] where

[0] = {. . . ,−9,−6,−3, 0, 3, 6, . . .}
[1] = {. . . ,−8,−5,−2, 1, 4, 7, . . .}
[2] = {. . . ,−7,−4,−1, 2, 5, 8, . . .}.



Functions

Let A,B be sets.

A function f from A (the domain) to B (the codomain) is a

subset f ⊆ A×B such that

for each a ∈A ∃ unique b ∈ B such that (a, b) ∈ f.

(In particular, if A is finite, then so too is every function f with

domain A; f has the same size as A.)

We write f : A→ B for a function f from A to B; also we write

f(a) = b if b is the unique element of B such that (a, b) ∈ f .



Example. Let A = {a, b, c, d, e} and B = {α, β, γ, δ}. Then

f = {(a, β), (b, α), (c, δ), (d, δ), (e, δ)} is a function f : A→ B;

f(a) = β, f(b) = α, f(c) = f(d) = f(e) = δ.

However, {(a, β), (a, α), (b, δ), (c, γ), (d, δ)(e, β)} is not a function

from A to B (a occurs twice in the first component);

neither is {(a, δ), (b, γ), (c, α), (e, β)} (d ∈ A does not appear).

Example. f = {(x, x2) | x ∈ R} is a function with domain R and

codomain the set of non-negative real numbers;

f = {(x, x3) | x ∈ R} is a function with domain = codomain = R.

Example. Let A ⊆ B. The characteristic function cA : B → {0, 1}
is defined by: cA(b) = 1 if and only if b ∈ A.



Example. Let X be a set. The relation idX = {(x, x) | x ∈ X} is

a function idX : X → X (the identity function). �

Every function f : A→ B is a relation from A to B; not vice versa.

Example. Let A = {(x, y) | x, y ∈ R, x2 + y2 = 1}. This is a

relation, not a function on R, e.g., (0, 1) and (0,−1) are both in

A. Draw the graph: it fails the ‘vertical line test’. �

Remember: a function is a triple: its domain, its codomain, and

the ‘rule’ that assigns to each element of the domain a unique

element of the codomain.

Thus, two functions are equal if and only if they have the same

domain, D, the same codomain, C, and they are equal as subsets

of D × C (have the same rule).



Injections, surjections, bijections

A function f : A→ B is injective if

∀ a1, a2 ∈ A, f(a1) = f(a2) implies a1 = a2

(roughly, we have a cancelation law for injective f). Thus

f : A→ B is injective if for every b ∈ B, there is at most one

a ∈ A such that f(a) = b.

Injective functions are also called one-to-one and injections.

Example. f : R→ R defined by f(x) = x2 is not injective, e.g.,

f(−1) = 1 = f(1) but 1 6= −1.

Example. f : R→ R defined by f(x) = x3 is injective.

Graphs of the previous examples fail/pass the ‘horizontal line test’.



A function f : A→ B is surjective if

∀ b ∈ B ∃ a ∈ A such that f(a) = b.

That is, f : A→ B is surjective if for every b ∈ B, there is at least

one a ∈ A such that f(a) = b.

Surjective functions are also said to be onto and are called

surjections.

Example. f : R→ R defined by f(x) = x2 is not surjective, e.g.,

there is not real number x such that f(x) = −1.

Example. Let f : R→ R be defined by f(x) = x3. Then f is

surjective.



f : A→ B is a bijection, or is bijective, if it is injective and

surjective: for each b ∈ B, ∃ unique a ∈ A such that f(a) = b.

Bijections are also called one-to-one correspondences.

Example. Let X = {a, b, c, d, e}, Y = {1, 2, 3, 4}.
Define functions f : X → Y , g : X → X, h : Y → X by

f :
a b c d e

3 4 2 4 1
, g :

a b c d e

b d e a c
, h :

1 2 3 4

a c b e

Then

I f is surjective, but not injective (f(b) = f(d)), hence not a

bijection;

I g is injective and surjective, hence a bijection;

I h is injective, but not surjective (there is no y ∈ Y such that

h(y) = d) hence not a bijection.



Compare definition of function f : A→ B,

for each a ∈ A, ∃ unique b ∈ B such that f(a) = b

with definition of bijection,

for each b ∈ B, ∃ unique a ∈ A such that f(a) = b.

Example. The identity map idX : X → X is a bijection.

Example. Define f : N→ N by f(n) = 2n.

Then f is injective: if f(m) = f(n) then 2m = 2n, so m = n.

However f is not surjective: there is no natural number m such

that f(m) = 2m = 1. Hence f is not a bijection from N to N.

Example. If a, b ∈ R and a 6= 0 then f(x) = ax+ b defines a

function f : R→ R that is a bijection. (Check.)



Let A and B be finite sets; say A = {a1, . . . , an} has size n and B

has size m.

If there exists an injection f : A→ B then f(a1), . . . , f(an) are all

different elements of B. Hence n ≤ m.

If there exists a surjection f : A→ B then each element of B must

occur at least once on the list f(a1), . . . , f(an). Hence n ≥ m.

Thus, if there is a bijection between A and B then these sets must

have the same size. Conversely, if finite sets have the same size

then there is a bijection between them.



Let f : X → Y be a function.

The image f(X) = {f(x) | x ∈ X} is a subset of Y .

The relation ∼f on X defined by x1 ∼f x2 if f(x1) = f(x2) is an

equivalence relation (check).

The equivalence classes [x] = {x′ ∈ X | f(x′) = f(x)} for ∼f

form (as usual) a partition X/ ∼f of X, called the kernel of f .

Theorem

1. The function F : X/ ∼f→ f(X) given by F ([x]) = f(x) is a

bijection between the kernel of f and the image f(X).

2. Conversely, if Y1 ⊆ Y , ≈ is any equivalence relation on X,

and G : X/ ≈ → Y1 is a bijection, then g(x) = G([x]) for

x ∈ X defines a function g : X → Y .



Proof of part 1.

First, we check that F is well-defined. That is, the definition of F

makes a choice of element from each equivalence class to define

each output of F ; need to see that changing the choice does not

change F ’s output. So, suppose that x′ ∈ [x]; then f(x′) = f(x),

and hence F ([x]) = f(x) does not change if we choose x′ from [x]

instead of x.

Now suppose that x1, x2 ∈ X and F ([x1]) = F ([x2]). Then

f(x1) = f(x2) by definition of F . Hence x1, x2 are in the same

∼f -equivalence class, i.e., [x1] = [x2]. Thus F is injective.

That F is surjective is obvious. �



Composition and inverse functions

Let f : A→ B and g : B → C be functions. The composition of f

and g, denoted g ◦ f (note the order), is defined by

(g ◦ f)(a) = g(f(a)) ∀a ∈ A.

Note that the composite g ◦ f is a function, g ◦ f : A→ C.

Composition is a kind of multiplication of functions.

Theorem
Composition of functions is associative, i.e., if f : A→ B,

g : B → C, h : C → D are functions, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .



Proof.
First, h ◦ (g ◦ f), (h ◦ g) ◦ f have the same domain A and the

same codomain D. Secondly, for all a ∈ A we have

h ◦ (g ◦ f)(a) = h((g ◦ f)(a)) = h(g(f(a))); and

(h ◦ g) ◦ f(a) = (h ◦ g)(f(a)) = h(g(f(a))).

Theorem
Let f : A→ B, g : B → C be functions.

(i) If f , g are injective then g ◦ f : A→ C is injective.

(ii) If f , g are surjective then g ◦ f : A→ C is surjective.

Proof.
(i) If (g ◦ f)(a1) = (g ◦ f)(a2) then g(f(a1)) = g(f(a2)), so

f(a1) = f(a2) because g is injective. Then a1 = a2 because f is

injective.

(ii): Exercise.



Corollary

The composition of bijections is a bijection.

Neither converse of (i), (ii) in the theorem is true.

Example. Let A = {a1, a2}, B = {b1, b2, b3}, C = {c1, c2}.
Define f : A→ B and g : B → C by

f :
a1 a2

b1 b2
, g :

b1 b2 b3

c1 c2 c2
.

Then f is injective, not surjective.

And g is surjective, not injective.

But (g ◦ f)(a1) = g(f(a1)) = g(b1) = c1
and (g ◦ f)(a2) = g(f(a2)) = g(b2) = c2,

showing that g ◦ f : A→ C is a bijection.



Theorem
Let f : A→ B and g : B → C be functions.

(i) If g ◦ f is injective then f is injective.

(ii) If g ◦ f is surjective then g is surjective.

Proof.
(i) Suppose that f(a1) = f(a2) for a1, a2 ∈ A.

Then (g ◦ f)(a1) = g(f(a1)) = g(f(a2)) = (g ◦ f)(a2).

Hence a1 = a2 because g ◦ f is injective.

(ii): Exercise.



Let f : X → Y be a bijection. Define a function g : Y → X by

g(y) = x if and only if f(x) = y.

That is, g = {(y, x) ∈ Y ×X | (x, y) ∈ f}. (Check that g as

defined is a function Y → X; use injectivity and surjectivity of f .)

g is a bijection too:

Suppose that g(y1) = g(y2) for some y1, y2 ∈ Y . Since f is

surjective, f(x1) = y1 and f(x2) = y2 for some x1, x2 ∈ X. By

definition of the function g we have g(y1) = x1 and g(y2) = x2.

But g(y1) = g(y2), so x1 = x2. Hence y1 = f(x1) = f(x2) = y2.

Thus g is injective.

Next, let x be any element of X. Then f(x) = y ∈ Y say. By

definition of g we have g(y) = x. This shows that X = g(Y ), i.e.,

g is surjective too.



So: there is a bijection f from a set X to a set Y if and only if

there is a bijection g from Y to X.

Moreover: f ◦ g = idY and g ◦ f = idX .

To see this (only need to prove one of the identities, by symmetry),

let x ∈ X; then f(x) = y ∈ Y says that g(y) = x.

Hence (g ◦ f)(x) = g(f(x)) = g(y) = x. True ∀x ∈ X, so

g ◦ f = idX as claimed.

g is called the inverse of f , and is denoted f−1.

Summing up: every bijection f : X → Y has an inverse,

f−1 : Y → X, which is also a bijection, and

f ◦ f−1 = idY , f−1 ◦ f = idX .

(Remember: in general, the composition of bijections is a

bijection—corollary on p. 3 of this lecture.)



Note: (f−1)−1 = f (!).

Multiplying (composing) an invertible function with its inverse

gives the identity (function); cf. (for example) multiplying

non-zero x ∈ R by x−1 to get 1.

In the other direction, if f : A→ B is a bijection, and α : B → A

is a function such that

f ◦ α = idB and α ◦ f = idA

then α = f−1.



Example. Let f : R→ R be the function such that f(x) = 5x+8.

We know f is a bijection from R to R. What is f−1?

Since (f ◦ f−1)(x) = x, we have

x = (f ◦ f−1)(x) = f(f−1(x)) = 5f−1(x) + 8, so

5f−1(x) = x− 8 and thus f−1(x) = 1
5(x− 8).

Inverse of a (non-horizontal, non-vertical) straight line is a straight

line.

Example. If f : A→ A is a function such that f2 := f ◦ f = idA,

then f is a bijection. Furthermore, f−1 = f . (Exercise: prove both

claims; second claim is clear by definition of inverse of bijection

after the first claim is proved.)



Permutations

A permutation of a set X is a bijection from X to itself.

Usually X = {1, 2, . . . , n} for some n ≥ 1.

Then a permutation of X can be thought of as a rearrangement of

the ordered list 1, 2, . . . , n.

Example. Let X = {1, 2, 3}. The function α : X → X defined by

α(1) = 2, α(2) = 3, α(3) = 1 is a permutation. Write this as

α =

(
1 2 3

2 3 1

)
. Here are some others:

(
1 2 3

1 2 3

)
= idX ,(

1 2 3

2 1 3

)
,

(
1 2 3

3 2 1

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3

3 1 2

)
= α−1.

Is this all permutations of {1, 2, 3}?



If X = {1, 2, . . . , n} then the set of all permutations of X is

denoted Sym(X), or Sym(n), or Sn. It is called the symmetric

group of X, or the symmetric group of degree n.

Theorem
Sn is a set of size n!.

Proof.
n!, read ‘n factorial’ is the product of the first n positive integers:

n · (n− 1) · · · 2 · 1. By convention, 0! = 1.

An element of Sn can be written as

(
1 2 · · · n

∗ ∗ · · · ∗

)
. Fill in the

asterisks: n choices in position 1, then n− 1 choices in position 2,

then ..., then 2 choices in position n− 1. Product of these numbers

of choices = total no. ways of filling in the bottom row.



Example. S3 has size 3! = 6. Hence we did write down all

permutations of {1, 2, 3} in the first example.

Why is Sn called a group?

We can ‘multiply’ two elements α, β ∈ Sn to get an element of Sn,

by composing them, i.e., α ◦ β ∈ Sn (also β ◦ α ∈ Sn; usually

α ◦ β 6= β ◦α). Remember: composition of bijections is a bijection.

Since function composition is associative, this ‘multiplication’

defined on Sn is associative: (α ◦ β) ◦ γ = α ◦ (β ◦ γ), for all

α, β, γ ∈ Sn.

There is an identity element for the multiplication, the identity

permutation id of {1, 2, . . . , n}: id ◦α = α ◦ id = α, for all α ∈ Sn.

Each element α ∈ Sn has an inverse α−1 ∈ Sn such that

α ◦ α−1 = α−1 ◦ α = id.



The fact that these properties hold for Sn make it an example of

an algebraic structure called a group.

Example. Let α =

(
1 2 3

2 3 1

)
and β =

(
1 2 3

2 1 3

)
.

Then α ◦ β(1) = α(2) = 3, α ◦ β(2) = α(1) = 2,

α ◦ β(3) = α(3) = 1.

That is, α ◦ β =

(
1 2 3

3 2 1

)
.

Check also that β ◦ α =

(
1 2 3

1 3 2

)
, so α ◦ β 6= β ◦ α;

α2 := α ◦ α =

(
1 2 3

3 1 2

)
, α3 = β2 = id. �

We need a more compact notation to specify permutations.



Commonly used ‘in-line’ notation: e.g., (1, 2) denotes the

permutation that swaps 1 and 2, leaving any other element of

X = {1, 2, . . . , n} fixed. Note (i, j) = (j, i).

(2, 4, 5)(7, 8) ∈ S8 sends 2 to 4, 4 to 5, 5 to 2 (loop around), 7 to

8, 8 to 7; fixes 1, 3, 6.

Note: (2, 4, 5)(7, 8) = (2, 4, 5) ◦ (7, 8) = (7, 8) ◦ (2, 4, 5) =
(7, 8)(2, 4, 5).

Example. (1, 2, 3) ◦ (1, 2) = (1, 3)(2) = (1, 3);

(1, 2) ◦ (1, 2, 3) = (1)(2, 3) = (2, 3).

Example. (1, 4, 6) ◦ (4, 5, 7) = (4, 5, 7, 6, 1) = (1, 4, 5, 7, 6).



Cycles

An m-cycle has the form (x1, x2, . . . , xm). That is, this m-cycle

takes x1 to x2, x2 to x3, . . . , xm−1 to xm, and then xm to x1.

Example. (1, 2) ◦ (1, 2) = id.

(1, 2, 3)3 = (1, 2, 3) ◦ [(1, 2, 3) ◦ (1, 2, 3)] = (1, 2, 3) ◦ (1, 3, 2) = id.

(1, 2, 3, 4)4 = id (check). �

Two cycles are said to be disjoint if they share no common points.

E.g., (2, 4) and (3, 5, 7) are disjoint. (1, 2), (3, 4), (9, 10) are

pairwise disjoint. (1, 2, 3) and (2, 5, 6) are not disjoint.

Fact: two disjoint cycles α, β commute with each other, i.e.,

α ◦ β = β ◦ α. (Observed in some previous examples.)



Theorem
Each permutation is a product of disjoint cycles, which are

uniquely determined by the permutation up to order of the cycles.

Disjoint cycles commute.

Example.(
1 2 3 4 5 6

2 5 3 6 1 4

)
= (1, 2, 5)(3)(4, 6) = (1, 2, 5)(4, 6).

Note: in the example, we omitted ‘◦’. This is because the cycles

are disjoint, hence commute, so the product is equal in either order.



The order of a permutation α ∈ Sn is the least positive integer r

such that αr := α ◦ α ◦ · · · ◦ α (r times) = id.

Example. id has order 1 (unique permutation of order 1). (1, 2)

has order 2. So too do (3, 5), (6, 2), (3, 11)...

Example. What is the order of γ = (1, 2)(7, 8, 9)?

γ2 = (1, 2)2(7, 8, 9)2 [disjoint cycles commute] = (7, 8, 9)2 = (7, 9, 8),

γ3 = γγ2 = (1, 2)(7, 8, 9)(7, 9, 8) = (7)(9)(8)(1, 2) = (1, 2),

γ4 = γγ3 = (1, 2)(7, 8, 9)(1, 2) = (1, 2)2(7, 8, 9) = (7, 8, 9),

γ5 = γγ4 = (1, 2)(7, 8, 9)(7, 8, 9) = (1, 2)(7, 9, 8),

γ6 = γγ5 = (1, 2)(7, 8, 9)(1, 2)(7, 9, 8) = (1, 2)2(7, 8, 9)(7, 9, 8)

= id.

Hence, γ has order 6.



Example. An m-cycle (cycle of length m) has order m.

To compute the order of a permutation α ∈ Sn, first write α as a

product of disjoint cycles; say these are of lengths m1, . . . ,mr.

Then the order of α is the least common multiple of m1, . . . ,mr.

Reasoning: a cycle of length m has order m and ∴ has m′th power

equal to id for an integer m′ iff m′ is divisible by m.

Disjoint cycles commute with each other.

Thus, the least integer r > 0 such that αr = id is the least r such

that each of the cycles powers to the identity: the least common

multiple of the mis.



Example. Find the order of σ =

(
1 2 3 4 5 6

6 4 3 5 2 1

)
∈ S6.

Solution. σ = (1, 6)(2, 4, 5)(3).

Thus σ has order lcm(2, 3) = 6. �

The same method applies to the second example on p. 1: much

quicker calculation of the order of γ = (1, 2)(7, 8, 9) as 6.



A transposition is a cycle of length 2, e.g., (1, 2), (98, 1001), etc.

Of course, a transposition has order 2.

Each cycle is a product of transpositions; e.g.,

(1, 2, 3) = (1, 2)(2, 3), (1, 3, 13, 24) = (1, 3)(3, 13)(13, 24).

In general, (x1, x2, . . . , xm) = (x1, x2)(x2, x3) · · · (xm−1, xm).

Theorem
Every permutation is a product of transpositions.

Proof.
Write the permutation as a product of disjoint cycles. Write each

cycle as a product of transpositions.



Parity of permutations

A permutation is called even if it is the product of an even number

of transpositions; if it is the product of an odd number of

transpositions then it is called odd.

A permutation cannot be both even and odd (why?).

Fact: the product of any two even permutations is even.

Fact: the product of any two odd permutations is even.

Fact: the product of an odd and an even permutation is odd.

Fact: the order of an odd permutation is even.

Fact: the order of an even permutation is even or odd.



Example. Previously we worked out all elements of S3:

id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2). Note (1, 2, 3)−1 = (1, 3, 2).

(1, 2), (1, 3), (2, 3) are odd. id, (1, 2, 3), (1, 3, 2) are even.

All the odd permutations square to the even permutation id.

The product of a pair of different odd permutations

(transpositions) is even (one of the 3-cycles); check.

And (1, 2, 3)2 = (1, 3, 2), even; (1, 3, 2)2 = (1, 2, 3), even;

(1, 3, 2)(1, 2, 3) = (1, 2, 3)(1, 3, 2) = id, even. Of course,

multiplying any permutation by id doesn’t change its parity.

And (1, 2)(1, 2, 3) = (2, 3), odd; (1, 2)(1, 3, 2) = (1, 3), odd;

(1, 3)(1, 2, 3) = (1, 2), odd; (1, 3)(1, 3, 2) = (2, 3), odd;

(2, 3)(1, 2, 3) = (1, 3), odd; (2, 3)(1, 3, 2) = (1, 2), odd. Check

that each product in reverse order is odd too.



Groups

As discussed previously, Sn is (an example of) a group. We now

define this concept in general.

Definition. Let G be a (non-empty) set on which there is defined

a binary operation, denoted ? say.That is, ? is a function from

G×G to G; we write the image of (a, b) ∈ G×G under ? as a ? b.

Then G is called a group if the following all hold.

I a ? (b ? c) = (a ? b) ? c, ∀ a, b, c ∈ G. Associativity

I ∃ e ∈ G (called the identity of G) such that

a ? e = e ? a = a, ∀ a ∈ G. Identity

I ∀ a ∈ G, ∃ a−1 ∈ G (called the inverse of a) such that

a ? a−1 = a−1 ? a = e. Inverses



The identity of a group G is often written 1G, or just 1.

Note: it is ‘the’ identity: if f ∈ G and f ? a = a ? f = a for all

a ∈ G, then 1 = 1 ? f (take a = 1 previously) = f (because of the

axiom defining 1).

Similarly, each element a of a group G has a unique inverse.

The binary operation in a group is sometimes called

‘multiplication’. It is also standard to omit any special symbol for

the operation and simply juxtapose elements, i.e., ab := a ? b.



Caution: the multiplication may not be commutative: we do not

stipulate that ab = ba, ∀ a, b ∈ G.

(However, an arbitrary pair of elements of a group may commute.)

A group that does have a commutative binary operation is called

abelian (after the Norwegian mathematician Niels Henrik Abel,

1802–1829).

The binary operation of an abelian group might be called addition,

its identity might be called zero and denoted 0.



Example. {0, 1} under addition modulo 2 is an (abelian!) group.

Example. Sn is a group; non-abelian if n > 2. The set of all even

permutations in Sn is a group; non-abelian if n > 3.

Example. The set R of real numbers under addition is an abelian

group.

The set of non-zero real numbers under multiplication is an abelian

group.

The analogous statements hold for the rationals Q and the

complex numbers C.



Example. The integers Z under addition form an abelian group.

Under multiplication, Z \ {0} does not form a group; e.g., the

multiplicative inverse of 2 is not an integer.

Example. The set of natural numbers N is not a group under +;

e.g., −1 6∈ N.

Example. The set of 2× 2 matrices with entries in R is an abelian

group under matrix addition. The set of 2× 2 invertible real

matrices is a group under matrix multiplication.

Note det(xy) = det(x)det(y), so the product of two invertible

matrices is invertible.

The identity here is the 2× 2 identity matrix: 1s down the main

diagonal, zeros elsewhere.



Rings

Some sets have two separate binary operations, satisfying separate

axioms, and interacting with each other. Such a structure is called

a ring. The premier class of examples for us is polynomial rings

(next major topic).

Definition. Let R be a set on which there are two binary

operations defined, + and ?. Write the image of (a, b) ∈ R×R

under ? as a ? b, and the image of (a, b) under + as a+ b. Then R

is called a ring if the following all hold.

I R under + is an abelian group (with identity 0 = 0R).

I ? is associative: a ? (b ? c) = (a ? b) ? c, ∀ a, b, c ∈ R.

I Distributivity: a ? (b+ c) = a ? b+ a ? c,

(a+ b) ? c = a ? c+ b ? c ∀ a, b, c ∈ R.



? is usually omitted in notation (we would write ab instead of

a ? b), and is called the ‘multiplication of R’.

If ? is commutative, i.e., a ? b = b ? a for all a, b ∈ R, then R is a

commutative ring.

All rings of interest ‘have a 1’, i.e., possess an identity for ?, an

element e of R such that a ? e = e ? a = a for all a ∈ R.

Example. Z, Q, R, C are all rings (commutative, with 1). Note

how every non-zero element of each of the rings Q, R, C has a

multiplicative inverse. However, that is not the case in Z.

Example. The set of all 2× 2 real matrices is a ring. Not

commutative. Has a 1 (the identity matrix).



Polynomial rings

Let R be a commutative ring (with 1). A polynomial over R in the

indeterminate x is an expression of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n

where a0, . . . , an ∈ R (the coefficients of p(x)). More compactly,

p(x) =
∑n

i=0 aix
i.

If an 6= 0 then p(x) has degree n.

Note: p(x) is a ‘formal expression’. It does not denote a function;

x is just a symbol.

Two polynomials f(x), g(x) are equal, f(x) = g(x), if and only if

they have the same coefficients on every power of x.



We can take, e.g., R to be any of the familiar number rings: Z, Q,

R, C. Or, e.g., R = Zm, the integers {0, 1, . . . ,m− 1} under

addition and multiplication modulo m: this is a commutative ring

with 1 (check).

Notation: R[x] is the (infinite) set of all polynomials over the ring

R in the indeterminate x.

Observe R ⊂ R[x]; r ∈ R is a constant polynomial in R[x].

We can define an addition, denoted +, on R[x] in ‘componentwise’

fashion:∑n
i=0 aix

i +
∑m

i=0 bix
i =

∑max(m,n)
i=0 (ai + bi)x

i

where aj = 0 if j > n and bj = 0 if j > m. Note how this extends

addition in R.



Also, we can define a multiplication on R[x], as follows. Set

aix
i bjx

j = aibjx
i+j (makes sense ‘formally’), then extend to all

polynomials by using distributivity.

That is,
(∑n

i=0 aix
i
)(∑m

i=0 bix
i
)
=

a0b0 + (a1b0 + a0b1)x+ (a0b2 + a1b1 + a2b0)x
2 + · · ·

In this product, xk has coefficient
∑k

i=0 aibk−i.

Theorem
With addition and multiplication of polynomials as defined above,

R[x] is a ring. Furthermore, R[x] is commutative because R is

commutative, and R[x] has a 1 because R has a 1.



Example. Let p(x) = x2 + 2x+ 1, q(x) = x3 + x+ 2 ∈ Z[x].

Then p(x) + q(x) = x3 + x2 + 3x+ 3 and

p(x)q(x) = (x2 + 2x+ 1)(x3 + x+ 2)

= x5 + x3 + 2x2 + 2x4 + 2x2 + 4x+ x3 + x+ 2

= x5 + 2x4 + 2x3 + 4x2 + 5x+ 2.

Now consider p(x), q(x) as elements of Z3[x]; i.e., read all

coefficients modulo 3.

Then p(x) + q(x) = x3 + x2 and

p(x)q(x) = x5 + 2x4 + 2x3 + x2 + 2x+ 2.



A field F is a commutative ring with 1 such that every element of

F apart from 0F has an inverse under the field multiplication; i.e.,

the non-zero elements of F form an (abelian) group under the

multiplication of F .

Example. Q, R, C are fields.

Example. Z is not a field; e.g., 2−1 6∈ Z.

Example. Z3, the ring of integers modulo 3, is a field: 1 is its own

inverse, as is 2: 2.2 = 4 ≡ 1 modulo 3.

Example. Z4, the ring of integers modulo 4, is not a field:

2.1 ≡ 2, 2.2 ≡ 0, 2.3 ≡ 2 modulo 4. So 2 has no multiplicative

inverse in Z4 (2 does not multiply with any element to give 1

modulo 4).

In general, Zm is a field if and only if m is a prime. (Why?)



We can divide one polynomial by another (non-zero) polynomial in

a polynomial ring over a field.

Theorem
Let F be a field, and let f(x), g(x) be non-zero elements of F [x].

Then there exist q(x), r(x) ∈ F [x] such that

(i) f(x) = g(x)q(x) + r(x), and

(ii) the degree of r(x) is strictly less than the degree of g(x).

Furthermore, the quotient q(x) and remainder r(x) are uniquely

determined by (i) and (ii).

Important: compare this with the Integer Division Theorem:

Theorem
Let a, b ∈ Z, b > 0. Then there exist unique q ∈ Z and r ∈ Z
where 0 ≤ r < b such that a = bq + r.



Proof of the polynomial division theorem is by induction on the

degree of f(x). (Induction is the next major topic after this one.)

Example. In Q[x],

x3 + 2x2 + 4x− 7 = (x2 + x− 2)(x+ 1) + (5x− 5).

(Check.) Thus, division of f(x) = x3 + 2x2 + 4x− 7 by

g(x) = x2 + x− 2 in Q[x] gives quotient q(x) = x+ 1 and

remainder r(x) = 5x− 5.

Note: 5x− 5 has degree 1, less than the degree 2 of x2 + x− 2.

How might we find q(x) and r(x) in practice, given any f(x) and

non-zero g(x)?



We discuss some consequences of the polynomial division theorem:

recall that if f(x) and g(x) are non-zero polynomials over a field

F , then ∃ unique q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x) and deg(r(x)) < deg(g(x)).

If f(x) =
∑n

i=0 aix
i ∈ F [x] and c ∈ F then we write f(c) for the

element
∑n

i=0 aic
i of F .

An element c of F is a root of f(x) ∈ F [x] if f(c) = 0.

Theorem
Let c ∈ F and f(x) ∈ F [x]. Then f(c) is the remainder after

division of f(x) by x− c.

Proof.
By the PDT, f(x) = (x− c)q(x) + r(x) where deg(r(x)) <

deg(x− c) = 1. Hence r(x) is a constant. Since f(c) = 0 + r(c),

we have r(x) = r(c) = f(c).



If a polynomial p(x) exactly divides another polynomial q(x), i.e.,

it has zero remainder after division, then p(x) is a factor of q(x).

Corollary

c ∈ F is a root of f(x) ∈ F [x] if and only if x− c is a factor of

f(x).

Proof.
By definition, x− c is a factor iff the remainder after division of

f(x) by x− c is 0; by the theorem, this remainder is f(c).

Example. Let f(x) = x3 + x2 − 5x+ 3 ∈ R[x]. Then

f(1) = 1 + 1− 5 + 3 = 0. Thus x− 1 is a factor of f(x). Indeed,

f(x) = (x− 1)(x2 + 2x− 3). Since x2 + 2x− 3 = (x+ 3)(x− 1),

by the corollary f(−3) = 0 [check].



A gcd (greatest common divisor) of non-zero f(x), g(x) ∈ F [x] is

d(x) ∈ F [x] such that d(x) is a factor of f(x) and g(x), and if

h(x) is a factor of f(x) and g(x) then h(x) is a factor of d(x).

Note: a gcd is determined only up to multiplication by non-zero

constants; i.e., if d(x) is a gcd then so is ad(x), ∀ a ∈ F \ {0}.
Make the gcd unique by insisting it is monic (leading coefficient 1).

Example. Let F = Z3 = {0, 1, 2}, f(x) = x3 + 2x2 + 2,

g(x) = x2 + 2x+ 1.

Divide f by g: f(x) = g(x)x+ (2x+ 2); remember, modulo 3.

Divide the previous divisor by the previous (non-zero) remainder:

g(x) = (2x+ 2)(2x+ 2). Zero remainder here.

x+ 1 is a common divisor of f and g. Any other common divisor

must divide 2(x+ 1) = f(x)− g(x)x. Thus x+ 1 is a gcd.



f(x), g(x) ∈ F [x] are coprime if they have 1 as a gcd.

Example. Let F = Z3, f(x) = x5 + 1, g(x) = x2 + 1.

f(x) = g(x)(x3 + 2x) + (x+ 1).

Hence any common divisor d(x) of f(x) and g(x) must divide

x+ 1.

However, g(x) = (x+ 1)(x+ 2) + 2; so d(x) divides 2.

Therefore this f(x) and g(x) are coprime.



Repeating the division theorem: computing gcds

Computing a gcd of two non-zero polynomials (over a field) is

analogous to computing the gcd of a pair of positive integers. The

method is known as the Euclidean algorithm. It avoids factorization

of the polynomials in question, using polynomial long division.

The algorithm is recursive. At each stage, we have a pair of

non-zero polynomials a(x), b(x) (in Q[x], say), and we perform

polynomial long division to divide a(x) by b(x).

That is, we compute polynomials q(x), r(x) such that a(x) =

b(x)q(x) + r(x) where deg(r(x)) is less than deg(b(x)): PDT.

If r(x) = 0 then we Stop, and output the last non-zero remainder

in the recursion.



If r(x) 6= 0 then we proceed to the next stage: divide this

remainder r(x) into the previous divisor b(x).

The process must eventually terminate, since the degrees are

decreasing as we move from stage to stage.

However, why is the output correct?

Exercise. prove that the output—the very last non-zero

remainder—really is a gcd of the input pair of polynomials.

Compare with the Euclidean algorithm in Z.



Example. Find a gcd of x3 +2x2 +4x− 7 and x2 + x− 2 in Q[x].

Solution.

x+ 1

x2 + x− 2 | x3 + 2x2 + 4x− 7

x3 + x2 − 2x

x2 + 6x− 7

x2 + x− 2

5x− 5

Thus x3 + 2x2 + 4x− 7 = (x2 + x− 2)(x+ 1) + (5x− 5).

Non-zero remainder, so must continue to next stage.



Divide previous divisor x2 + x− 2 by previous remainder 5x− 5.

1
5x+ 2

5

5x− 5 | x2 + x− 2

x2 − x

2x− 2

2x− 2

0

Remainder is 0: stop. Last non-zero remainder, i.e., 5x− 5, is a

gcd of the input pair.

Exercise. Check independently that x− 1 is a gcd of

x3 + 2x2 + 4x− 7 and x2 + x− 2. Can at least check quickly that

x− 1 is a common divisor!



Let F be a field and let f(x) ∈ F [x] be a non-constant polynomial.

f(x) is irreducible (over F ) if, for any a(x), b(x) ∈ F [x] such that

f(x) = a(x)b(x), either a(x) or b(x) is a constant.

Every non-constant polynomial can be factorized into a product of

irreducible polynomials.

Moreover the factorization is unique, up to unimportant changes

such as altering the order of factors, or multiplying a factor by

some non-zero a ∈ F (and multiplying another factor by a−1).

Example. Every linear polynomial x− a ∈ F [x] where a ∈ F is

irreducible.

Example. x2 + 1 is irreducible over R. However, over C, it is not

irreducible (it is reducible): x2 + 1 = (x− i)(x+ i) where i =
√
−1

as usual.



The following is the Fundamental Theorem of Algebra.

Theorem
Each non-constant polynomial in C[x] has a root in C.

Corollary

Each polynomial of degree n > 0 over C factorizes into the product

of n linear (hence irreducible) factors over C (counting repeats).

We use calculus to prove a specialisation of the FTA: every real

polynomial of odd degree has at least one real root. (This fails for

even degree; e.g., consider f(x) = x2 + 1.)

Theorem
Let f(x) =

∑n
i=0 aix

i ∈ R[x] where an 6= 0 and n is odd. Then

f(r) = 0 for some r ∈ R.



Proof.
We may assume that an is positive (if not, multiply f(x) by −1
and note that f(r) = 0 if and only if −f(r) = 0).

For large enough positive b, f(b) ≈ anbn is positive.

On the other hand, there will be negative c such that f(c) ≈
anc

n < 0. (We are using n odd here: xn is negative if x is

negative.)

So: f(b) > 0 > f(c): f(x) takes on positive and negative values

after substituting for x.

Since f(x) as a function of real numbers is continuous, the

Intermediate Value Theorem implies that there must be some r

(real) such that f(r) = 0.



The specialisation of the Fundamental Theorem of Algebra proved

above is also a consequence of the following (check this claim).

Theorem
Let f(x) ∈ R[x], where the degree of f(x) is greater than 2. Then

f(x) is reducible over R.

That is, every polynomial of degree greater than 2 in R[x]
factorizes as a product of irreducibles in R[x], each of degree 1

(linear) or two (quadratic).



Proof. By the FTA (in general), f(x) has a root α ∈ C.

Denote complex conjugation by overline: a+ bi = a− bi, a, b ∈ R.

Then f(α) = 0 implies that f(α) = 0 = 0, and then

f(α) = f(α) = 0 (f(α) = f(α) because conjugation is additive

and multiplicative: µ+ ν = µ+ ν and µν = µν).

If α = α then α is real. That is, x− α ∈ R[x] is a factor of f(x)

(by our root theorem: c ∈ F is a root of p(x) ∈ F [x] if and only if

x− c is a factor of p(x)). Also, x− α has degree 1, less than

deg(f(x)), which is greater than 2 by hypothesis. Done.

Otherwise, x− α and x− α are both factors of f(x) (by our root

theorem); hence their product is also a factor (x− α and x− α are

different and thus coprime).



Thus g(x) := (x− α)(x− α) = x2 − (α+ α)x+ αα is a factor of

f(x). Now note that α+ α and αα are both real:

(a+ bi) + (a− bi) = 2a ∈ R,

(a+ bi)(a− bi) = a2 + b2 ∈ R;

remember that i2 = −1.

Hence g(x) ∈ R[x] of degree 2 < deg(f(x)) is a factor of f(x).

This completes the proof. �



The principle of mathematical induction

A powerful proof technique, commonly used to prove statements

about (positive) integers.

Example. The sum of the first n odd positive integers is n2.

Example. The sum of the first n positive integers is n(n+ 1)/2.

Example. For n ≥ 3, the sum of the angles (in radians) of an

n-sided polygon is (n− 2)π.

Each of the above examples is a statement P (n) that is made for

an infinite set of positive integers n. (P (n) is a predicate!)



Example. Let P (n) be ‘the sum of the first n odd positive

integers is n2’. Using sigma notation we can rewrite this as

P (n) :
∑n

k=1(2k − 1) = n2.

Then P (1) : (2.1− 1) = 1 which is T. P (2) : 1 + 3 = 22, T.

P (3) : 1 + 3 + 5 = 32, T. P (4) : 1 + 3 + 5 + 7 = 42, T...

Example. Let P (n) be ‘the sum of the angles of an n-sided

polygon is (n− 2)π’, for n ≥ 3.

Then P (3) : ‘the sum of the angles of a triangle is (3− 2)π = π,

which is T. P (4) : ‘the sum of the angles of a quadrilateral is

(4− 2)π = 2π, T...

Exercise. Check that P (n) :
∑n

k=1 k = n(n+ 1)/2 is T for five or

six random choices of n.



Principle of mathematical induction. Let P (n) be a statement

about each positive integer n. If we prove that

1. P (1) is true, and

2. P (k) true implies that P (k + 1) is true, for all positive

integers k,

then P (n) is true for all positive integers n.

Reason as follows: given P (1) ≡ T by 1. of the Principle. Since

P (1) ≡ T, so P (2) = P (1 + 1) ≡ T by 2. of the Principle. Since

P (2) ≡ T, so P (3) = P (2 + 1) ≡ T by 2. of the Principle,...

...a chain of dominoes falls over!

N.B. Note how proving 1. is vital; without 1., the domino effect

cannot start.



Example. Prove P (n) :
∑n

i=1(2i− 1) = n2.

Solution. We previously observed that P (1) is true (and

P (2), P (3), P (4) too).

Assume that P (k) is true, for some positive integer k (the

inductive hypothesis).

That is, we assume that 1 + 3 + · · ·+ (2k − 1) = k2. (∗)

Add the next odd positive integer after 2k − 1 to both sides of (∗):
1 + 3 + · · ·+ (2k − 1) + (2k + 1) = k2 + (2k + 1).

Now k2 + 2k + 1 = (k + 1)2. Thus, the inductive hypothesis

implies that 1 + 3 + · · ·+ (2k − 1) + (2k + 1) = (k + 1)2; which is

exactly P (k + 1).

We have now fulfilled both parts of the POMI, hence proving that

this statement P (n) is true for all positive integers n.



Usually just say ‘proof by induction’.

Example. Define a sequence {an} of integers as follows: a1 = 1,

and if n ≥ 2 then an = an−1 + n. Use induction to prove that

P (n) : an = n(n+ 1)/2 for all n ≥ 1.

Solution.

Base step. n(n+ 1)/2 = 1.2/2 = 1 for n = 1. Also a1 = 1. Thus

P (1) is true.

Inductive hypothesis. Assume that P (k) is true, i.e., assume that

ak = k(k + 1)/2. We have to use this hypothesis to prove that

P (k + 1) is true, i.e.,

ak+1 = (k + 1)(k + 1 + 1)/2 = (k + 1)(k + 2)/2. (†)



Substituting k + 1 for n in the definition an = an−1 + n gives

ak+1 = ak + (k + 1).

Thus ak+1 = ak + (k + 1) = k(k + 1)/2 + (k + 1), using the

inductive hypothesis.

Now a bit of algebra: ak+1 = (k + 1)(k2 + 1) = (k + 1)k+2
2 , which

is (†), exactly what we want.

This proves the formula by induction.



Example. Find and prove a formula in terms of n for

sn := 12 + 22 + · · ·+ n2, the sum of the squares of the first n

positive integers.

Solution. Try some values of n, try to spot a pattern. n = 1:

12 = 1. n = 2: 12 + 22 = 5. n = 3: 5 + 32 = 14. n = 4:

14 + 42 = 30.

Looking at the sequence s1 = 1, s2 = 5, s3 = 14, s4 = 30, . . ., not

easy to guess a formula in terms of n for sn. Ingenuity required.

Note that(∑n
i=1(i+ 1)3

)
−
(∑n

i=1i
3
)

= (23 + · · ·+ n3 + (n+ 1)3)

−(13 + 23 + · · ·+ n3)

= (n+ 1)3 − 1 = n3 + 3n2 + 3n.

Also, the left hand side above is∑
i

(
(i+1)3−i3

)
=
∑

i(i
3+3i2+3i+1−i3) = 3sn + 3

∑n
i=1 i+ n.



Solution (continued). Equating, we get

3sn + 3
∑n

i=1 i+ n = n3 + 3n2 + 3n.

Solving yields sn = 1
3(n

3 + 3n2 + 2n)−
∑n

i=1 i.

Recall from an earlier example that
∑n

i=1 i = n(n+ 1)/2.

Plugging this into the previous line, we finally get (check!!)

sn = 1
6(2n

3 + 3n2 + n) = n(n+1)(2n+1)
6 .

(This agrees with the values of s1, s2, s3, s4 computed at the

beginning; again, check). We have actually proved the required

formula! However, we now (re-)prove that sn = n(n+1)(2n+1)
6

independently, by induction.



Solution (continued). The base case has been established, so we

make the inductive hypothesis that the box for n = k is true, i.e.,

we assume that

sk = 1
6k(k + 1)(2k + 1)

for some k ≥ 1. Then

sk+1 = sk + (k + 1)2 = 1
6k(k + 1)(2k + 1) + 1

6(6k
2 + 12k + 6)

= 1
6(2k

3 + 3k2 + k + 6k2 + 12k + 6)

= 1
6(2k

3 + 9k2 + 13k + 6).

Now we have to factorize the cubic. We check that −1 is a root,

so (k + 1) is a factor. Dividing the cubic by k + 1, we get

2k3 + 9k2 + 13k + 6 = (k + 1)(2k2 + 7k + 6)

= (k + 1)(k + 2)(2k + 3).



Solution (continued).

Assuming the inductive hypothesis, and using basic algebra, we

have shown that

sk+1 =
1
6(k + 1)(k + 2)(2k + 3).

Also sn = n(n+1)(2n+1)
6 for n = k + 1 reads

sk+1 = 1
6(k + 1)(k + 1 + 1)(2(k + 1) + 1)

= 1
6(k + 1)(k + 2)(2k + 3).

This completes the proof that sn = n(n+1)(2n+1)
6 for all n ≥ 1, by

induction.



Sometimes we start with a base case different from 1.

Example. For which positive integers n is n! > 3n? Prove your

answer by induction.

Solution. We check 1! = 1 < 3 = 31, 2! = 2 < 9 = 32, 3! = 6 <

27 = 33, . . . 6! = 720 < 729 = 36, 7! = 5040 > 2187 = 37.

Thus, we surmise that n! > 3n for all n ≥ 7.

We prove this by induction, the base case having already been

established.



Solution (continued).

Inductive hypothesis: suppose that k! > 3k for some k ≥ 7.

Then (k + 1)! = (k + 1)k! > (k + 1)3k, by definition of factorial

and using the inductive hypothesis.

Now k ≥ 7, so certainly k + 1 > 3. Hence

(k + 1)! > (k + 1)3k > 3.3k = 3k+1.

We have obtained the inequality n! > 3n for n = k + 1, proving

that n! > 3n for all n ≥ 7, by induction.



Probability

A sample space is the set of all possible outcomes of a random

process (experiment).

An event is a subset of a sample space.

Example. Consider the experiment of rolling a (6-sided) die once.

Outcome = number on uppermost face.

So sample space = {1, 2, 3, 4, 5, 6}.

The event of rolling a number greater than 2 = {3, 4, 5, 6}.

The event of rolling a 5 = {5}.

The event of rolling an odd number = {1, 3, 5}.



Example. Consider selecting a card randomly from a standard

52-card deck.

The event of picking a ♥ = {A♥, 2♥, . . . , J♥,Q♥,K♥}; size 13.

The event of picking a numbered ♣ = {A♣, 2♣, . . . , 10♣}; size 10.

The event of picking a ♦ face card = {J♦,Q♦,K♦}; size 3. �

Empirical probability is determined by observation of an

experiment; it is a relative frequency.

If E is an event in an experiment, then empirical probability P (E)

of E occurring is

(no. times E occurs)/(no. times experiment is performed).



Example. A coin is tossed 100 times. It comes up Heads 44 times.

For this experiment, P (Heads) = 0.44.

Cf. theoretical probability 0.5 of a fair coin coming up heads on a

single toss. �

Law of large numbers: the relative frequency (empirical

probability) of an event approaches the theoretical probability as

the number of times an experiment is performed →∞.

So, if we perform a coin toss 1000, 104, 105, . . . times, we expect

the relative frequency of Heads and Tails each to get closer and

closer to 1
2 .



Theoretical probability. Suppose that each outcome in a (finite)

sample space S is equally likely to occur (e.g., H or T in toss of a

fair coin). If E is an event in S, then

P (E) =
|E|
|S|

where we write |X| for the size of a finite set X.

Example. An (unbiased, cubic) die is thrown. Find the probability

of throwing (i) a 5; (ii) an even number; (iii) a number greater

than 2; (iv) a 7; (v) a number less than 7.

Solution. There are six possible outcomes, each equally likely.

(i) Throwing a five can happen in just one way. Hence probability

here is 1
6 .



Solution (continued).

(ii) An even number can be thrown in three different ways (2, 4, 6),

so probability here is 3
6 = 1

2 .

(iii) Event has size 4: {3, 4, 5, 6}, so probability here is 4
6 = 2

3 .

(iv) This event is empty: it has size 0, so probability is 0
6 = 0.

(v) This event is certain: it has size 6, so probability is 6
6 = 1. �

Note:

I P (impossible event) = 0,

I P (certain event) = 1,

I For any event E, 0 ≤ P (E) ≤ 1,

I P (E) + P (S \ E) = 1.



E and S \ E are complementary events. e.g., in the above die

throw example, (probability of throwing a 2 or less) = (1− the

probability of throwing a 3 or more) = 1− 2
3 = 1

3 .

Example. We select a card randomly from a standard 52-card

deck. Find the probability that the selected card is (i) a 5; (ii) not

a 5; (iii) a ♦; (iv) a J, Q, or K; (v) greater than 6 and less than 9.

Solution.

(i) There are four 5s (one in each suit), so P (5) = 4
52 = 1

13 .

(ii) Probability not a 5 = 1− P (5) = 12
13 .

(iii) There are exactly 13 ♦, so P (♦) = 13
52 = 1

4 .

(iv) There are 3 face cards in each of the 4 suits, so 12 face cards

in total. Hence P (J or Q or K) = 12
52 = 3

13 .



Solution (continued).

(v) If greater than 6 but less than 9, the card must be a 7 or 8.

There are four 7s and four 8s, so this event has size 8.

Hence P (> 6 and < 9) = 8
52 = 2

13 .



Odds

Odds is a ratio of probabilities.

Odds against an event E is defined to be

P (E fails to occur)
/
P (E occurs);

i.e., P (failure)
/
P (success).

Example. The odds against throwing a 4 on a single throw of a

die are 5
6

/
1
6 = 5/1, i.e., ‘five-to-one’ or 5 : 1.

Equivalently, the odds in favor of throwing a 4 are 1 to 5. �

Conversely, probabilities may be inferred from odds.



Example. The odds against Adam winning the next round of

poker are 9 : 2. What is the probability that Adam wins the next

round of poker?

Solution. These are quite long odds, so the probability will be

reasonably small.

Remember odds = `
w where ` = P (A loses) and w = P (A wins).

Note `+ w = 1.

We have 9
2 = `

w = 1−w
w . Cross multiplying:

9w = 2(1− w) = 2− 2w,

so 11w = 2. Therefore P (Adam wins) = w = 2/11.



Expected value

Or expectation—used in decision-making; indicates expected net

result of an experiment over the long term.

Example. Bert rolls a die.

Alf will give Bert one euro if Bert rolls an even;

otherwise, Bert must give Alf one euro.

Who is better off in the long run?

Expected gain or loss for Alf = P (Alf wins).(amount Alf wins)

+P (Alf loses).(−amount Alf loses) = 1
2 .1 +

1
2 .− 1 = 0.

That is, Alf (and Bert) expects to break even: fair game.



If an experiment comprises n events, with respective probabilities

p1, . . . , pn and outcomes a1, . . . , an (could be win/loss, i.e.,

positive or negative), then expectation of the experiment

=
∑n

i=1 piai.

Example. Find the expectation for one throw of an unbiased die.

Solution.
1
6 .1+

1
6 .2+

1
6 .3+

1
6 .4+

1
6 .5+

1
6 .6 = 1+2+3+4+5+6

6 = 6.7/2.6 = 3.5.

Example. In a multiple choice quiz, there are five possible answers

to each question. Marking scheme: 2 marks for a correct answer,
1
2 mark deducted for an incorrect answer; 0 marks for blank.

(i) If Alice doesn’t know an answer, should she guess?

(ii) If Alice can eliminate one of the choices as answer to a

question, should she guess for that question?



Solution.

(i) P (correct guess) = 1
5 . P (incorrect guess) = 4

5 .

Hence expectation is 1
5 .2 +

4
5(−

1
2) =

2
5 − 4

10 = 0.

In the long run, expect no disadvantage (nor advantage!) from

guessing.

(ii) Now P (correct guess) = 1
4 . P (incorrect guess) = 3

4 .

Expectation is 1
4 .2−

3
4 · 1

2 = 1
2 − 3

8 = 1
8 > 0.

Yes, she should guess.



Example. One thousand raffle tickets are sold at one euro per

ticket. First prize is 500 euro and there are two consolation prizes

of 100 euro each.

(i) Irene buys one ticket. Expectation?

(ii) Expectation if Irene buys five tickets?

Solution.

(i) E = p1a1 + p2a2 + p3a3 =
1

1000(500− 1) [wins 1st prize]

+ 2
1000(100− 1) [wins consolation prize] + 997

1000(−1) [wins nothing].

So E = 499+198−997
1000 = −300/1000 = −0.3, i.e., a 30 cent loss.

(ii) Expect a loss of 5× 0.3 = 1.50 euro. �

What would be a fair ticket price in the above example?



Fair price = expected value + cost to play.

This is −0.3 + 1 = 0.7, i.e., fair price is 70 cent per ticket.

Indeed, at this price, Irene’s expectation for buying a single ticket is

1
1000(499.3) +

2
1000(99.3) +

997
1000(−0.7) = 499.3+198.6−697.9

1000 = 0.

Example. One of the games at a funfair is spinning the pointer on

a wheel with the following prizes: 10 euro in one quarter of the

wheel, 5 euro in another quarter of the wheel, 2 euro in a third

quarter of the wheel, 20 euro in one eighth of the wheel, 5 euro in

the remaining eighth of the wheel. A ticket for one spin of the

pointer is 8 euro.

Is this a fair game?



Solution.

You can guess that it is not a fair game! i.e., that the expectation

of a single spin is negative. We do the calculation:

Result Probability Win/loss

2 1
4 2− 8 = −6

5 1
4 + 1

8 = 3
8 5− 8 = −3

10 1
4 10− 8 = 2

20 1
8 20− 8 = 12

(In the second row, there are two ways of spinning 5: one in a

quarter of the wheel, the other in an eighth of it.)

Expectation is therefore

1
4(−6) + 3

8(−3) + 1
4(2) +

1
8(12) =

−12−9+4+12
8 = −5

8 .

As predicted, expect to lose playing this game (62.5 cent per spin).



Or & And problems

‘Or’ problems ask for the probability of success for at least one

event from a list.

For two events A, B,

P (A or B) = P (A) + P (B)− P (A and B).

Also write P (A or B) as P (A∪B), and P (A and B) as P (A∩B).

(‘A and B’ means ‘A and B occurring together at the same time’.)

Note that we have to subtract P (A ∩B) because it is counted

twice in adding P (A) to P (B).



The ‘or’ rule generalizes to more than two events, e.g.,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

−P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+P (A ∩B ∩ C).

The general result is known as the inclusion/exclusion principle. It

can be proved by induction on the number of events.

Example. Chips labeled 1, 2, . . . , 10 are placed in a hat. Then a

chip is randomly selected. Calculate the probability that the

selected chip is even or greater than 6.

Solution. P (E) = 5
10 = 1

2 . G = {7, 8, 9, 10} so P (G) = 4
10 = 2

5 .

G ∩ E = {8, 10} so P (G ∩ E) = 2
10 = 1

5 . Thus

P (E ∪G) = P (E) + P (G)− P (E ∩G) = 1
2 + 2

5 −
1
5 = 0.7.



Example. A single card is drawn from a standard 52-card deck.

Calculate P (A ∪B) for (i) A = ace, B = J; (ii) A = ace, B = ♥;

(iii) A = red, B = black; (iv) A = face card, B = red.

Solution.

(i) Here A ∩B = ∅, so that P (A ∪B) = P (A) + P (B) = 4
52 +

4
52 = 2

13 ≈ 0.1538.

(ii) Here P (A ∩B) = 1
52 (only one ace of hearts). Thus

P (A ∪B) = P (A) + P (B)− 1
52 = 4

52 + 13
52 −

1
52 = 16

52 ≈ 0.3077.

(iii) Certain! so probability = 1. Or: P (r) = 1
2 = P (b) and

P (r & b) = 0. Thus P (A ∪B) = P (A) + P (B)− 0 = 1
2 + 1

2 = 1.

(iv) 3 face cards in each of the 4 suits. Hence P (A) = 12
52 .

P (r) = 1
2 . P (r and face) = 3+3

52 (3 in ♥, 3 in ♦) = 6
52 . Thus

P (A∪B) = P (A) +P (B)−P (A∩B) = 12+26−6
52 = 32

52 ≈ 0.6154.



‘And’ problems

These involve compound event probabilities.

Let A, B be events. Then P (A and then B) = P (A) · P (B).

That is, we consider A occurring first, and then B.

Example. Suppose that a bag contains one red token, one green

token, one blue token.

Two tokens are selected from the bag; the first is replaced before

the second is drawn.

The sample space (can be written down from a tree diagram) is

{rr, rb, rg, br, bb, bg, gr, gb, gg}; size 9.

P (r and then b) = 1
3 ·

1
3 = 1

9 . P (r, b in any order) = 2
9 (rb+ br).



Example. Two cards are selected randomly from a standard

52-card deck. Find the probability that two queens are drawn

(i) with replacement; (ii) without replacement.

Solution. (i) The probability of a Q on each draw is 4
52 = 1

13 .

Hence P (Q and then 2nd Q) = 1
132

= 1
169 .

(ii) Here, the probability on the second draw changes: without

replacement of the first drawn card it is 3
51 = 1

17 . Hence the

probability of the compound event is 1
13 ·

1
17 = 1

221 .

As previous example indicates, for a given series of events we need

to determine whether they are dependent or independent.

e.g., in part (i), the two events are independent: probability of the

second event did not rely on the outcome of the first event.

In part (ii), the events are dependent: not replacing the first card

drawn changed the sample space going into the second event.



Counting techniques

Example. A keypad uses passwords of length 4: two letters

followed by two decimal digits. How many passwords are possible?

Solution. e.g., AB13, XY45, etc. etc. are all valid passwords.

Think about how we would make up such a password αβγδ. Begin

by choosing the first symbol, α: can be done in 26 ways.

For each fixed α, we are counting the number of possible βγδ.

Same (similar) problem, shorter length. There are 26 choices for β.

Now, for each of the 262 = 676 possible αβ, we choose a γ: can

be done in 10 ways.

Finally, for each of the 676× 10 = 6760 possible αβγ, we choose a

δ: can be done in 10 ways. Hence number of passwords is 67600.

Tree diagram?!



The above example illustrates a general counting principle (which

translates to ‘and’ problems in probability—and vice versa):

Multiplication principle: if P is a process consisting of n

(independent) stages, where stage i can be done in di ways, then

the total number of ways of carrying out P is d1d2 · · · dn.

In the above example, n = 4, d1 = d2 = 26, d3 = d4 = 10.

One direct application of the MP is familiar: the number of

permutations of an n-element set is n! = n(n− 1)(n− 2) · · · 2 · 1:

pick the first element in the permutation (n ways), pick the second

element (n− 1 ways), . . ., pick the kth element (n− k+1 ways). . .



Define
(
n
k

)
(read ‘n choose k’) as the number of ways of choosing

a k-element subset from an n-element set.

For example, let S = {1, 2, 3, 4}; the 2-element subsets of S are

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. Hence
(
4
2

)
= 6.

Theorem
(
n
k

)
= n!

k!(n−k)! .

Proof. We count the no. permutations of S = {1, 2, . . . , n} as

follows.

Choose a k-element subset T of S: can be done in
(
n
k

)
ways.

Permute the elements of T , to get the first k entries in a

permutation of S: can be done in k! ways.

Permute the elements of S \ T , to get the remaining n− k entries

in a permutation of S: can be done in (n− k)! ways.



Proof (continued).

MP: no. permutations of S is
(
n
k

)
× k!× (n− k)!. This number is

n!. Rearranging n! =
(
n
k

)
k!(n− k)! to solve for

(
n
k

)
proves the

theorem. �

The positive integer
(
n
k

)
is known as a binomial coefficient. The

following ‘binomial theorem’ (for expanding a power of a binomial,

i.e., two-term expression) indicates a reason for the name.

Theorem (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k.

Proof. Exercise...

At least check that the theorem is correct for n = 1, 2, 3, 4, . . .

Corollary
∑n

k=0

(
n
k

)
= 2n.

Proof. Take a = b = 1 in the binomial theorem. �



Corollary
(
n
k

)
=
(

n
n−k

)
.

Proof. Equate the expressions for (a+ b)n and (b+ a)n from the

binomial theorem. �

Now we apply counting techniques to probability problems.

Example. In a previous example, calculated that the probability of

drawing two Qs from a standard deck without replacement is 1
221 .

Can also calculate this using binomial coefficients.

Total number of two card draws is
(
52
2

)
= 52!

2!50! = 26× 51 = 1326.

There are 4 Qs in the deck. Two Qs may be chosen in
(
4
2

)
= 6

ways.

Hence, the probability that we choose two Qs if we draw two cards

from the deck is 6
1326 = 1

221 .



Example. A club comprises four men and five women. Three

members are selected randomly to form a committee. What is the

probability that the committee is all women?

Solution. If the committee is all women, then the 3 members

must be chosen from among the 5 women. This can be done in(
5
3

)
= 5!

3!2! = 10 ways.

Next we need the total number of 3-member committees, choosing

from among the total pool of 4 + 5 = 9 members. This is(
9
3

)
= 9!

3!6! = 84.

Hence the desired probability is 10
84 = 5

42 ≈ 0.119.



Conditional probability

The probability of an event A occurring, given that an event B has

occurred (or will occur), is called a conditional probability, and is

denoted P (A |B).

Example. A family has two children, each being a boy or girl with

equal probability 0.5. You know that at least one of the children is

a boy. What is the probability that both children are boys?

Solution. In all, there are 4 possibilities: BG, GB, BB, GG, each

with equal probability of 0.25 = 0.5× 0.5 (MP).

From what you know, GG is not possible, and we are choosing only

from {BB, BG, GB}.

There is a single possibility BB in this set of 3, so the required

probability is 1
3 .



In general, if A, B are events in the sample space S, then

P (A |B) =
P (A ∩B)

P (B)
,

equivalently, P (A ∩B) = P (A |B) · P (B).

A justification for this formula is as follows (cf. the opening

example).

The favorable outcomes for the event E = ‘A, given B’ lie in B.

That is, E has |A ∩B| favorable outcomes. Hence by the

definition of probability,

P (E) =
|A ∩B|
|B|

=
|A ∩B|

/
|S|

|B|
/
|S|

=
P (A ∩B)

P (B)
.



Example. In the opening example, we found

P (both B | at least one B) = 1
3 . Also

P (both B | at least one B) = 1
4

/
3
4 , with

P (both B and at least one B) = P (both B) = 1
4 ,

P (at least one B) = 3
4 .

Example. A single card is selected from a standard deck. Find the

probability that it is a club, given that it is black.

Solution. P (♣ | b) = P (♣ ∩ b)
/
P (b) = P (♣)

/
P (b) = 1

4

/
1
2 = 1

2 .

Example. A bag contains 4 red and 8 white balls. Two balls are

drawn, without replacement. What is the probability that both are

white? Of different colors?



Solution.

Let Wi = ith draw is a white, Ri = ith draw is a red. (W1,W2 are

dependent, as are R1, R2.)

P (W1) =
8
12 = 2

3 .

P (W2 |W1) =
7
11 .

Thus P (W1 ∩W2) = P (W2 |W1)P (W1) =
2
3 ·

7
11 = 14

33 .

We can work out the probability of different colors in two ways.

In one way, first note

P (R1 ∩W2) = P (W2 |R1)P (R1) =
8
11 ·

1
3 = 8

33 ;

also P (W1 ∩R2) = P (R2 |W1)P (W1) =
4
11 ·

2
3 = 8

33 .

Thus P (different colors) = 8
33 + 8

33 = 16
33 .



The Monty Hall Problem

On a certain game show, hosted by Monty Hall, you have to

choose one of three doors.

Behind only one door is a new car. Behind each of the other two

doors is a goat.

You pick a door.

Monty opens a door that you didn’t pick (Monty knows what is

behind each door).

Behind the door that Monty opened stands a goat.

Monty then asks you whether you want to switch your choice to

the other of the two remaining unopened doors.

Should you switch your choice?



In fact, you would double your chances of winning the car by

switching.

Here is a justification, using conditional probability.

Let Ci be the event that the car is behind door number i, so

P (Ci) =
1
3 for i = 1, 2, 3.

Let Mi be the event that Monty chooses door number i to open.

Suppose that you choose door 1 (say, without loss of generality).

If the car is behind door 1 then Monty can pick door 2 or 3 to

open; so P (C1 ∩M2) = P (C1 ∩M3) =
1
3 ·

1
2 = 1

6 .

However, if the car is not behind door 1, then Monty has only one

choice of door to open, and P (C2 ∩M3) = P (C3 ∩M2) =
1
3 .



If Monty opens door 3, then P (keep and win) = P (C1 |M3) =

P (C1 ∩M3)
/
P (M3) =

1
6

/
P (M3), and

P (switch and win) =

P (C2 |M3) = P (C2 ∩M3)
/
P (M3) =

1
3

/
P (M3).

Thus, if Monty opens door 3, then you are twice as likely to win if

you switch.

It is the same reasoning if Monty opens door 2; hence, in all cases,

you double your chances if you switch.

A large number of trials (and the law of large numbers) bear out

the above decision.


