
CT3536 (Unity3D)
Section 4

Physics in more detail
Rigidbody
Collider
Collision
ContactPoint
PhysicMaterial
Trigger
(Later: raycasting)

Rigidbody
● https://docs.unity3d.com/Manual/RigidbodiesOverview.html
● https://docs.unity3d.com/ScriptReference/Rigidbody.html
● A Rigidbody is the main component that enables physical behaviour for a

GameObject; it puts the GameObject under control of the physics engine
● With a Rigidbody component attached, the object will respond to gravity

(unless its useGravity field is set to false)
● If one or more Collider components are also added, the GameObject is

affected by incoming collisions (from other Colliders) according to shape,
mass, momentum, linear and angular velocities, as well as Physics Materials
which define bounciness and friction.

● Since a Rigidbody component takes over the movement of the GameObject it
is attached to, you (normally) shouldn’t try to move it from a script by
changing the Transform properties such as position and rotation. Instead,
you should apply forces to push the GameObject and let the physics engine
calculate the results.

https://docs.unity3d.com/ScriptReference/Rigidbody.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html

Rigidbody
● When a Rigidbody is moving slower than a defined minimum

linear or rotational speed, the physics engine assumes it has
come to a halt. When this happens, the GameObject does not
move again until it receives a collision or force, and so it is set to
“sleeping” mode.

● This optimisation means that no processor time is spent
updating the Rigidbody until the next time it is “awoken” (that
is, set in motion again).

● Sleeping can also be useful as it removes small 'jitters' that may
happen due to inaccuracies in the physics simulation

● In your scripts which apply physics forces to Rigidbodies, use
the FixedUpdate() method rather than the Update() method,
since FixedUpdate is synced with the physics simulation
updates

Rigidbody: Properties (read/write)
● public float drag
● public float angularDrag

● public float mass

● public Vector3 velocity
● public Vector3 angularVelocity

● public Vector3 centerOfMass - (offset from Transform centre)

Rigidbody: Methods
● public void AddForce(Vector3 force) - force is a vector in world coords,

applied through centre of mass of the Rigidbody
● public void AddRelativeForce(Vector3 force) - force is in local coords

● public void AddForceAtPosition(Vector3 force, Vector3 position)
- position is also world coords, and allows the force to apply torque

● public void AddTorque(Vector3 torque)
● public void AddRelativeTorque(Vector3 torque)

● public void MovePosition(Vector3 position) - (often) the correct way to
move it, i.e. rather than resetting its Transform.position.. This will check for
intervening collisions rather than “teleporting”

● public void MoveRotation(Quaternion rot)

Colliders
● https://docs.unity3d.com/Manual/CollidersOverview.html
● Collider components define the shape of an object for the purposes of

physical collisions. A collider (invisible at runtime) need not be the exact
same shape as the object’s mesh and in fact, a rough approximation is often
more efficient and indistinguishable in gameplay

● The simplest (and least processor-intensive) colliders are the so-called
primitive collider types. In 3D, these are the BoxCollider, SphereCollider and
CapsuleCollider. In 2D, you can use BoxCollider2D and CircleCollider2D.

● Any number of these can be added to a single object to create composite
colliders to reasonably approximate a 3D model.

● If you need more accuracy (at increased processor cost), use MeshCollider
which accurately matches the 3D graphical model (= polygonal mesh)

● A MeshCollider will be unable to collide with another MeshCollider unless
you mark it as Convex in the inspector. This will generate the collider shape
as a “convex hull” which is like the original mesh with concavities filled in.

● The general rule is to use mesh colliders for static scene geometry (walls,
ground, etc.) and to approximate the shape of moving objects using
composite primitive colliders

https://docs.unity3d.com/Manual/CollidersOverview.html

MeshCollider

• Convex Hull versus Non-Convex

Composite Colliders

Collision Messages
Any object with a Collider receives messages from the physics engine when it
collides with other Colliders. Any script on the object may choose to respond, by
implementing these methods:

void OnCollisionEnter(Collision collision) {
// the Collision object contains information about contact points, impact

velocity etc. (see next slide)
}

void OnCollisionExit(Collision collision) {
}

void OnCollisionStay(Collision collision) {
}

NB if you get these method signatures wrong, your code will compile but the methods
will not get called when you expect..

Collision class
● https://docs.unity3d.com/ScriptReference/Collision.html
● The OnCollision methods receive objects of this type, containing useful

information
● Member data:

● collider The Collider object that we hit (Collider is the base class of
BoxCollider, SphereCollider, CapsuleCollider, MeshCollider)

● contacts The contact point(s) generated by the physics engine, as an
array of ContactPoint structs (see next slide)

● gameObject The GameObject whose collider we are colliding with.
● relativeVelocity The relative linear velocity of the two colliding

objects (as a Vector3)
● rigidbody The Rigidbody we hit. This is null if the object we hit has a

collider but has no rigidbody.

https://docs.unity3d.com/ScriptReference/Collision.html

ContactPoint struct
● https://docs.unity3d.com/ScriptReference/ContactPoint.html
● Collision objects contains arrays of ContactPoint structs, in their .contacts

member
● Member data of ContactPoint:

● point The point of contact (Vector3 world coords).
● normal Surface Normal at the contact point (=Vector3 world coords)
● otherCollider The other Collider in contact at the point.
● thisCollider The first collider in contact at the point (useful if a

GameObject has more than one collider and we need to know which one)

• These data allow us to operate on
the object that hit, and also to
create accurate special effects etc.
at the point of contact, rotated
according to the surface normal at
that point The surface normal at a point

on a surface is the
(normalised) vector
perpendicular to the surface

https://docs.unity3d.com/ScriptReference/ContactPoint.html

PhysicMaterial (sic.)
● When colliders interact, their surfaces need to simulate the

properties of the material they are supposed to represent.
● For example, a sheet of ice will be slippery while a rubber ball

will offer a lot of friction and be very bouncy.
● Although the shape of colliders is not deformed during

collisions (hence the term "rigid body physics"), their friction
and bounce can be configured using Physics Materials (the asset
type to create is "PhysicMaterial”)

Example
● Throwing balls with the mouse, and spawning a spark (cone-shaped) emitter

at collision point when a wall/floor is hit, with the emitter oriented outwards
using collision normal

• We'll see emitters in detail a bit later
• You can download the

Week4LectureExamples project
from Blackboard

public class GameManager : MonoBehaviour {

// inspector settings
public GameObject ballPrefab;
public GameObject sparkEmitterPrefab;
//

public static GameManager instance;

void Start () {
instance = this;
Camera.main.transform.position = new Vector3(-30f,15f,0f);
Camera.main.transform.LookAt(new Vector3(0f,5f,0f));

}

void Update() {
// mouse button has just been pressed
if (Input.GetMouseButtonDown(0)) {

Vector3 mousePosOnScreen = Input.mousePosition; // 2d position on screen (pixels)
// 15 units in front of camera
mousePosOnScreen.z = 15f;
Vector3 mousePosInWorld = Camera.main.ScreenToWorldPoint(mousePosOnScreen);

// spawn a new ball and give it some velocity
GameObject go = Instantiate(ballPrefab);
go.transform.position = mousePosInWorld;
Vector3 dir = (mousePosInWorld-Camera.main.transform.position).normalized;
go.GetComponent<Rigidbody>().velocity = dir * 40f;

}
}

}

public class Ball : MonoBehaviour {

// inspector settings
public Rigidbody rigid;
//

void Update() {
// remove ball if it has stopped moving or fallen off the platform
if (rigid.velocity.magnitude<0.01f || transform.position.y<-10f)

Destroy(this.gameObject);
}

void OnCollisionEnter(Collision collision) {
// spawn a spark emitter at each point of contact,
// and orient it so that the sparks emit outwards from the surface hit
for (int i=0; i<collision.contacts.Length; i++) {

ContactPoint cp = collision.contacts[i];
GameObject go = Instantiate(GameManager.instance.sparkEmitterPrefab);
go.transform.position = cp.point;
go.transform.LookAt(cp.point+cp.normal);

}
}

}

public class AutoDestroy : MonoBehaviour {

// inspector settings
public float lifetime = 2f;
//

void Awake() {
StartCoroutine(ProcessLifetime());

}

private IEnumerator ProcessLifetime() {
yield return new WaitForSeconds(lifetime);
Destroy(this.gameObject);

}

}

This component is attached to the PurpleSparkCone prefab, so that
instances look after their own destruction after their lifetime has
elapsed

Triggers
● As discussed above, the scripting

system can detect when collisions occur
and initiate actions using the
OnCollisionEnter/Exit/Stay methods.

● However, you can also use the physics
engine simply to detect when one
collider enters the space of another
without creating a physical collision
response.

● A collider configured as a Trigger (using
the isTrigger property) does not behave
as a solid object and will simply allow
other colliders to pass through.

● When a collider enters its space, a
trigger will call the
OnTriggerEnter/Exit/Stay methods on
the trigger object’s scripts.

Among the favourite Google
search terms for any Unity topic
seems to be "X not working" J

Example

A sphere-shaped trigger
which turns balls green!
(expanded on previous
example)

The trigger's game
object itself is invisible
(no renderer)

public class TestTrigger : MonoBehaviour {

// inspector settings
public Material greenMaterial;
//

void OnTriggerEnter(Collider other) {
// only continue if what hit us was a Ball
if (other.gameObject.GetComponent<Ball>()!=null) {
other.gameObject.GetComponent<Renderer>().material = greenMaterial;

}
}

}

Renderer is the base class of all types of renderer (MeshRenderer,
BillboardRenderer, LineRenderer, SpriteRenderer, etc.)

Physics Joints
● Unity provides a number of types of joints to constrain the motion of rigid

bodies relative to each other, e.g. to simulate chains, ropes, swings,
car+trailer, etc.

● E.g.:
● The Hinge Joint groups together two Rigidbodies, constraining them to

move like they are connected by a hinge. It is perfect for doors, but can
also be used to model chains, pendulums, etc.

● The Spring Joint joins two Rigidbodies together but allows the distance
between them to change as though they were connected by a spring.

Hinge Joint

https://docs.unity3d.com/Manual/Joints.html

SpringJoint
The spring acts like a piece of elastic that tries to pull
the two anchor points together to the exact same
position.

The strength of the pull is proportional to the current
distance between the points with the force per unit of
distance set by the Spring property.

To prevent the spring from oscillating endlessly you can
set a Damper value that reduces the spring force in
proportion to the relative speed between the two
objects. The higher the value, the more quickly the
oscillation will die down.

You can set the anchor points manually but if you
enable Auto Configure Connected Anchor, Unity will set
the connected anchor so as to maintain the initial
distance between them (i.e., the distance you set in the
scene view while positioning the objects).

SpringJoint
● Connected Body: The Rigidbody

object that the object with the spring
joint is connected to. If no object is
assigned then the spring will be
connected to a fixed point in space.

● Anchor: The point in the object’s local
space at which the joint is attached.

● Connected Anchor: The point in the
connected object’s local space at which
the joint is attached.

● Spring: Strength of the spring.
● Min/Max Distance: Lower/upper

limit of the distance range over which
the spring will not apply any force.

● Enable Collision: Should the two
connected objects register collisions
with each other?

Example
● A chain with a heavy object at the end
● The Chain Root object is in the scene at

design time, and its ChainRoot script's
Start() method instantiates the link objects
and connects them

● Expanded on the previous example

ChainRoot object

SpringJoint component
on the ChainLink object

public class ChainRoot : MonoBehaviour {

// inspector settings
public GameObject chainLinkPrefab;
//

void Start () {
// create a bunch of connected chain links
Vector3 pos = transform.position;
Rigidbody previous = this.GetComponent<Rigidbody>();
Vector3 anchorOffset = new Vector3(0f, 1.5f, 0f);

for (int i=0; i<10; i++) {
GameObject go = Instantiate(chainLinkPrefab);
pos.y -= 1f; // each link is 1m lower than the previous
go.transform.position = pos;
SpringJoint sj = go.GetComponent<SpringJoint>();
sj.connectedBody = previous;
sj.connectedAnchor = anchorOffset;

if (i==9) {
// make the last link bigger and heavier
go.GetComponent<Rigidbody>().mass *= 5f;
go.transform.localScale = new Vector3(2f,2f,2f);

}

previous = go.GetComponent<Rigidbody>();
}

}

}

Lab 4
● This week, we're starting a simple Asteroids game
● The game will be progressed over the next 4 weeks
● You may choose to finish off this game as your project; or, you may choose to

make a different game. (A higher standard is expected if you complete the
Asteroids game).

Lab 4.. How to calculate the screen
edges, in world coordinates?

● Assuming the camera is set up as I suggested (i.e. positioned at
0,30,0 and looking at 0,0,0 with its 'up' axis set to 0,0,1):
● then the bottom left corner of the screen can be obtained using

Camera.ViewportToWorldPoint with the viewport point (i.e. screen space)
0,0,30.

● The key thing here is that the z component of this is the distance
from the camera that you want to find the world x,y,z of, for
viewport point 0,0... and that value needs to be 30 since we know the
game objects will be at that distance from the camera; they're all
going to have their y positions clamped to zero

● Use the same approach for the top-right corner of the viewport, i.e.
using Camera.ViewportToWorldPoint with 1,1,30.

● The reason the z component of Camera.ViewportToWorldPoint is
needed is that we're using a perspective camera, so its viewing
volume is a cone rather than a box.

