
L E C T U R E 1 6

R A N D O M F I L E A C C E S S

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Random File Access
• Working with Random Access Files
• The input and output streams in this lesson so far have been sequential

access streams:
• Streams whose contents must be read or written sequentially.

• While still incredibly useful, sequential access files are a consequence of
a sequential medium such as magnetic tape.

• Random access files, on the other hand, permit non-sequential, or
random, access to the contents of a file.

Random File Access use case
• Consider the archive format known as "zip."
• Zip archives contain files and are typically compressed to save space.

• Zip archives also contain a dir-entry at the end that indicates
where the various files contained within the zip archive begin:

Random File Access use case
• Suppose that you want to extract a specific file from a zip

archive.
• If you use a sequential access stream, you have to do the

following:
• Open the zip archive.
• Search through the zip archive until you located the file you wanted to

extract.
• Extract the file.
• Close the zip archive.

• On average, using this algorithm, you'd have to read half the
zip archive before finding the file that you wanted to extract.

Random File Access use case
• You can extract the same file from the zip archive more

efficiently using the seek feature of a random access file:
• Open the zip archive.
• Seek to the dir-entry and locate the entry for the file you want to extract

from the zip archive.
• Seek (backwards) within the zip archive to the position of the file to

extract.
• Extract the file and close the zip archive.

• This algorithm is more efficient because you only read the dir-
entry and the file that you want to extract.

RandomAccessFile class
• The RandomAccessFile class in the java.io package

implements a random access file.
• Unlike the input and output stream classes in java.io,
RandomAccessFile is used for both reading and writing files.
• The RandomAccessFile class implements both the DataInput and
DataOutput interfaces and therefore can be used for both reading and
writing.

• You create a RandomAccessFile object with different
arguments depending on whether you intend to read or write.

Using RandomAccessFile
• RandomAccessFile is similar to FileInputStream and
FileOutputStream in that you specify a file on the native file
system to open.
• You can do this with a filename or a File object.

• When you create a RandomAccessFile, you must indicate
whether you will be just reading the file or also writing to it.

• The code creates a RandomAccessFile to read the file
named farrago.txt:

new RandomAccessFile("farrago.txt", "r");

Using RandomAccessFile
• This code opens the same file for both reading and writing:

new RandomAccessFile("farrago.txt", "rw");

• After the file has been opened, you can use the common
readXXX or writeXXX methods to perform I/O on the file.

• The RandomAccessFile class supports the notion of a file
pointer.
• This pointer indicates the current location in the file.

• When the file is first created, the file pointer is 0, indicating the
beginning of the file.

Using RandomAccessFile
• Calls to the readXXX and writeXXX methods adjust the file

pointer by the number of bytes read or written e.g.

int data = file.readInt();

file.writeInt(data);

Using RandomAccessFile
• In addition to the normal file I/O methods that implicitly move

the file pointer when the operation occurs,
RandomAccessFile also contains three methods for
explicitly manipulating the file pointer.
• skipBytes() - moves the file pointer forward the specified number of

bytes.
• seek() - positions the file pointer just before the specified byte.
• getFilePointer() - returns the current byte location of the file

pointer.

Using RandomAccessFile
• RandomAccessFile is somewhat disconnected from the input

and output streams in java.io - it doesn't inherit from the
InputStream or OutputStream.

• This has some disadvantages in that you can't apply the same
filters to RandomAccessFiles that you can to streams.

• However, RandomAccessFile does implement the
DataInput and DataOutput interfaces:
• If you design a filter that works for either DataInput or DataOutput, it

will work on any RandomAccessFile.

Next time…
• Collections

