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Lecture Content
2

 Public key cryptography versus private key 
cryptography

 Public key cryptography applications

 Diffie-Hellman Key exchange

 Man-in-the-Middle (MitM) attacks

 RSA encryption

 Optimisation techniques for public key encryption

 ECC encryption

 The Double-Ratchet algorithm



Model of Conventional Cryptosystem

Y = EK(X), X = EK
-1(Y)

Symmetric block ciphers are cryptographically strong, 

but key distribution can be a headache!



Features and Limitations of Private-

Key Cryptography 

 Traditional symmetric/single key cryptography uses one 
key, shared by both sender and receiver 
 If this key is disclosed, communications are compromised

 

 The key is also symmetric, both parties are equal 
 This is problematic too, as it does not protect the sender from 

a situation, where: 
- the receiver forges a message using that key 
- and claims that it was sent be the sender
◼ Think about an electronic contract that is exchanged between two 

business partners that use a shared key
◼ One party can forge a contract and claim it was sent by the other 

side
◼ Message authentication (HMAC or CMAC) doesn’t solve the 

problem!



Features of Public-Key Cryptography

 Public-key/two-key/asymmetric cryptography involves the use 
of two keys: 
 a public-key, which the owner shares with any peer; it is used to:
◼ Encrypt messages send from the peer to the owner
◼ Verify the integrity and origin of messages send from the owner to a peer 

(signature validation)

 a private-key, known only to the recipient/owner, used to:
◼ Decrypt messages that were encoded using their public key
◼ Digitally sign data send to a peer (signature creation) 

 The keys are asymmetric, because they are not equal
 Those who encrypt a message or verify a signature (using the 

receiver’s public key) cannot decrypt the message or forge a 
signature

 It is computationally very hard (and infeasible) for an attacker 
to rebuild an owner’s private key by analysing their public key

 This is achieved through the application of number- theoretic 
concepts 



Public-Key Encryption

M



Applications of Public-Key 

Cryptosystems  

 Data encryption/decryption:
The sender encrypts the message with the recipient’s public key and the 
receiver decodes the message using their private key
 Recall symmetric encryption where only one key is used

 Digital signature/authentication:
The sender “signs” a message with its private key. Signing is achieved by 
encrypting the message or its MAC using their private key (next slide)
 Recall private key encryption where sender and receiver just share one key

 Key exchange:
Two sides negotiate a symmetric session key
 Private key encryption is much faster than public key encryption

 This key may also be used for conventional message authentication

 Note that in order to avoid confusion we use from now on the terms:
 Symmetric key for private key encryption (block ciphers and stream ciphers)

 Public and private keys for public key encryption



Public-Key Cryptosystems: Secrecy 

and Authentication

Public

key

Private 

key

The entire message Y is the 

authenticator 

Note that this scheme requires B to 

determine that a received message 

is intelligible, i.e. that Z has not been 

manipulated by a MitM in transit 



Recap: Basic Uses of Hash Functions (H) in 

Combination with asymmetric Encryption (c)

KRa = Sender’s private key

KUa = Sender’s public key



Recap: Basic Uses of Hash Functions (H) in 

Combination with asymmetric Encryption (d)

KRa = Sender’s private key

KUa = Sender’s public key



Public-Key Cryptosystems
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 There are different cryptosystems, including (from 

simplest to most complex):

 Diffie Hellman key exchange

 RSA 

 DSS

 Elliptic Curve Cryptography



Modular Arithmetic
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 Modular arithmetic is a system of arithmetic for integers, 

where numbers wrap around  when reaching a certain 

value n, called the modulus

 Recall modulus operator “%” in C and other languages, i.e. 

“division with rest” with rest being the modulus

 Example: 75 / 6 = 12 remainder 3 ➔ 75 % 6 = 3  

 Numbers {0, 1, …, n - 1} are called “multiplicative group 

of integers modulo n”, or simply Zn, for some n > 0

 Within Zn, addition and multiplication is well defined!



Example: Multiplication in Z9

* 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 4 6 8 1 3 5 7

3 0 3 6 0 3 6 0 3 6

4 0 4 8 3 7 2 6 1 5

5 0 5 1 6 2 7 3 8 4

6 0 6 3 0 6 3 0 6 3

7 0 7 5 3 1 8 6 4 2

8 0 8 7 6 5 4 3 2 1

Mx3



Illustration of Concept behind Diffie-

Hellman Key Exchange (Wikipedia)
14

 Alice and Bob want to share a secret colour 
using public transport

 i.e. an adversary (i.e. Mallory, not shown) can 
get samples of any colour that is exchanged 
between both

 Alice and Bob agree on a common “public” 
paint color (yellow in the example)

 Each of them add a secret colour and send 
their mix to the other party

 Mallory can intercept both, but cannot separate 
the mixtures

 Alice and Bob receive the other’s mixture 
and add their secret colour

 Both colours are identical 

 → This color is their common secret 



Diffie-Hellman Key Exchange

 Diffie-Hellman provides a mechanism for a secure key exchange between 
two endpoints
 The negotiated key is subsequently used as a symmetric key (or as a seed for a key) 

for data encryption and message authentication (as seen before)

 The algorithm uses the multiplicative group of integers modulo n
 n has typically a length of 1024 or 2048 bits

 It is based on the difficulty of computing discrete logarithms over such 
groups, e.g. 

  63 mod 17 = 216 mod 17 = 12 (easy)

  12 = 6y mod 17?   (difficult)

 Recall 63 = 6 x 6 x 6, so we need just the multiplication

  The core equation for the key exchange is 

   K = (A)B mod q



Diffie-Hellman: Global Public Elements

 Alice and Bob select: 

 A prime number q which determines Zq
 A positive integer a, with 1 < a < q and a is a primitive root of q

◼ Note that a is also called the generator

 Definition: a is a primitive root of q, if numbers 
a mod q, a2 mod q, … a(q - 1) mod q
are distinct integer values between 1 and (q - 1) (i.e. in Zq) in 
some permutation

 Example: a = 3 is a primitive root of Z5 (i.e. q = 5), a = 4 is not:
 31 = 3   = 0   * 5 + 3  41 = 4     = 0   * 5 + 4
 32 = 9   = 1   * 5 + 4   42 = 16   = 3   * 5 + 1 
 33 = 27 = 5   * 5 + 2     43 = 64   = 12 * 5 + 4 
 34 = 81 = 16 * 5 + 1   44 = 256 = 51 * 5 + 1   



Primitive Roots of Zn with 15 < n < 32
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Generation of Secret-Key: Part 1

 Alice and Bob share publicly a prime number q and a 
primitive root a

 Alice (User A):
 Select secret number XA with 0 < XA < q
 Calculate public value YA = aXA mod q   ( difficult to reverse)

 YA is sent to Bob (user B)

 Bob (User B):
 Select secret number XB with 0 < XB < q
 Calculate public value YB = aXB mod q   ( difficult to reverse)

 YB is send to Alice



Generation of Secret-Key: Part 2

 Alice:

 Alice owns XA and receives YB

 She generates the secret key:     K = (YB)XA mod q

 Bob:

 Bob owns XB and receives YA

 Bob generates the secret key:     K = (YA)XB mod q

 Both keys are identical!



Generation of Secret-Key: Part 2

K = (YB)XA mod q

   = (aXB mod q)XA mod q

    = (aXB)XA mod q

   = aXB XA mod q 

    = aXA XB mod q 

    = (aXA)XB mod q

    = (aXA mod q)XB mod q

 = (YA)XB mod q



Example for Diffie-Hellman

 Alice and Bob agree on public values q and a, and 
determine their respective secrets XA and XB :

 Let q = 5 and a = 3

 Alice picks XA = 2, therefore YA = aXA mod 5 = 4

 Bob picks XB = 3, therefore YB = aXB mod 5 = 2

 Alice sends YA = 4 to Bob

 Bob sends YB = 2 to Alice

 Alice calculates: K = (YB)XA mod q = 22 mod 5 = 4

 Bob calculates: K = (YA)XB mod q = 43 mod 5 = 4



Ephemeral versus Static Diffie-Hellman 

Keys

 The generated DH keys can be either 

 static (to be reused)

 ephemeral (only used once, e.g., for one session only)

 Ephemeral keys 

 provide forward secrecy, but no endpoint authenticity

◼ Forward secrecy: If the current key is recovered by an adversary, it only 
effects the current session, but no past or future sessions

 Static keys

 do not provide forward secrecy

 do provide (implicit) endpoint authenticity

 do not protect against replay-attacks



Example DH Parameters
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 Standardised, see https://www.ietf.org/rfc/rfc3526.txt 

 Example 2048-bit MODP Group

 q = 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }

 q = FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

      29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

      EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

      E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

      EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

      C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

      83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

      670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B

      E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9

      DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510

      15728E5A 8AACAA68 FFFFFFFF FFFFFFFF

 a = 2

[] == rounded

https://www.ietf.org/rfc/rfc3526.txt


DH and Man-in-the-Middle (MitM) 

Attacks 

 Mallory is a MitM attacker with the ability to intercept, and fabricate messages

 Not to confuse with a Meet-in-the-Middle attack (→ double-DES and triple-DES)

 Both Alice and Bob are unaware of Mallory’s existence, as there is no mutual authentication and an 
unprotected communication link

 Alice and Bob exchange their shared values (A and B in the example), but these are intercepted by Mallory

 Mallory completes both key exchanges sending her own shared value Z to both Alice and Bob 

 By doing so, Mallory establishes two individual (secure) connections with Alice and Bob

 Alice and Bob have no idea that they became victims of a MitM attack!



In-Class Activity: Diffie-Hellman 

MitM Attack

 Let q = 5 and a = 3;

 XAlice = 2, therefore YAlice = a
XAlice mod 5 = 4

 XBob = 3, therefore YBob = a
XBob mod 5 = 2

 XMalory = 1, therefore YMalory = a
XMalory mod 5 = 3

 What session keys between 
 Alice and Malory

 Malory and Bob

are generated?

 Note: User A’s key K = (YB)XA mod q 

 Note: User B’s  key K = (YA)XB mod q



Solution
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 Alice sends “4” to Bob, but this message is intercepted by Malory

 Bob sends “2” to Alice, but this message is intercepted by Malory

 Malory sends “3” to both parties, claiming to be either Bob or Alice

 Alice receives “3” and calculates K as follow: K = 32 mod 5 = 4

 Malory calculates 41 mod 5 = 4

 Bob receives “3” and calculates K as follow: K = 33 mod 5 = 2

 Malory calculates 21 mod 5 = 2

 Alice and Bob think they just mutually agreed on a shared 
secret key

 From this point onwards Malory as a MitM can read, 
manipulate and fabricate messages between Alice and Bob 



The RSA Algorithm  

 Published by Rivest, Shamir and Adleman in 1977, but first discovered by 
Clifford Cocks (British mathematician and cryptographer) in 1973

 The RSA scheme works similar to a block cipher, where a plaintext M and a 
ciphertext C are integers between 0 and n – 1,i.e. elements of Zn

 M can be a plaintext message (block), a hash value, or a private key picked 
by the sender to be shared with the message recipient   
 E.g., “ABC” = “01000001 01000010 01000011” = 427680310

  Principle: C = Me mod n
  M = Cd mod n = Med mod n

  Public key  KU = {e, n}
  Private key KR = {d, n}

  With n sufficiently large it is infeasible to determine d given e and n



Key Generation for the RSA Algorithm

Greatest 

common divisor

See next slide

Euler’s totient 

function Phi



Example

 Let p = 7, q = 11 and n = pq = 77

 φ(77) = (p - 1)(q - 1) = 6 x 10 = 60

 Factorisation of 60 = 1 * 2 * 5 * 2 * 3

Therefore the divisors of 60 are: 2, 3, 5

 List of all integers x, 1<x<60, with GCD(60,x) = 1:
7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 49, 53, 59



Note that these integers either
 are prime numbers (that cannot share a common divisor with 60), or

 do not share a common divisor with 60 (i.e., 7 and 49)



Example (continued)

 Let e = 7

 Choose d with ed = 1 mod φ(pq)  
            7d = 1 mod 60  7d mod 60 = 1

 7*1 mod 60 = 7 7*2 mod 60  = 14 7*3 mod 60 = 21

7*4 mod 60 = 28 7*5 mod 60  = 35 7*6 mod 60  = 42 
7*7 mod 60 = 49 7*8 mod 60  = 56 7*9 mod 60  = 3 
7*10 mod 10 = 28 7*11 mod 60  = 17 7*12 mod 60  = 24

…   7*43 mod 60 = 1 

 Therefore d = 43

 Therefore KU = (7, 77) and KR = (43, 77)

 Note there are better / more efficient algorithms (i.e. the 
Extended Euclidean Algorithm) to calculate d



Example for an Encryption/Decryption

 Obvious drawbacks: 

 Very large numbers are to be computed
◼ Ordinary integer or floating-point variables don’t work

◼ Instead, large number libraries need to be used

 This makes RSA encryption / decryption is very slow!



Computational Aspects of Public Key 

Cryptography

 Assume you have to evaluate the expression C = 50323 mod 899 as part of the 
encoding process

 Note that the modulus is small enough to fit into an integer variable

 50323 = 1.367929313795408423250439710106 x 1062 cannot be  properly 
represented using an ordinary integer or floating-point variable!

 In order to solve this problem, the exponentiation must be broken down into 
smaller steps, e.g.

 50323 mod 899 = ((5036 mod 899) x (5036 mod 899) 
             x  (5036 mod 899) x (5035 mod 899)) mod 899 

 5036 mod 899 = ((5033 mod 899) x (5033 mod 899)) mod 899 

 5035 mod 899 = ((5033 mod 899) x (5032 mod 899)) mod 899 

 5033 mod 899 = ((5032 mod 899) x 503) mod 899



Computational Aspects of Public Key 

Cryptography

 … or even iteratively:
50323 mod 899 =
((((((5032 mod 899) x 503) mod 899) x 503) mod 
899) x … x 503) mod 899  

 This expression consists of 22 nested multiplications and 22 
nested modulus operations and can be easily calculated by 
using a loop

 However, once a single number squared is too large to fit 
into a 32-bit or 64-bit (unsigned) integer variable, a big 
number library must be used



The Security of RSA

 There are various angles to attack the RSA algorithm:
 Brute force: Trying all possible private keys (not a great idea!)

 Mathematical attacks: Factor n (which is the product of two 
primes); see some very old data below:

 See also (for some more recent data) 
https://en.wikipedia.org/wiki/RSA_numbers#RSA-704 

 Timing attacks: Based on analysis of the run time of an 
decryption algorithm

https://en.wikipedia.org/wiki/RSA_numbers#RSA-704


Breaking RSA
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 Consider the key pair (e, n) and (d, n) or simply (e, n) 
and d

 n = p * q, with p and q being large (secret!) primes

 Factorising n is unfeasible for very large n

 However, let’s assume n can be factored into p and q

 The adversary can now do the following calculations:

 φ(n) = (p – 1) * (q – 1) 

 Identify d, so that e * d = 1 mod φ(n)

◼ e is known, use the aforementioned Extended Euclidean 
Algorithm



Breaking RSA (naïve Appraoch)
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int breakRSA(int p, int q, int d) {

 int prod, found = 0, start = 1, df = -1;

 int phi = (p -1) * (q – 1);

 while ((!found) && (start < phi)) { // exit if needed

  prod = d * start;

  if (prod % phi == 1) found = 1;

  else start++;

 }

 if (found) df = start;

 return (df);

}

// Note that the integer values above would be replaced with BIGNUM values



Breaking RSA
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 However, when choosing p and q, the following should 
be considered:

 p <> q, as p = q = sqrt(n)

 Neither p or q must not be “small”, as factorising could 
produce a result in a reasonable amount of time (see next 
slide “Simple Integer Factorising Algorithm”)

 p must not be similar in size to q, because of Fermat's 
method of factoring a composite number N:

◼ N can be represented as the difference of two squares:

◼ p * q = N  a2 – b2  (a - b) (a + b) [== p * q]

◼ N = a2 - b2 can be rewritten as: b2 = a2 - N 

◼ To find a solution, iterate through a (starting with round(sqrt(N))), 
until a2 - N is a square number (i.e. b2)



Fermat’s Factoring Algorithm
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void fermatFactor(int N, int *p, int *q) { 

    // Note this algorithm assumes that N can be factorised.

    int a = ceiling(sqrt(N)); // start value for a, rounded up

    int b2 = a * a - N; // see last slide

    while (sqrt(b2) * sqrt(b2) <> b2) { // Is b2 a squared number?

        a = a + 1;

        b2 = a * a – N; 

    }

    // We found b2! Now calculate p = a - b and q = a + b

    *p = a - sqrt(b2);

    *q = a + sqrt(b2);

}



Fermat’s Factoring Algorithm
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void fermatFactor(int N, int *p, int *q) { 

    int a = ceiling(sqrt(N)); // start value for a

    int b2 = a * a - N; // see last slide

    while (sqrt(b2) * sqrt(b2) <> b2) { // is b2 a square?

        a = a + 1;

        b2 = a * a – N; 

    }

    *p = a - sqrt(b2);

    *q = a + sqrt(b2);

}

If p (= a - b) and q (= a + b) 

are similar in size, it takes only a 

small number of iterations over a 

to find a solution   



Example
43

1. n = 33 (based on secret values p = 3 and q = 11)

2. First iteration: a = 6 (i.e., ceiling(sqrt(33)):

1. b2 = 6 * 6 – 33 = 3 

2. b2 is not a square number

3. a = a + 1

3. Second iteration: a = 7:

1. b2 = 7 * 7 – 33 = 16

2. b2 is a square number

4. Calculate p and q:

1. p = 7 - sqrt(16) = 3

2. q = 7 + sqrt(16) = 11



https://arstechnica.c

om/information-

technology/2022/0

3/researcher-uses-

600-year-old-

algorithm-to-crack-

crypto-keys-found-

in-the-wild/ 

44

Breaking RSA in Practise

https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
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Elliptic Curve Cryptography (ECC)

 Traditional methods exploit the properties of 
arithmetic using large finite groups Zn with n having 
a typical size of 1024 bits, i.e. 309 decimal digits

 The security depends on the difficulty of factorising 
large numbers or calculating discrete logarithms

 Using large numbers makes such algorithms 
expensive

 In ECC, Zn is replaced by points of an elliptic curve, 
making the discrete log calculation problem 
different and much harder compared to the discrete 
log in ordinary groups



Elliptic Curve Groups

 Elliptic curves are based on simplified cubic 
equations, e.g. 
y2 = x3 +ax + b
where a and b are real numbers

 The curve shown here is defined by the 
equation 
y2 = x3 – x (i.e., a = -1 and b = 0)

 To plot such a curve, we need to compute
y = sqrt(x3 +ax + b)

 Since the shape of the curve depends on a and 
b, ECs can be described as E(a,b) 

 The above curve can be written as E(-1, 0) 

 In order to operate on elliptic curves, we need 
to introduce an operation that is equivalent to 
the addition as well as a “0” element



Elliptic Curves over a Finite Field

 In order to have values (x, y)within Zp, the modulus 
operation is used again:
 y2 mod p = (x3 +ax + b)  mod p

 p is either a prime number or p = 2m

 We only consider pairs (x, y), where both x and y 
are integer values

 Example: Table of all integer 
solutions for E23(1,1)



The Elliptic Curve E23(1,1) 



Adding Points on an Elliptic Curve 

 ECC requires the equivalent of an addition on  
Ep(A,B) of two points a and b

 This is done (geometrically) as follows:
  - Draw a straight line through a and b 
    to find the third intersecting point w, 
  - then draw a vertical line through w to 
    find the intersecting point c (that’s the sum)

  Every line intersects the curve three
  times (tangents are counted twice), e.g.,
  the line through a and b intersects a 
  "third" point b. We name this line [a,b,b] 

  O is called the origin, or point at infinity

  We can say 
   a + b = c                    a + d = b + c = O   
   a + a = b                    a + O = a



ECC over a Finite Field: Addition

 There’s p as defined before

 Addition of two field elements S = (xS, yS) and Q = 
(xQ, yQ) with S <> -Q:

 S + Q = R = (xR, yR) 

 xR = (L
2 - xS – xQ) mod p

 yR = (L (xS – xR) – yS) mod p
 L is either

◼ ((yQ – yS) / (xQ – xS)) mod p, if S <> Q, or 

◼ ((3 x2S + a) / (2 yS)) mod p, if S = Q



ECC over a Finite Field: Addition and 

Multiplication

 The addition of two elliptic points P and Q consists of a 
number of integer operations (mod q):

 5 or 6 subtractions

 1 or 4 multiplications

 1 division

 A multiplication (P * Q) is done via consecutive 
additions

 A scalar multiplication (x * Q) with some scalar x is the 
operation of successively adding a point Q along an 
elliptic curve to itself x times



ECC Diffie-Hellman

 Similar to conventional Diffie-Hellman, but 
operates of finite EC field:

Users A & B select a suitable curve Ep(a, b) 

Users select base point (equivalent to primitive root) 

G=(x1,y1)
User A & B select private keys na and nb

Users A & B compute public keys PA and PB

 Shared keys are exchanged

 Secret key K is computed



ECC Diffie-Hellman Example

 Use E211(0, -4) that is equivalent to y2 mod 211 = (x3 - 4) mod 211

 Choose G = (2, 2)

 User A chooses na = 121, so A’s public key PA is:
121 * G = 121 * (2, 2) = (115, 48)

 User B chooses nb = 203, so B’s public key PB is:
203 * G = 203 * (2, 2) = (130, 203)

 The shared secret key K is 121 * (130, 203) = 203 * (115, 48) = 
(169, 69)

 Again, ECC-DH can be compromised via a MitM!



Comparable Key Sizes for Equivalent 

Security

Symmetric 

scheme

(key size in bits)

ECC-based 

scheme

(size of p in bits)

RSA

(modulus size in 

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360



Curve25519
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 Curve25519 is an elliptic curve offering 128 bits of security (with 
256 bits key size) and designed for use with the elliptic curve 
Diffie–Hellman (ECDH) key agreement scheme

 It is one of the fastest ECC curves and is not covered by any 
known patents

 It was first released by the cryptologist Daniel J. Bernstein in 
2005

 In 2013, interest began to increase considerably when it was 
discovered that the NSA had potentially implemented a 
backdoor into the most common EC encryption method

 i.e. the P-256 curve based Dual_EC_DRBG algorithm

 Today it is the de facto alternative to P-256

 Its reference implementation is public domain software



The Double-Ratchet Algorithm[1]
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 The Double Ratchet algorithm is a cryptographic protocol used by two 
parties to exchange encrypted messages

 Messages are encrypted using private (symmetric) key encryption

 Typically, every message that is exchanged in either direction is encrypted using 
a different private key

 The algorithm is implemented in the Signal protocol, which in turn is used in 
secure messaging apps such as the Signal app and WhatsApp

 The algorithm ensures forward secrecy and post-compromise security, 
making conversations secure even if previous keys are compromised

 (Perfect) forward secrecy and post-compromise security are properties of 
secure communication protocols 

 Forward security ensures the confidentiality of past sessions even if long-term 
keys are compromised

 Post-compromise security ensures the security of future communications even 
after an initial compromise



Key Derivation Function (KDF) and KDF 

Chains
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 A KDF is a cryptographic function that 

 takes a (secret) KDF key and some input data and 
returns output data (KDF key|| Output key)

 Looks like a “one-way” function (i.e., a hash function)

 In a KDF chain some of the output from a KDF is 
used as an output key and some is used to replace 
the KDF key, which can then be used with another 
input

 If two endpoints agree on the same initial KDF 
key and the same Input, they create the same 
sequence of output keys 

 Leaving Input aside, a KDF chain provides 
forward security, but not post-compromise security: 

 Consider output key (2) being recovered by an 
attacker

 The attacker can calculate key (3), but not key (1)

 In order to provide post-compromise security too, 
Input must be a secret shared by both endpoints

(1)

(2)

(3)



The KDF “Ratchet”
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 A KDF chain is like a ratchet, which only goes in one direction

 each step provides a different output (KDF key|| Output key)

 Both Alice and Bob have both a “send” and “receive” ratchet each

 Alice’s “send” and Bob’s “receive” ratchet are initialised using the same initial KDF key (and 
visa versa), and the same Input

 Every time a message is to be sent by either side, it is encrypted first using a new encryption 
key (Output key) that is generated by invoking the KDF (i.e., the “sender” ratchet)

 Similarly, every time the receiver receives a new message it calculates the (same) key for 
message decryption by invoking the KDF (i.e., the “receiver” ratchet)



Sender and Receiver Ratchet
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Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)CBx

Later!



Explanations
64

 K{A|B}x is a secret key used by A or B for encoding 
and decoding a message (e.g., KA5 or KB7)

 x is simply an incremented index value (i.e., 1, 2, 3,…)

 M{A|B}x are (indexed) plaintext messages 
generated by A or B (e.g., MA5 or MB7)

 C{A|B}x is the corresponding ciphertext

 E.g., MA3 <-> CA3

 E() and D() are corresponding encryption and 
decryption functions that use a key KAx (e.g., 
DKA5(CA5))



Synchronising Sender and Receiver Ratchets 

to compensate for lost Messages
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Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

x ||CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)x || CBx

If messages get lost in 

transit, the ratchets 

go out of sync



KDF Chains in a Double Ratchet Session 
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 In a Double Ratchet session between two endpoints (Alice and Bob) each 
party stores a KDF key for three chains: 

 a root chain (linked to the DH ratchet)

 a sending chain (linked to the “send” ratchet)

 a receiving chain (linked to the “receive” ratchet) 

 Alice’s sending chain matches Bob’s receiving chain, and vice versa

 As Alice and Bob exchange messages they also exchange new Diffie-
Hellman public keys, and the Diffie-Hellman output secrets become the input 
to the root chain (i.e., the DH ratchet)

 The output keys from the root chain provide for new KDF keys for the 
sending and receiving chains. This is called the Diffie-Hellman ratchet

 We already saw that the sending and receiving chains advance as each 
message is sent and received and that the output keys are used to encrypt 
and decrypt messages 

 “Send” and “receive” ratchet are also called the symmetric-key ratchet



Symmetric Key Ratchet
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 Every message sent or received 
is encrypted with a unique 
Message key

 A Message key is an output key 
from the sending or receiving 
KDF chain

 In order to deal with receiving 
packets out-of-order, message 
keys may be buffered 

 The KDF keys for these chains 
are called Chain keys

 Here the KDF chains uses a 
Constant as a 2nd input, therefore 
post-compromise security is not 
provided



Diffie-Hellman Ratchet
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 To implement the DH ratchet, each party generates a 
DH key pair (a Diffie-Hellman public key and private 
key) which becomes their current ratchet key pair

 Every message from either party begins with a header 
which contains the sender’s current ratchet public key

 When a new ratchet public key is received from the 
other party, a DH ratchet step is performed which 
replaces the local party’s current ratchet key pair with 
a new key pair

 This results in a “ping-pong” behavior as the parties 
take turns replacing ratchet key pairs 



Stepping through the Diffie-Hellman 

Ratchet
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 Step 1:

 Alice receives Bob’s ratchet public key

 Alice’s ratchet public key isn’t yet known to Bob

 As part of initialization Alice performs a DH calculation 

between her ratchet private key and Bob’s ratchet public key



Stepping through the Diffie-Hellman 

Ratchet
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 Step 2:

 Alice’s initial messages advertise her ratchet public key

 Once Bob receives one of these messages, Bob performs a DH 
ratchet step: 
◼ He calculates the DH output between Alice’s ratchet public key and his 

ratchet private key, which equals Alice’s initial DH output

◼ Bob then replaces his ratchet key pair and calculates a new DH output:



Stepping through the Diffie-Hellman 

Ratchet
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 Step 3:

 Messages sent by Bob advertise his new public key

 Alice receives one of Bob’s messages and performs a DH ratchet step, 
replacing her ratchet key pair and deriving two DH outputs, one that 
matches Bob’s latest and a new one:



Stepping through the Diffie-Hellman 

Ratchet
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 Step 4+

 Messages sent by Alice 

advertise her new public 

key

 Bob receives one of these 

messages and perform a 

second DH ratchet step, 

and so on



Deriving Sending and Receiving Chains
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 The DH outputs generated 
during each DH ratchet 
step are used to derive 
new sending and receiving 
chain keys for Alice’s and 
Bob’s symmetric key 
ratchets

 The diagram is misleading, 
as DH keys are not directly 
used for that (see next 
slide)

 That’s where the DH ratchet 
comes into play



Deriving Sending and Receiving Chains
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 This diagram shows the complete process from Alice’s perspective:

 The Root Key is a shared secret with Bob, determined via DH at the beginning of the 
protocol / session

 The DH output, together with the Root key, is processed by the DH ratchet in the centre of 
the diagram to create a Receiving chain key

 Bob’s public key, together with Alice’s Private key of her 2nd generated keypair is used 
for another KDF invocation that generates the Sending chain key and a new Root key

Alice’s keypair 1

Bob’s public key 1

Alice’s keypair 2



A Double Ratchet Walk-Through
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 Step 1: 

 Alice receives Bob’s public key and generates a new root key (RK) and sending 

chain key CK

 Step 2: 

 When Alice sends her first message A1, she applies a symmetric-key ratchet step 

to her sending chain key, resulting in a new message key

◼ Note that message keys will be labelled with the message they encrypt or decrypt



A Double Ratchet Walk-Through
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 Step 3: 

 Next Alice receives a response B1 from Bob, that contains a new DH ratchet 

public key 

 Alice applies a DH ratchet step to derive new receiving and sending chain keys 

 Then she applies a symmetric-key ratchet step to the receiving chain to get the 

message key for the received message:



A Double Ratchet Walk-Through
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 Step 4: 

 Here Alice next sends a message A2, receives a message B2 with Bob’s old 

ratchet public key, then sends messages A3 and A4, again using Bob’s old 

ratchet public key and her existing private key

 Alice’s sending chain will ratchet three steps, and her receiving chain will ratchet 

once:



A Double Ratchet Walk-Through
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 Step 5: 

 Alice then receives messages B3 and 

B4 with Bob’s next ratchet key, then 

sends a message A5

 Alice’s final state will be as follows:



In Summary: Keys and Key Exchanges 

in the Double Ratchet Protocol
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 Initial Key Exchange: 

 Two parties (Alice and Bob) perform an initial key exchange using ECDH to establish a 
shared secret, the Root key

 Symmetric Key Ratcheting: 

 Each time a message is sent, a new symmetric encryption key is derived using the “send” 
ratchet

 This process is known as "ratcheting forward" and ensures that each message has a unique 
encryption key

 Asymmetric Key Ratcheting: 

 In addition to symmetric key ratcheting, the algorithm uses ECDH to perform asymmetric 
key ratcheting

 After each message exchange, both parties generate new ECDH key pairs and compute 
new shared secrets

 Combining Keys: 

 The keys derived from symmetric and asymmetric ratcheting are combined to form the 
final encryption key for each message

 This ensures that even if one type of key is compromised, the messages remain secure
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