
CT437

COMPUTER SECURITY AND FORENSIC COMPUTING

PUBLIC KEY CRYPTOGRAPHY

Dr. Michael Schukat

Lecture Content
2

 Public key cryptography versus private key
cryptography

 Public key cryptography applications

 Diffie-Hellman Key exchange

 Man-in-the-Middle (MitM) attacks

 RSA encryption

 Optimisation techniques for public key encryption

 ECC encryption

 The Double-Ratchet algorithm

Model of Conventional Cryptosystem

Y = EK(X), X = EK
-1(Y)

Symmetric block ciphers are cryptographically strong,

but key distribution can be a headache!

Features and Limitations of Private-

Key Cryptography

 Traditional symmetric/single key cryptography uses one
key, shared by both sender and receiver
 If this key is disclosed, communications are compromised

 The key is also symmetric, both parties are equal
 This is problematic too, as it does not protect the sender from

a situation, where:
- the receiver forges a message using that key
- and claims that it was sent be the sender
◼ Think about an electronic contract that is exchanged between two

business partners that use a shared key
◼ One party can forge a contract and claim it was sent by the other

side
◼ Message authentication (HMAC or CMAC) doesn’t solve the

problem!

Features of Public-Key Cryptography

 Public-key/two-key/asymmetric cryptography involves the use
of two keys:
 a public-key, which the owner shares with any peer; it is used to:
◼ Encrypt messages send from the peer to the owner
◼ Verify the integrity and origin of messages send from the owner to a peer

(signature validation)

 a private-key, known only to the recipient/owner, used to:
◼ Decrypt messages that were encoded using their public key
◼ Digitally sign data send to a peer (signature creation)

 The keys are asymmetric, because they are not equal
 Those who encrypt a message or verify a signature (using the

receiver’s public key) cannot decrypt the message or forge a
signature

 It is computationally very hard (and infeasible) for an attacker
to rebuild an owner’s private key by analysing their public key

 This is achieved through the application of number- theoretic
concepts

Public-Key Encryption

M

Applications of Public-Key

Cryptosystems

 Data encryption/decryption:
The sender encrypts the message with the recipient’s public key and the
receiver decodes the message using their private key
 Recall symmetric encryption where only one key is used

 Digital signature/authentication:
The sender “signs” a message with its private key. Signing is achieved by
encrypting the message or its MAC using their private key (next slide)
 Recall private key encryption where sender and receiver just share one key

 Key exchange:
Two sides negotiate a symmetric session key
 Private key encryption is much faster than public key encryption

 This key may also be used for conventional message authentication

 Note that in order to avoid confusion we use from now on the terms:
 Symmetric key for private key encryption (block ciphers and stream ciphers)

 Public and private keys for public key encryption

Public-Key Cryptosystems: Secrecy

and Authentication

Public

key

Private

key

The entire message Y is the

authenticator

Note that this scheme requires B to

determine that a received message

is intelligible, i.e. that Z has not been

manipulated by a MitM in transit

Recap: Basic Uses of Hash Functions (H) in

Combination with asymmetric Encryption (c)

KRa = Sender’s private key

KUa = Sender’s public key

Recap: Basic Uses of Hash Functions (H) in

Combination with asymmetric Encryption (d)

KRa = Sender’s private key

KUa = Sender’s public key

Public-Key Cryptosystems
11

 There are different cryptosystems, including (from

simplest to most complex):

 Diffie Hellman key exchange

 RSA

 DSS

 Elliptic Curve Cryptography

Modular Arithmetic
12

 Modular arithmetic is a system of arithmetic for integers,

where numbers wrap around when reaching a certain

value n, called the modulus

 Recall modulus operator “%” in C and other languages, i.e.

“division with rest” with rest being the modulus

 Example: 75 / 6 = 12 remainder 3 ➔ 75 % 6 = 3

 Numbers {0, 1, …, n - 1} are called “multiplicative group

of integers modulo n”, or simply Zn, for some n > 0

 Within Zn, addition and multiplication is well defined!

Example: Multiplication in Z9

* 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 4 6 8 1 3 5 7

3 0 3 6 0 3 6 0 3 6

4 0 4 8 3 7 2 6 1 5

5 0 5 1 6 2 7 3 8 4

6 0 6 3 0 6 3 0 6 3

7 0 7 5 3 1 8 6 4 2

8 0 8 7 6 5 4 3 2 1

Mx3

Illustration of Concept behind Diffie-

Hellman Key Exchange (Wikipedia)
14

 Alice and Bob want to share a secret colour
using public transport

 i.e. an adversary (i.e. Mallory, not shown) can
get samples of any colour that is exchanged
between both

 Alice and Bob agree on a common “public”
paint color (yellow in the example)

 Each of them add a secret colour and send
their mix to the other party

 Mallory can intercept both, but cannot separate
the mixtures

 Alice and Bob receive the other’s mixture
and add their secret colour

 Both colours are identical

 → This color is their common secret

Diffie-Hellman Key Exchange

 Diffie-Hellman provides a mechanism for a secure key exchange between
two endpoints
 The negotiated key is subsequently used as a symmetric key (or as a seed for a key)

for data encryption and message authentication (as seen before)

 The algorithm uses the multiplicative group of integers modulo n
 n has typically a length of 1024 or 2048 bits

 It is based on the difficulty of computing discrete logarithms over such
groups, e.g.

 63 mod 17 = 216 mod 17 = 12 (easy)

 12 = 6y mod 17? (difficult)

 Recall 63 = 6 x 6 x 6, so we need just the multiplication

 The core equation for the key exchange is

 K = (A)B mod q

Diffie-Hellman: Global Public Elements

 Alice and Bob select:

 A prime number q which determines Zq
 A positive integer a, with 1 < a < q and a is a primitive root of q

◼ Note that a is also called the generator

 Definition: a is a primitive root of q, if numbers
a mod q, a2 mod q, … a(q - 1) mod q
are distinct integer values between 1 and (q - 1) (i.e. in Zq) in
some permutation

 Example: a = 3 is a primitive root of Z5 (i.e. q = 5), a = 4 is not:
 31 = 3 = 0 * 5 + 3 41 = 4 = 0 * 5 + 4
 32 = 9 = 1 * 5 + 4 42 = 16 = 3 * 5 + 1
 33 = 27 = 5 * 5 + 2 43 = 64 = 12 * 5 + 4
 34 = 81 = 16 * 5 + 1 44 = 256 = 51 * 5 + 1

Primitive Roots of Zn with 15 < n < 32
17

Generation of Secret-Key: Part 1

 Alice and Bob share publicly a prime number q and a
primitive root a

 Alice (User A):
 Select secret number XA with 0 < XA < q
 Calculate public value YA = aXA mod q ( difficult to reverse)

 YA is sent to Bob (user B)

 Bob (User B):
 Select secret number XB with 0 < XB < q
 Calculate public value YB = aXB mod q ( difficult to reverse)

 YB is send to Alice

Generation of Secret-Key: Part 2

 Alice:

 Alice owns XA and receives YB

 She generates the secret key: K = (YB)XA mod q

 Bob:

 Bob owns XB and receives YA

 Bob generates the secret key: K = (YA)XB mod q

 Both keys are identical!

Generation of Secret-Key: Part 2

K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XA mod q

 = aXB XA mod q

 = aXA XB mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

Example for Diffie-Hellman

 Alice and Bob agree on public values q and a, and
determine their respective secrets XA and XB :

 Let q = 5 and a = 3

 Alice picks XA = 2, therefore YA = aXA mod 5 = 4

 Bob picks XB = 3, therefore YB = aXB mod 5 = 2

 Alice sends YA = 4 to Bob

 Bob sends YB = 2 to Alice

 Alice calculates: K = (YB)XA mod q = 22 mod 5 = 4

 Bob calculates: K = (YA)XB mod q = 43 mod 5 = 4

Ephemeral versus Static Diffie-Hellman

Keys

 The generated DH keys can be either

 static (to be reused)

 ephemeral (only used once, e.g., for one session only)

 Ephemeral keys

 provide forward secrecy, but no endpoint authenticity

◼ Forward secrecy: If the current key is recovered by an adversary, it only
effects the current session, but no past or future sessions

 Static keys

 do not provide forward secrecy

 do provide (implicit) endpoint authenticity

 do not protect against replay-attacks

Example DH Parameters
23

 Standardised, see https://www.ietf.org/rfc/rfc3526.txt

 Example 2048-bit MODP Group

 q = 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }

 q = FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B

 E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9

 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510

 15728E5A 8AACAA68 FFFFFFFF FFFFFFFF

 a = 2

[] == rounded

https://www.ietf.org/rfc/rfc3526.txt

DH and Man-in-the-Middle (MitM)

Attacks

 Mallory is a MitM attacker with the ability to intercept, and fabricate messages

 Not to confuse with a Meet-in-the-Middle attack (→ double-DES and triple-DES)

 Both Alice and Bob are unaware of Mallory’s existence, as there is no mutual authentication and an
unprotected communication link

 Alice and Bob exchange their shared values (A and B in the example), but these are intercepted by Mallory

 Mallory completes both key exchanges sending her own shared value Z to both Alice and Bob

 By doing so, Mallory establishes two individual (secure) connections with Alice and Bob

 Alice and Bob have no idea that they became victims of a MitM attack!

In-Class Activity: Diffie-Hellman

MitM Attack

 Let q = 5 and a = 3;

 XAlice = 2, therefore YAlice = a
XAlice mod 5 = 4

 XBob = 3, therefore YBob = a
XBob mod 5 = 2

 XMalory = 1, therefore YMalory = a
XMalory mod 5 = 3

 What session keys between
 Alice and Malory

 Malory and Bob

are generated?

 Note: User A’s key K = (YB)XA mod q

 Note: User B’s key K = (YA)XB mod q

Solution
26

 Alice sends “4” to Bob, but this message is intercepted by Malory

 Bob sends “2” to Alice, but this message is intercepted by Malory

 Malory sends “3” to both parties, claiming to be either Bob or Alice

 Alice receives “3” and calculates K as follow: K = 32 mod 5 = 4

 Malory calculates 41 mod 5 = 4

 Bob receives “3” and calculates K as follow: K = 33 mod 5 = 2

 Malory calculates 21 mod 5 = 2

 Alice and Bob think they just mutually agreed on a shared
secret key

 From this point onwards Malory as a MitM can read,
manipulate and fabricate messages between Alice and Bob

The RSA Algorithm

 Published by Rivest, Shamir and Adleman in 1977, but first discovered by
Clifford Cocks (British mathematician and cryptographer) in 1973

 The RSA scheme works similar to a block cipher, where a plaintext M and a
ciphertext C are integers between 0 and n – 1,i.e. elements of Zn

 M can be a plaintext message (block), a hash value, or a private key picked
by the sender to be shared with the message recipient
 E.g., “ABC” = “01000001 01000010 01000011” = 427680310

 Principle: C = Me mod n
 M = Cd mod n = Med mod n

 Public key KU = {e, n}
 Private key KR = {d, n}

 With n sufficiently large it is infeasible to determine d given e and n

Key Generation for the RSA Algorithm

Greatest

common divisor

See next slide

Euler’s totient

function Phi

Example

 Let p = 7, q = 11 and n = pq = 77

 φ(77) = (p - 1)(q - 1) = 6 x 10 = 60

 Factorisation of 60 = 1 * 2 * 5 * 2 * 3

Therefore the divisors of 60 are: 2, 3, 5

 List of all integers x, 1<x<60, with GCD(60,x) = 1:
7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 49, 53, 59



Note that these integers either
 are prime numbers (that cannot share a common divisor with 60), or

 do not share a common divisor with 60 (i.e., 7 and 49)

Example (continued)

 Let e = 7

 Choose d with ed = 1 mod φ(pq) 
 7d = 1 mod 60  7d mod 60 = 1

 7*1 mod 60 = 7 7*2 mod 60 = 14 7*3 mod 60 = 21

7*4 mod 60 = 28 7*5 mod 60 = 35 7*6 mod 60 = 42
7*7 mod 60 = 49 7*8 mod 60 = 56 7*9 mod 60 = 3
7*10 mod 10 = 28 7*11 mod 60 = 17 7*12 mod 60 = 24

… 7*43 mod 60 = 1

 Therefore d = 43

 Therefore KU = (7, 77) and KR = (43, 77)

 Note there are better / more efficient algorithms (i.e. the
Extended Euclidean Algorithm) to calculate d

Example for an Encryption/Decryption

 Obvious drawbacks:

 Very large numbers are to be computed
◼ Ordinary integer or floating-point variables don’t work

◼ Instead, large number libraries need to be used

 This makes RSA encryption / decryption is very slow!

Computational Aspects of Public Key

Cryptography

 Assume you have to evaluate the expression C = 50323 mod 899 as part of the
encoding process

 Note that the modulus is small enough to fit into an integer variable

 50323 = 1.367929313795408423250439710106 x 1062 cannot be properly
represented using an ordinary integer or floating-point variable!

 In order to solve this problem, the exponentiation must be broken down into
smaller steps, e.g.

 50323 mod 899 = ((5036 mod 899) x (5036 mod 899)
 x (5036 mod 899) x (5035 mod 899)) mod 899

 5036 mod 899 = ((5033 mod 899) x (5033 mod 899)) mod 899

 5035 mod 899 = ((5033 mod 899) x (5032 mod 899)) mod 899

 5033 mod 899 = ((5032 mod 899) x 503) mod 899

Computational Aspects of Public Key

Cryptography

 … or even iteratively:
50323 mod 899 =
((((((5032 mod 899) x 503) mod 899) x 503) mod
899) x … x 503) mod 899

 This expression consists of 22 nested multiplications and 22
nested modulus operations and can be easily calculated by
using a loop

 However, once a single number squared is too large to fit
into a 32-bit or 64-bit (unsigned) integer variable, a big
number library must be used

The Security of RSA

 There are various angles to attack the RSA algorithm:
 Brute force: Trying all possible private keys (not a great idea!)

 Mathematical attacks: Factor n (which is the product of two
primes); see some very old data below:

 See also (for some more recent data)
https://en.wikipedia.org/wiki/RSA_numbers#RSA-704

 Timing attacks: Based on analysis of the run time of an
decryption algorithm

https://en.wikipedia.org/wiki/RSA_numbers#RSA-704

Breaking RSA
37

 Consider the key pair (e, n) and (d, n) or simply (e, n)
and d

 n = p * q, with p and q being large (secret!) primes

 Factorising n is unfeasible for very large n

 However, let’s assume n can be factored into p and q

 The adversary can now do the following calculations:

 φ(n) = (p – 1) * (q – 1)

 Identify d, so that e * d = 1 mod φ(n)

◼ e is known, use the aforementioned Extended Euclidean
Algorithm

Breaking RSA (naïve Appraoch)
38

int breakRSA(int p, int q, int d) {

 int prod, found = 0, start = 1, df = -1;

 int phi = (p -1) * (q – 1);

 while ((!found) && (start < phi)) { // exit if needed

 prod = d * start;

 if (prod % phi == 1) found = 1;

 else start++;

 }

 if (found) df = start;

 return (df);

}

// Note that the integer values above would be replaced with BIGNUM values

Breaking RSA
40

 However, when choosing p and q, the following should
be considered:

 p <> q, as p = q = sqrt(n)

 Neither p or q must not be “small”, as factorising could
produce a result in a reasonable amount of time (see next
slide “Simple Integer Factorising Algorithm”)

 p must not be similar in size to q, because of Fermat's
method of factoring a composite number N:

◼ N can be represented as the difference of two squares:

◼ p * q = N  a2 – b2  (a - b) (a + b) [== p * q]

◼ N = a2 - b2 can be rewritten as: b2 = a2 - N

◼ To find a solution, iterate through a (starting with round(sqrt(N))),
until a2 - N is a square number (i.e. b2)

Fermat’s Factoring Algorithm
41

void fermatFactor(int N, int *p, int *q) {

 // Note this algorithm assumes that N can be factorised.

 int a = ceiling(sqrt(N)); // start value for a, rounded up

 int b2 = a * a - N; // see last slide

 while (sqrt(b2) * sqrt(b2) <> b2) { // Is b2 a squared number?

 a = a + 1;

 b2 = a * a – N;

 }

 // We found b2! Now calculate p = a - b and q = a + b

 *p = a - sqrt(b2);

 *q = a + sqrt(b2);

}

Fermat’s Factoring Algorithm
42

void fermatFactor(int N, int *p, int *q) {

 int a = ceiling(sqrt(N)); // start value for a

 int b2 = a * a - N; // see last slide

 while (sqrt(b2) * sqrt(b2) <> b2) { // is b2 a square?

 a = a + 1;

 b2 = a * a – N;

 }

 *p = a - sqrt(b2);

 *q = a + sqrt(b2);

}

If p (= a - b) and q (= a + b)

are similar in size, it takes only a

small number of iterations over a

to find a solution

Example
43

1. n = 33 (based on secret values p = 3 and q = 11)

2. First iteration: a = 6 (i.e., ceiling(sqrt(33)):

1. b2 = 6 * 6 – 33 = 3

2. b2 is not a square number

3. a = a + 1

3. Second iteration: a = 7:

1. b2 = 7 * 7 – 33 = 16

2. b2 is a square number

4. Calculate p and q:

1. p = 7 - sqrt(16) = 3

2. q = 7 + sqrt(16) = 11

https://arstechnica.c

om/information-

technology/2022/0

3/researcher-uses-

600-year-old-

algorithm-to-crack-

crypto-keys-found-

in-the-wild/

44

Breaking RSA in Practise

https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/

CVE-2022-26320
45

Elliptic Curve Cryptography (ECC)

 Traditional methods exploit the properties of
arithmetic using large finite groups Zn with n having
a typical size of 1024 bits, i.e. 309 decimal digits

 The security depends on the difficulty of factorising
large numbers or calculating discrete logarithms

 Using large numbers makes such algorithms
expensive

 In ECC, Zn is replaced by points of an elliptic curve,
making the discrete log calculation problem
different and much harder compared to the discrete
log in ordinary groups

Elliptic Curve Groups

 Elliptic curves are based on simplified cubic
equations, e.g.
y2 = x3 +ax + b
where a and b are real numbers

 The curve shown here is defined by the
equation
y2 = x3 – x (i.e., a = -1 and b = 0)

 To plot such a curve, we need to compute
y = sqrt(x3 +ax + b)

 Since the shape of the curve depends on a and
b, ECs can be described as E(a,b)

 The above curve can be written as E(-1, 0)

 In order to operate on elliptic curves, we need
to introduce an operation that is equivalent to
the addition as well as a “0” element

Elliptic Curves over a Finite Field

 In order to have values (x, y)within Zp, the modulus
operation is used again:
 y2 mod p = (x3 +ax + b) mod p

 p is either a prime number or p = 2m

 We only consider pairs (x, y), where both x and y
are integer values

 Example: Table of all integer
solutions for E23(1,1)

The Elliptic Curve E23(1,1)

Adding Points on an Elliptic Curve

 ECC requires the equivalent of an addition on
Ep(A,B) of two points a and b

 This is done (geometrically) as follows:
 - Draw a straight line through a and b
 to find the third intersecting point w,
 - then draw a vertical line through w to
 find the intersecting point c (that’s the sum)

 Every line intersects the curve three
 times (tangents are counted twice), e.g.,
 the line through a and b intersects a
 "third" point b. We name this line [a,b,b]

 O is called the origin, or point at infinity

 We can say
 a + b = c a + d = b + c = O
 a + a = b a + O = a

ECC over a Finite Field: Addition

 There’s p as defined before

 Addition of two field elements S = (xS, yS) and Q =
(xQ, yQ) with S <> -Q:

 S + Q = R = (xR, yR)

 xR = (L
2 - xS – xQ) mod p

 yR = (L (xS – xR) – yS) mod p
 L is either

◼ ((yQ – yS) / (xQ – xS)) mod p, if S <> Q, or

◼ ((3 x2S + a) / (2 yS)) mod p, if S = Q

ECC over a Finite Field: Addition and

Multiplication

 The addition of two elliptic points P and Q consists of a
number of integer operations (mod q):

 5 or 6 subtractions

 1 or 4 multiplications

 1 division

 A multiplication (P * Q) is done via consecutive
additions

 A scalar multiplication (x * Q) with some scalar x is the
operation of successively adding a point Q along an
elliptic curve to itself x times

ECC Diffie-Hellman

 Similar to conventional Diffie-Hellman, but
operates of finite EC field:

Users A & B select a suitable curve Ep(a, b)

Users select base point (equivalent to primitive root)

G=(x1,y1)
User A & B select private keys na and nb

Users A & B compute public keys PA and PB

 Shared keys are exchanged

 Secret key K is computed

ECC Diffie-Hellman Example

 Use E211(0, -4) that is equivalent to y2 mod 211 = (x3 - 4) mod 211

 Choose G = (2, 2)

 User A chooses na = 121, so A’s public key PA is:
121 * G = 121 * (2, 2) = (115, 48)

 User B chooses nb = 203, so B’s public key PB is:
203 * G = 203 * (2, 2) = (130, 203)

 The shared secret key K is 121 * (130, 203) = 203 * (115, 48) =
(169, 69)

 Again, ECC-DH can be compromised via a MitM!

Comparable Key Sizes for Equivalent

Security

Symmetric

scheme

(key size in bits)

ECC-based

scheme

(size of p in bits)

RSA

(modulus size in

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

Curve25519
59

 Curve25519 is an elliptic curve offering 128 bits of security (with
256 bits key size) and designed for use with the elliptic curve
Diffie–Hellman (ECDH) key agreement scheme

 It is one of the fastest ECC curves and is not covered by any
known patents

 It was first released by the cryptologist Daniel J. Bernstein in
2005

 In 2013, interest began to increase considerably when it was
discovered that the NSA had potentially implemented a
backdoor into the most common EC encryption method

 i.e. the P-256 curve based Dual_EC_DRBG algorithm

 Today it is the de facto alternative to P-256

 Its reference implementation is public domain software

The Double-Ratchet Algorithm[1]

60

 The Double Ratchet algorithm is a cryptographic protocol used by two
parties to exchange encrypted messages

 Messages are encrypted using private (symmetric) key encryption

 Typically, every message that is exchanged in either direction is encrypted using
a different private key

 The algorithm is implemented in the Signal protocol, which in turn is used in
secure messaging apps such as the Signal app and WhatsApp

 The algorithm ensures forward secrecy and post-compromise security,
making conversations secure even if previous keys are compromised

 (Perfect) forward secrecy and post-compromise security are properties of
secure communication protocols

 Forward security ensures the confidentiality of past sessions even if long-term
keys are compromised

 Post-compromise security ensures the security of future communications even
after an initial compromise

Key Derivation Function (KDF) and KDF

Chains
61

 A KDF is a cryptographic function that

 takes a (secret) KDF key and some input data and
returns output data (KDF key|| Output key)

 Looks like a “one-way” function (i.e., a hash function)

 In a KDF chain some of the output from a KDF is
used as an output key and some is used to replace
the KDF key, which can then be used with another
input

 If two endpoints agree on the same initial KDF
key and the same Input, they create the same
sequence of output keys

 Leaving Input aside, a KDF chain provides
forward security, but not post-compromise security:

 Consider output key (2) being recovered by an
attacker

 The attacker can calculate key (3), but not key (1)

 In order to provide post-compromise security too,
Input must be a secret shared by both endpoints

(1)

(2)

(3)

The KDF “Ratchet”
62

 A KDF chain is like a ratchet, which only goes in one direction

 each step provides a different output (KDF key|| Output key)

 Both Alice and Bob have both a “send” and “receive” ratchet each

 Alice’s “send” and Bob’s “receive” ratchet are initialised using the same initial KDF key (and
visa versa), and the same Input

 Every time a message is to be sent by either side, it is encrypted first using a new encryption
key (Output key) that is generated by invoking the KDF (i.e., the “sender” ratchet)

 Similarly, every time the receiver receives a new message it calculates the (same) key for
message decryption by invoking the KDF (i.e., the “receiver” ratchet)

Sender and Receiver Ratchet
63

Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)CBx

Later!

Explanations
64

 K{A|B}x is a secret key used by A or B for encoding
and decoding a message (e.g., KA5 or KB7)

 x is simply an incremented index value (i.e., 1, 2, 3,…)

 M{A|B}x are (indexed) plaintext messages
generated by A or B (e.g., MA5 or MB7)

 C{A|B}x is the corresponding ciphertext

 E.g., MA3 <-> CA3

 E() and D() are corresponding encryption and
decryption functions that use a key KAx (e.g.,
DKA5(CA5))

Synchronising Sender and Receiver Ratchets

to compensate for lost Messages
65

Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

x ||CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)x || CBx

If messages get lost in

transit, the ratchets

go out of sync

KDF Chains in a Double Ratchet Session
66

 In a Double Ratchet session between two endpoints (Alice and Bob) each
party stores a KDF key for three chains:

 a root chain (linked to the DH ratchet)

 a sending chain (linked to the “send” ratchet)

 a receiving chain (linked to the “receive” ratchet)

 Alice’s sending chain matches Bob’s receiving chain, and vice versa

 As Alice and Bob exchange messages they also exchange new Diffie-
Hellman public keys, and the Diffie-Hellman output secrets become the input
to the root chain (i.e., the DH ratchet)

 The output keys from the root chain provide for new KDF keys for the
sending and receiving chains. This is called the Diffie-Hellman ratchet

 We already saw that the sending and receiving chains advance as each
message is sent and received and that the output keys are used to encrypt
and decrypt messages

 “Send” and “receive” ratchet are also called the symmetric-key ratchet

Symmetric Key Ratchet
67

 Every message sent or received
is encrypted with a unique
Message key

 A Message key is an output key
from the sending or receiving
KDF chain

 In order to deal with receiving
packets out-of-order, message
keys may be buffered

 The KDF keys for these chains
are called Chain keys

 Here the KDF chains uses a
Constant as a 2nd input, therefore
post-compromise security is not
provided

Diffie-Hellman Ratchet
68

 To implement the DH ratchet, each party generates a
DH key pair (a Diffie-Hellman public key and private
key) which becomes their current ratchet key pair

 Every message from either party begins with a header
which contains the sender’s current ratchet public key

 When a new ratchet public key is received from the
other party, a DH ratchet step is performed which
replaces the local party’s current ratchet key pair with
a new key pair

 This results in a “ping-pong” behavior as the parties
take turns replacing ratchet key pairs

Stepping through the Diffie-Hellman

Ratchet
69

 Step 1:

 Alice receives Bob’s ratchet public key

 Alice’s ratchet public key isn’t yet known to Bob

 As part of initialization Alice performs a DH calculation

between her ratchet private key and Bob’s ratchet public key

Stepping through the Diffie-Hellman

Ratchet
70

 Step 2:

 Alice’s initial messages advertise her ratchet public key

 Once Bob receives one of these messages, Bob performs a DH
ratchet step:
◼ He calculates the DH output between Alice’s ratchet public key and his

ratchet private key, which equals Alice’s initial DH output

◼ Bob then replaces his ratchet key pair and calculates a new DH output:

Stepping through the Diffie-Hellman

Ratchet
71

 Step 3:

 Messages sent by Bob advertise his new public key

 Alice receives one of Bob’s messages and performs a DH ratchet step,
replacing her ratchet key pair and deriving two DH outputs, one that
matches Bob’s latest and a new one:

Stepping through the Diffie-Hellman

Ratchet
72

 Step 4+

 Messages sent by Alice

advertise her new public

key

 Bob receives one of these

messages and perform a

second DH ratchet step,

and so on

Deriving Sending and Receiving Chains
73

 The DH outputs generated
during each DH ratchet
step are used to derive
new sending and receiving
chain keys for Alice’s and
Bob’s symmetric key
ratchets

 The diagram is misleading,
as DH keys are not directly
used for that (see next
slide)

 That’s where the DH ratchet
comes into play

Deriving Sending and Receiving Chains
74

 This diagram shows the complete process from Alice’s perspective:

 The Root Key is a shared secret with Bob, determined via DH at the beginning of the
protocol / session

 The DH output, together with the Root key, is processed by the DH ratchet in the centre of
the diagram to create a Receiving chain key

 Bob’s public key, together with Alice’s Private key of her 2nd generated keypair is used
for another KDF invocation that generates the Sending chain key and a new Root key

Alice’s keypair 1

Bob’s public key 1

Alice’s keypair 2

A Double Ratchet Walk-Through
75

 Step 1:

 Alice receives Bob’s public key and generates a new root key (RK) and sending

chain key CK

 Step 2:

 When Alice sends her first message A1, she applies a symmetric-key ratchet step

to her sending chain key, resulting in a new message key

◼ Note that message keys will be labelled with the message they encrypt or decrypt

A Double Ratchet Walk-Through
76

 Step 3:

 Next Alice receives a response B1 from Bob, that contains a new DH ratchet

public key

 Alice applies a DH ratchet step to derive new receiving and sending chain keys

 Then she applies a symmetric-key ratchet step to the receiving chain to get the

message key for the received message:

A Double Ratchet Walk-Through
77

 Step 4:

 Here Alice next sends a message A2, receives a message B2 with Bob’s old

ratchet public key, then sends messages A3 and A4, again using Bob’s old

ratchet public key and her existing private key

 Alice’s sending chain will ratchet three steps, and her receiving chain will ratchet

once:

A Double Ratchet Walk-Through
78

 Step 5:

 Alice then receives messages B3 and

B4 with Bob’s next ratchet key, then

sends a message A5

 Alice’s final state will be as follows:

In Summary: Keys and Key Exchanges

in the Double Ratchet Protocol
79

 Initial Key Exchange:

 Two parties (Alice and Bob) perform an initial key exchange using ECDH to establish a
shared secret, the Root key

 Symmetric Key Ratcheting:

 Each time a message is sent, a new symmetric encryption key is derived using the “send”
ratchet

 This process is known as "ratcheting forward" and ensures that each message has a unique
encryption key

 Asymmetric Key Ratcheting:

 In addition to symmetric key ratcheting, the algorithm uses ECDH to perform asymmetric
key ratcheting

 After each message exchange, both parties generate new ECDH key pairs and compute
new shared secrets

 Combining Keys:

 The keys derived from symmetric and asymmetric ratcheting are combined to form the
final encryption key for each message

 This ensures that even if one type of key is compromised, the messages remain secure

References
80

[1] The Double Ratchet Algorithm; Trevor Perrin and

Moxie Marlinspike

	Slide 1: CT437 Computer Security and Forensic Computing Public Key Cryptography
	Slide 2: Lecture Content
	Slide 3: Model of Conventional Cryptosystem
	Slide 4: Features and Limitations of Private-Key Cryptography
	Slide 5: Features of Public-Key Cryptography
	Slide 6: Public-Key Encryption
	Slide 7: Applications of Public-Key Cryptosystems
	Slide 8: Public-Key Cryptosystems: Secrecy and Authentication
	Slide 9: Recap: Basic Uses of Hash Functions (H) in Combination with asymmetric Encryption (c)
	Slide 10: Recap: Basic Uses of Hash Functions (H) in Combination with asymmetric Encryption (d)
	Slide 11: Public-Key Cryptosystems
	Slide 12: Modular Arithmetic
	Slide 13: Example: Multiplication in Z9
	Slide 14: Illustration of Concept behind Diffie-Hellman Key Exchange (Wikipedia)
	Slide 15: Diffie-Hellman Key Exchange
	Slide 16: Diffie-Hellman: Global Public Elements
	Slide 17: Primitive Roots of Zn with 15 < n < 32
	Slide 18: Generation of Secret-Key: Part 1
	Slide 19: Generation of Secret-Key: Part 2
	Slide 20: Generation of Secret-Key: Part 2
	Slide 21: Example for Diffie-Hellman
	Slide 22: Ephemeral versus Static Diffie-Hellman Keys
	Slide 23: Example DH Parameters
	Slide 24: DH and Man-in-the-Middle (MitM) Attacks
	Slide 25: In-Class Activity: Diffie-Hellman MitM Attack
	Slide 26: Solution
	Slide 27: The RSA Algorithm
	Slide 28: Key Generation for the RSA Algorithm
	Slide 29: Example
	Slide 30: Example (continued)
	Slide 31: Example for an Encryption/Decryption
	Slide 32: Computational Aspects of Public Key Cryptography
	Slide 33: Computational Aspects of Public Key Cryptography
	Slide 35: The Security of RSA
	Slide 37: Breaking RSA
	Slide 38: Breaking RSA (naïve Appraoch)
	Slide 40: Breaking RSA
	Slide 41: Fermat’s Factoring Algorithm
	Slide 42: Fermat’s Factoring Algorithm
	Slide 43: Example
	Slide 44: https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
	Slide 45: CVE-2022-26320
	Slide 49: Elliptic Curve Cryptography (ECC)
	Slide 50: Elliptic Curve Groups
	Slide 51: Elliptic Curves over a Finite Field
	Slide 52: The Elliptic Curve E23(1,1)
	Slide 53: Adding Points on an Elliptic Curve
	Slide 54: ECC over a Finite Field: Addition
	Slide 55: ECC over a Finite Field: Addition and Multiplication
	Slide 56: ECC Diffie-Hellman
	Slide 57: ECC Diffie-Hellman Example
	Slide 58: Comparable Key Sizes for Equivalent Security
	Slide 59: Curve25519
	Slide 60: The Double-Ratchet Algorithm[1]
	Slide 61: Key Derivation Function (KDF) and KDF Chains
	Slide 62: The KDF “Ratchet”
	Slide 63: Sender and Receiver Ratchet
	Slide 64: Explanations
	Slide 65: Synchronising Sender and Receiver Ratchets to compensate for lost Messages
	Slide 66: KDF Chains in a Double Ratchet Session
	Slide 67: Symmetric Key Ratchet
	Slide 68: Diffie-Hellman Ratchet
	Slide 69: Stepping through the Diffie-Hellman Ratchet
	Slide 70: Stepping through the Diffie-Hellman Ratchet
	Slide 71: Stepping through the Diffie-Hellman Ratchet
	Slide 72: Stepping through the Diffie-Hellman Ratchet
	Slide 73: Deriving Sending and Receiving Chains
	Slide 74: Deriving Sending and Receiving Chains
	Slide 75: A Double Ratchet Walk-Through
	Slide 76: A Double Ratchet Walk-Through
	Slide 77: A Double Ratchet Walk-Through
	Slide 78: A Double Ratchet Walk-Through
	Slide 79: In Summary: Keys and Key Exchanges in the Double Ratchet Protocol
	Slide 80: References

