
CT417 : Software Engineering III

WK02 Revision - Version Control

Outline

• Version (source) control
Why we need it? How should we use it?

• Types of version control
Centralised and distributed

• Version control software

• Lab: Fun with GitHub
get your student account, and git “away”

Planned topics for this lesson:

CT417 : Software Engineering III

What is version control?
• A system that records changes to a file or set of files over time, allowing you to recall

or access specific versions later.

• Also known as revision control or source control

• Keep track of changes, by whom and when

• Fundamental tools for developing software projects

WK02 Revision - Version Control

CT417 : Software Engineering III

What is version control software?

built in version control available in
a variety of software product

some of the popular version control softwares [L - R] CVS, SUBVERSION, git (GitHub),
Team Foundation Server, Mercurial

WK02 Revision - Version Control

CT417 : Software Engineering III

• Backup software source
- Rollback to previous version

• Keeping a record of who did what and when
- Know who to praise and who to fire

• Collaborating with the team
- Know who to praise and who to fire

• Troubleshooting
- Analyse the change history to figure out what cause the problem

• Statistic
- Find out who is the most productive

Why do we need it?
WK02 Revision - Version Control

CT417 : Software Engineering III

What should you check in?

• Everything that influence the build
configuration files, file encodings, binary
settings, etc.

• Everything to setup the project from a clean
checkout / fork
source codes, documentations, manuals,
image files, datasets, etc.

• What about IDE “Junk” files?

WK02 Revision - Version Control

CT417 : Software Engineering III

What should you NOT check in?

• Binaries
JAR files, or any other “build” files from
the source

• Intermediate files from build / compilation
.pyc (Python) or .o (for C), etc

• Files which contain “absolute path”

• Personal Preferences / Settings
specific setting ONLY for your machine

WK02 Revision - Version Control

CT417 : Software Engineering III

Centralised Version Control System

A single central repository shared
among many users in real time

WK02 Revision - Version Control

CT417 : Software Engineering III

Distributed Version Control System

multiple local repository from the pull /
fork of the central repository

WK02 Revision - Version Control

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

• Code centralised in a repository

• Check out a working copy onto your machine
- General, you don’t have the entire repository checked out in subversion, you

only check out a specific branch

• Make changes to it

• Changes committed back to a central repository - “normally” with useful comments

• Maintain a change log (Who, When, What)

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

• Subversion is like a tree

• A tree has a trunk and some branches
- Branches grow from the trunk, and thinner branches grow from thicker branches

• If the trunk is sick, so are the branches, and eventually the whole tree can die

• If a branch is sick, you can cut it, another one may grow

• If a branch grows too much, it may become too heavy for the trunk, and the tree might fall down

• When you feel your tree, your trunk, or a branch is nice looking, you can take a picture of it (to
remember how nice it was that day)

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

Main body of development,
originating from the start to
the finish

Trunk: Should I work directly
with the trunk?

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

Should I work
directly with the

trunk?

NOcopy of the code, taken from
a specific point in time

Branch:

• Allows a developer to make a major
changes without affecting the integrity
of the trunk

• Allows for experimental features to be
tried and tested

If everything works as planned,
then merge the branch back
into the trunk

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

HEAD - newest / most
recent / latest version• When you check-out the project, you will get the HEAD revision

• When you invoke the command svn update, you are updating
your local copy to the HEAD version as well.

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

• Branches should be eventually merged back into the trunk with svn commit

• The trunk must build afterwards

CT417 : Software Engineering III

Subversion
WK02 Revision - Version Control

• Commit is a process of storing changes from private workplace to central server. After commit, changes are
made available to all the team.

• Other developers can retrieve these changes by updating their working copy.

• Commit is an atomic operation. Either the whole commit succeeds or is rolled back. Users never see half
finished commit.

CT417 : Software Engineering III

WK02 Revision - Version Control

Merge Conflicts

public class Pen() {
private int length;
Pen() { length = 5; }

}

public class Pen() {
private int length;

}

TRUNK

public class Pen() {
private int length;
Pen() { length = 5; }

}

public class Pen() {
private int length;

}

⋮
public class Pen() {

private int length;
Pen() { length = 5; }

}

public class Pen() {
private int length;
Pen() { length = 5; }

void setLen(int l) {
this. length = 1;

}
}

⋮
public class Pen() {

private int length;
Pen() { length = 5; }

void setLen(int l) {
this. length = 1;

}
}

Sequential merge -
all good, no conflict

CT417 : Software Engineering III

WK02 Revision - Version Control

Merge Conflicts

public class Pen() {
private int length;
Pen() { length = 5; }

}

public class Pen() {
private int length;

}

TRUNK

public class Pen() {
private int length;
Pen() { length = 5; }

}

public class Pen() {
private int length;

}

⋮
⋮

conflict type 1, easy to
resolve

public class Pen() {
private int length;

}

public class Pen() {
private int length;

void setLen(int l) {
this. length = 1;

}
}

public class Pen() {
private int length;
Pen() { length = 5; }

void setLen(int l) {
this. length = 1;

}
}

CT417 : Software Engineering III

WK02 Revision - Version Control

Merge Conflicts

public class Pen() {
private float length;
Pen() { length = 5.0;
}

}

public class Pen() {
private int length;

}

TRUNK

public class Pen() {
private float length;
Pen() { length = 5.0;
}

}

public class Pen() {
private int length;

}

⋮
⋮

conflict type 2, the
tricky ones

public class Pen() {
private int length;

}

public class Pen() {
private short length;

void setLen(int l) {
this. length = 1;

}
}

public class Pen() {
private ??? length;
Pen() { length = ???; }

void setLen(??? l) {
this. length = 1;

}
}

CT417 : Software Engineering III

Git
WK02 Revision - Version Control

CT417 : Software Engineering III

Git
WK02 Revision - Version Control

How was it created?

• Torvalds wasn’t using any version control for Linux Kernel circa 1991 - 2002

• Changes were passed around as patches and archived files

• In 2002, they began using BitKeeper for managing the source for the Linux Kernel

• In 2005 the relationship broke down and BitKeeper revoked their license

• In no time April 2005, we were blessed with Git

CT417 : Software Engineering III

Feature Branch Workflow
WK02 Revision - Version Control

• Git encourages branching for every
feature - regardless of the size, a branch
can easily be created

• After successful completion of the new
feature, branch is merged into trunk

CT417 : Software Engineering III

Distributed Development
WK02 Revision - Version Control

• Each developer gets their local repository

• Git is extremely fast, you don’t need a network
connection to commit changes (push), inspect
previous version and perform diffs

• If someone breaks the production trunk / branch,
you can continue working

CT417 : Software Engineering III

Pull Requests
WK02 Revision - Version Control

• A pull request is where you ask another developer
to merge your feature into their repository

• Project leads can keep track of changes

• Project leads can merge it with their repository

CT417 : Software Engineering III

Git - Demo
WK02 Revision - Version Control

1 get git on your machine - go here:
https://git-scm.com/downloads
https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

2 use default setting for now - you can
reconfigure later

3 on your terminal / prompt, run
git help git

4 create repository, commit, and do some
stuffs

https://git-scm.com/downloads
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

CT417 : Software Engineering III

GitHub
WK02 Revision - Version Control

• GitHub is a web based hosted service for Git repositories.

• Git allows you to host remote Git repositories and has a wealth of community based
service that makes it ideal for open source projects

• It is a publishing tool, a version control system and a collaboration platform

CT417 : Software Engineering III

GitHub - Commands
WK02 Revision - Version Control

• git pull
- pull the latest version from the repository you

clones
- synchronise will all commits in the repository

• git fetch and git merge
- pull is actually a combination of the two, and

you can run these individually

• git push
- once you have committed changes locally,

you must push them to a remote repository

• git clone
- many project don’t require you to create your

own repository, instead you clone it from a
remote location

CT417 : Software Engineering III

Pull requests
WK02 Revision - Version Control

• If you make change to the repository, you
can create a pull request

• Everyone can review the code and decide
whether or not it should be included in the
master branch

• It’s a forum for discussing the changes.

