
ct414

Distributed Systems & Co-Operative Computing

Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

2025–02–26

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents

1 Introduction 1
1.1 Client-Server Architectures . 1

1.1.1 Two-Tier Architectures . 1
1.2 Three-Tier Architecture . 1
1.3 Network Programming Paradigms . 1

2 Java RMI 2
2.1 Steps to Creating an RMI Application . 2
2.2 Example Java RMI Program . 3

3 Enterprise Java Beans 7
3.1 Distributed System Scenario . 7
3.2 EJB . 7

3.2.1 Entity EJBs . 9

4 NodeJS 9
4.1 MEAN . 10

5 Proxmox Virtualisation Environment 10
5.1 KVM . 11
5.2 QEMU . 11
5.3 LXC . 11
5.4 Ceph . 11

5.4.1 Ceph Network . 12
5.4.2 Ceph OSDs . 13

5.5 VM Installation . 13
5.5.1 Hard Drives . 13
5.5.2 Memory . 13
5.5.3 VM Backups . 13
5.5.4 VMMigration . 13
5.5.5 VMCloning . 13
5.5.6 VM Imports . 14
5.5.7 User Authentication . 14

5.6 Proxmox Cluster . 14
5.7 High Availability . 14

5.7.1 HAGroups . 15
5.8 Performance Benchmarking . 15

6 Cloud Computing 15

i

1 INTRODUCTION

1 Introduction

1.1 Client-Server Architectures

1.1.1 Two-Tier Architectures

A two-tier client-server architecture is a client-server architecture wherein a client talks directly to a server, with no
intervening server. It is typically used in small environments (. 50 users).

A common development error is to prototype an application in a small, two-tier environment, and then scale up
by simply addingmore users to the server: this approach will usually result in an ineffective system, as the server becomes
overwhelmed. To properly scale to hundreds or thousands of users, it is usually necessary to move to a three-tier
architecture.

Figure 1: Client & server using TCP/IP protocols to communicate. Information can flow in either or both directions.
The client & server can interact with a transport layer protocols.

1.2 Three-Tier Architecture

A three-tier client-server architecture introduces a server or agent (or load-balancer) between the client & the
server. The agent has many roles:

• Translation services: such as adapting a legacy application on a mainframe to a client-server environment.

• Metering services: such as acting as a transaction monitor to limit the number of simultaneous requests to a
given server.

• Intelligent agent services: as in mapping a request to a number of different servers, collating the results, and
returning a single response to the client.

1.3 Network Programming Paradigms

Practically all network programming is based on a client-server model; the only real difference in paradigms is the level
at which the programmer operates. The sockets API provides direct access to the available transport layer protocols.
RPC is a higher-level abstraction that hides some of the lower-level complexities. Other approaches are also possible:

• Sockets are probably the best-known andmostwidely-used paradigm. However, problems of data incompatibility
across platforms can arise.

• RPC libraries aim to solve some of the basic problems with sockets and provide a level of transport independence.

• Neither approach works very well with modern applications (Java RMI and other mdoern technologies, e.g.,
web services are better).

1

2 JAVARMI

2 Java RMI

Remote Method Invocation (RMI) is a Java-based mechanism for distributed object computing. RMI enables the
distribution of work to other Java objects residing in other processes or on other machines. The objects in one Java
Virtual Machine (JVM) are allowed to seamlessly invoke methods on objects in a remote JVM. To call a method of a
remote object, we must first get a reference to that object, which can be obtained from the registry name facility or by
receiving the reference as an argument or return value of a method call. Clients can call a remote object in a server that
itself is a client of another server. Parameters of method calls are passed as serialised objects:

• types are not truncated, and therefore, object-oriented polymorphism is supported;

• parameters are passed by value (deep copy) and therefore object behaviour can be passed.

The Java Object Model is still supported with distributed (remote) objects. A reference to a remote object can be passed
to or returned from local & remote objects. Remote object references are passed by reference: therefore, the whole
object is not always downloaded. Objects that implement the Remote interface are passed as a remote reference, while
other objects are passed by value (using object serialisation).

Figure 2: Java RMI Architecture

The client obtains a reference for a remote object by calling Naming.lookup(//URL/registered_name)which is amethod
which returns a reference to another remote object. Methods of the remote object may then be called by the client.
This call is actually to the stubwhich represents the remote object. The stub packages the arguments (marshalling)
into a data stream (to be sent across the network). On the implementation side, the skeleton unmarshals the argument,
calls the method, marshals the return value, and sends it back. The stub unmarshals the return value and returns it to
the caller. The RMI layer sits on top of the JVM and this allows it to use Java Garbage Collection of remote objects,
Java Security (a security manager may be set for the server, now deprecated), and Java class loading.

2.1 Steps to Creating an RMI Application

1. Define the interfaces to your remote objects.

2. Implement the remote object classes.

3. Write the main client & server programs.

2

2 JAVARMI

4. Create the stub & skeleton classes by running the rmic compiler on the remote implementation classes. (No
longer needed in later Java versions).

5. Start the rmiregistry (if not already started).

6. Start the server application.

7. Start the client (which contains some initial object references).

8. The client application/applet may then call object methods in the remote (server) program.

2.2 Example Java RMI Program

1 // Remote Object has a single method that is passed

2 // the name of a country and returns the capital city.

3 import java.rmi.*;

4

5 public interface CityServer extends Remote

6 {

7 String getCapital(String Country) throws

8 RemoteException;

9 }

Listing 1: Example Java RMI Program

1 import java.rmi.*;

2 import java.rmi.server.*;

3

4 public class CityServerImpl

5 extends UnicastRemoteObject

6 implements CityServer

7 {

8 // constructor is required in RMI

9 CityServerImpl() throws RemoteException

10 {

11 super(); // call the parent constructor

12 }

13

14 // Remote method we are implementing!

15 public String getCapital(String country) throws

16 RemoteException

17 {

18 System.out.println("Sending return string now - country requested: " + country);

19 if (country.toLowerCase().compareTo("usa") == 0)

20 return "Washington";

21 else if (country.toLowerCase().compareTo("ireland") == 0)

22 return "Dublin";

23 else if (country.toLowerCase().compareTo("france") == 0)

24 return "Paris";

25 return "Don't know that one!";

26 }

27

28 // main is required because the server is standalone

29 public static void main(String args[])

3

2 JAVARMI

30 {

31 try

32 {

33 // First reset our Security manager

34 System.setSecurityManager(new RMISecurityManager());

35 System.out.println("Security manager set");

36

37 // Create an instance of the local object

38 CityServerImpl cityServer = new CityServerImpl();

39 System.out.println("Instance of City Server created");

40

41 // Put the server object into the Registry

42 Naming.rebind("Capitals", cityServer);

43 System.out.println("Name rebind completed");

44 System.out.println("Server ready for requests!");

45 } catch(Exception exc)

46 {

47 System.out.println("Error in main - " + exc.toString());

48 }

49 }

50 }

Listing 2: Example Server Implementation

1 public class CityClient

2 {

3 public static void main (String args[])

4 {

5 CityServer cities = (CityServer) Naming.lookup("//localhost/Capitals");

6 try {

7 String capital = cities.getCapital("USA");

8 System.out.println(capital);

9 } catch (Exception e) {}

10 }

11 }

Listing 3: Example Client Implementation

No distributed system can mask communication failures: method semantics should include failure possibilities. Every
RMI remote method must declare the exception RemoteException in its throw clause. This exception is thrown when
method invocation or return fails. The Java compiler requires the failures to be handled.

When implementing a remote object, the implementation class usually extends the RMI class UnicastRemoteObject:
this indicates that the implementation class is used to create a single (non-replicated) remote object that uses RMI’s
default sockets-based transport for communication. If you choose to extend a remote object from a non-remote class,
you need to explicitly export the remote object by calling the method UnicastRemoteObject.exportObject().

The main method of the service first needs to create & install a security manager, either the RMISecurityManager or
one that you have defined yourself. A security manager needs to be running so that it can guarantee that the classes
loaded do not perform “sensitive” operations. If no security manager is specified, no class loading for RMI classes is
allowed, local or otherwise.

TO make classes available via a web server (or your classpath), copy them into your public HTML directory. Al-
ternatively, you could have compiled your files directly into your public HTML directory:

4

2 JAVARMI

1 javac -d ~/project_dir/public_html City*.java

2 rmic -d ~/project_dir/public_html CityServerImpl

The files generated by rmic (in this case) are: CityServerImpl_Stub.class& CityServerImpl_Skel.class.

Polymorphic distributed computing is the ability to recognise (at runtime) the actual implementation type of
a particular interface. We will use the example of a remote object that is used to computer arbitrary tasks:

• Client sends task object to compute server.

• Compute server runs task and returns result.

• RMI loads task code dynamically in the server.

This example shows polymorphism on the server, but it also works on the client, for example the server returns a
particular interface implementation.

Our example task will be a simple interface that defines an arbitrary task to compute:

1 public interface Task extends Serializable

2 {

3 Object run();

4 }

Listing 4: Simple Task interface

We will also define a Remote interface:

1 import java.rmi.*;

2

3 public interface Compute extends Remote

4 {

5 Object runTask(Task t) throws RemoteException;

6 }

Listing 5: Simple Task interface

A task may create a Remote object on the server and return a reference to that object; the Remote object will be garbage-
collected when the returned reference is dropped (assuming that no-one else is given a copy of the reference). A task may
create a Serializable object and return a copy of that object; the original object will be locally garbage-collected when
the Task ends. If the Task creates an object that is neither a Remote nor a Serializable object, a marshalling exception
will be thrown.

1 import java.rmi.*;

2 import java.rmi.server.*;

3

4 public class ComputeServer extends UnicastRemoteObject implements Compute

5 {

6 public ComputeServer() throws RemoteException {}

7

8 public Object runTask(Task t)

9 {

10 return t.run();

11 }

12 }

5

2 JAVARMI

Listing 6: Compute server implementation

1 public static void main(String args[])

2 {

3 System.setSecurityManager(new RMISecurityManager());

4 try

5 {

6 ComputeServer cs = new ComputeServer();

7 Naming.rebind("Computer", cs);

8 }

9 catch (Exception e)

10 {

11 // Exception handling

12 }

13 }

Listing 7: Compute server implementation

1 public class Pi implements Task

2 {

3 private int places;

4

5 public Pi (int places)

6 {

7 this.places = places;

8 }

9

10 public Object run()

11 {

12 // Compute Pi

13 return result;

14 }

15 }

Listing 8: Task to compute π

1 Compute comp = (Compute) Naming.Lookup("//www.t.nuigalway.ie/Computer");

2

3 Pi pi = new Pi(100);

4 Object piResult = comp.runTask(pi);

5

6 // print results

Listing 9: The client

In conclusion, RMI is flexible and allows us to pass objects (both Remote& Serializable) by exact type rather than
declared type and download code to introduce extended functionality in both client & server. However, it is Java-
only and has been superseded by SOAP&REST as the de-facto standards for communicating with remote services.
Nonetheless, RMI is still worth learning to help understand concepts around distributed objects & distributed systems
architecture.

6

3 ENTERPRISE JAVA BEANS

3 Enterprise Java Beans

3.1 Distributed System Scenario

Imagine a worldwide financial company with 10,000 online customers that wants to add a new currency converter
software component that is heavily used with 1,0000 hits/second. The design will consist of the business logic and the
distributed infrastructure. The distributed infrastructure includes security, load-balancing, transaction management, &
object-relational mapping; Enterprise Java Beans takes care of this, and provides an API & framework.

Figure 3: Business logic, distribute the object, add security manager, add load balancing agent.

3.2 EJB

Enterprise Java Beans (EJB) is a server-side component architecture that enables and simplifies the process of building
enterprise-class distributed object applications in Java. It allows you to write scalable, reliable, and secure applications
without writing your own complex distributed object frameworks. EJB is a specification.

Figure 4: The EJB process

The EJB Container is where the EJBs run and is responsible for managing EJBs. The EJB Server is a runtime
environment for container(s) that manages the low-level system resources.

7

3 ENTERPRISE JAVA BEANS

Figure 5: The EJB server & containers

Figure 6: EJ Bean types

Session beans are “business process objects” (e.g., price quoting, order entry, video compression, stock trades, etc.) and
live for as long as the client’s session. They are usable by 1 client at a time and are not shared. The EJB server manages the
lifetime of beans. Stateless session beans are single request with no state kept, e.g., currency converter, compression
utility, or credit card verification.

Entity beans / JPA represent persistent data. They are the object-oriented in-memory view of data in an under-
lying data store. They are long-lasting and have shared access. Sub-types of entity beans include: bean-managed
persisted entity beans and container-manager persistent entity beans. Bean-managed persistencemust be persisted
manually and must look after saving, loading, & finding. They make use of a persistence API such as JDBC or SQL/J.
Container-managed persistence is automatic persistence wherein the container/server looks after the loading, saving,
& finding of component data. You must describe what you want persisted. Deployment tools provide support for
defining simple object-relational mappings.

The client never invokes the bean instance, instead it invokes the EJB object by an invocation that is intercepted
by the container, delegated to the bean instance. The EJB object is a surrogate, network-aware wrapper object that
serves as a layer of indirection between the client & the bean; it is essentially the glue between the client & the bean. EJB
objects must clone every business method that your bean class exposes, specified in the remote interface. All remote
interfaces derive from javax.ejb.EJBObject.

8

4 NODEJS

Figure 7: EJB Objects

The session bean interface is implemented by all session beans and specifies lifecyclemethods thatmay be implemented
inn the bean such as setSessionContext, ejbCreate, ejbRemove, ejbPassivate, & ejbActivate.

The Java Naming & Directory Interface is used to find an object. The resource (e.g., a bean) is associated with a
nickname when deploying; clients of this bean can then use this nickname to look up the resource across a deployment.
The client code looks up the reference in JNDI and calls business methods on the EJB object.

3.2.1 Entity EJBs

Entity EJBs are object-based representations of information-tier data such as data stored in a relational database. They
represent a particular unit of data, e.g., a record in a database. There are two types of entity EJB:

• Bean-managed persistence;

• Container-managed persistence.

4 NodeJS

NodeJS is a JavaScript runtime environment that runs Google Chrome’s V8 engine. It is a server-side solution for
JavaScript which compiles JavaScript, making it quite fast. It was created in 2009 and designed for high concurrency,
without threads or new processes. It has evented I/O for JavaScript, and never blocks, not even for I/O. It’s goal is to
provide an easy way to build scalable network programs. It provides a JavaScript API to access the network & file system
and instead of threads, node uses an event loop with a stack which alleviates the overhead of context switching.

• JavaScript on the server-side ensures that communication between the client and the server will happen in the
same language, with native JSON objects on both sides.

• Servers are normally thread-based, but Node is event-based; Node serves each request in an evented loop that
can handle simultaneous requests.

• Node is a platform for writing JavaScript applications outside web browser, and is therefore not quite the same
as the JavaScript we are familiar with in web browser: there is no DOM built-in to Node, nor any other browser
capability.

• Node doesn’t run in a GUI, but runs in the terminal or as a background process.

9

5 PROXMOXVIRTUALISATION ENVIRONMENT

Threads Event-Driven
Lock application / request with listener-workers threads. Only one thread, which repeatedly fetches an event.
Uses incoming-request model. Uses queue and then process it.
Multi-threaded server might block the request which might
involve multiple events.

Manually saves the state and then goes on to process the next
event.

Uses context switching. No contention and no context switches.
Uses multi-threading environments where the listener &
worker threads are used frequently to take an incoming-
request lock

Uses asynchronous I/O facilities (callbacks, nor poll/select
or O_NONBLOCK environments).

Table 1: Threads versus asynchronous event-driven

Ordinarily, a webserver waits for server-side I/O operations to complete while processing a web client request, thus
blocking the next request to be processed. Servers generally do nothing but I/O, and scripts waiting on I/O requests
degrades performance. Node processes each request as an event, it doesn’t wait for the I/O operation to complete,
making it non-blocking; it can therefore handle other requests at the same time. When the I/O operation of the first
request is completed, it will callback the server to complete the request. To avoid blocking, Node makes use of the
event-driven nature of JavaScript by attaching callbacks to I/O requests. Scripts waiting on I/O waste no space because
they get popped off the stack when their non-I/O related code finishes executing.

4.1 MEAN

MEAN is a full stack solution consisting of MongoDB, Express, Angular, & node.

Figure 8: MEAN stack

5 Proxmox Virtualisation Environment

Proxmox is an open-source hyper-converged virtualisation environment. It has a bare-metal installer, a web-based
remote management GUI, a HA cluster stack, unified cluster storage, and a flexible network setup. It has commercial
support packages available at a reasonable cost. Proxmox uses the following underlying technologies:

• KVM (type 1 hypervisor module for Linux).

• QEMU hardware emulation.

• LXC Linux containers.

• Ceph replicated storage.

• Corosync cluster engine.

10

5 PROXMOXVIRTUALISATION ENVIRONMENT

5.1 KVM

Kernel-based Virtual Machine (KVM) is a virtualisation infrastructure for the Linux kernel that turns it into a
hypervisor. KVM requires a processor with hardware virtualisation extensions and a wide variety of guest operating
systems work with KVM. It supports a paravirtual Ethernet card, a paravirtual disk I/O controller using VitrIO, a
balloon device for adjusting guest memory usage, and a VGA graphics interface.

5.2 QEMU

QEMU (Quick Emulator) is an open-source hosted hypervisor that performs hardware virtualisation. It emulates
CPUs through dynamic binary translation and provides a set of devicemodels, enabling it to run a variety of unmodified
guest operating systems. It uses KVMHostingmode in Proxmox where QEMUdeals with the setting-up andmigration
of KVM images. It is still involved in the emulation of hardware, but the execution of the guest is done by the KVM as
requested by QEMU. It uses the KVM to run virtual machines at near-native speed (requiring hardware virtualisation
extensions on x86 machines). When the target architecture is the same as the host architecture, QEMU can make use of
KVM particular features, such as acceleration.

5.3 LXC

LXC (Linux Containers) is an operating-system-level virtualisation method for running multiple isolated Linux
systems (containers) on a control host using a single Linux kernel. The Linux kernel provides the cgroups (control
groups) functionality that allows limitation & prioritisation of resources (CPU, memory, block I/O, network, etc.)
without the need for starting any virtual machines. It provides namespace isolation functionality that allows complete
isolation of an application’s view of the operating environment, including process tress, networking, user IDs, and
mounted file systems. LXC combines the kernel’s cgroups and support for isolated namespaces to provide an isolated
environment for applications. Docker can also use LXC as one of its execution drivers, enabling image management
and providing deployment services.

5.4 Ceph

Ceph is a storage platform that implements object storage on a single distributed computer cluster, and provides
interfaces for object-level, block-level, & file-level storage. Ceph aims for completely distributed operation without a
single point of failure, scalable to the exabyte level. Ceph’s software libraries provide client applications with direct
access to the Reliable Autonomic Distributed Object Store (RADOS) object-based storage system. Ceph replicates
data and makes it fault-tolerant, using commodity hardware and requiring no specific hardware support. As a result of
its design, the system is both self-healing and self-managing, aiming to minimise administration time and other costs.
When an application writes data to Ceph using a block device, Ceph automatically striped and replicates the data across
the cluster. It works well with the KVM.

11

5 PROXMOXVIRTUALISATION ENVIRONMENT

Figure 9: Ceph architecture

Figure 10: Ceph internal organisation

5.4.1 Ceph Network

To create a Ceph ring0 network, each node must be reachable on rin0. The firewalls on each node will need to be
checked to verify this. Proxmox distribute their own Ceph package as of version 5.1:

• pveceph installwill install the latest stable repositories & packages – must be run on each node individually.

• ceph init --network x.x.x.x/ymust be run on the first node only.

• ceph createmonmust be ran on each node.

12

5 PROXMOXVIRTUALISATION ENVIRONMENT

5.4.2 Ceph OSDs

We can add disks asObject Storage Devices (OSD)s on each node. The accurate network time is also very important
to avoid “clock skew”. The latest network time system daemon system.time? is much better than ntpdate. QEMU has
a new time source driver which can be run in guests needing accurate time.

Pools are individual storage blocks:

• size is the number of replications (OSDs) per block.

• min-size is the minimum number of OSDs (replications) each block must be on to allow read-write status.

• add-storage option automatically adds the storage block to the hosts rather than having to manually copy the
Ceph keys to each host to allocate the storage.

The client (Proxmox) interacts with one OSD only. This OSD then write to and confirms write on each OSD in the
block before confirming write completion. Writes are actually made to the journal rather than the block level device for
speed. This primary OSDmanages all interactions with both the client and the replication OSDs. In case the primary
manager is lost, a backup OSDwill take over as primary.

Crush maps define the actual storage blocks (these are very complicated so don’t change the default settings!). As new
OSDs are added, Ceph will attempt to re-allocate data across blocks to improve access & availability. If an OSD gets
removed, Ceph will rebalance data once the OSD is marked as OUT (300 seconds by default). Use ceph noout to avoid
rebalancing, e.g., for maintenance.

5.5 VM Installation

5.5.1 Hard Drives

For hard drives, virtio-scsi and scsi are the best-performance options. OnWindows VMs, this can be a chore as it is
necessary to use a second boot CD to install virtio drivers. No-cache is the best compromise option for local disks, as
the write-back is the fastest, although it is unsafe on Ceph.

5.5.2 Memory

Fixed allocation with ballooning is the best way to allocate RAM. Over-provisioning is possible but dangerous as guests
may crash if RAM is not available. Auto-allocation of memory means that required RAMmay take up to 30 seconds
to be available; it is best to leave swap enabled as this way, swap is a last option before crashing.

5.5.3 VM Backups

There are two types of backup types:

• Snapshot leaves the guest running and intercepts all write operations, writes them to the backup if the block is
already backed up, then to the guest. This slows the guest I/O down to the speed of the backup medium.

• Stop causes the guest to shutdown, then restarts and does backup before making the guest available.

5.5.4 VMMigration

For guests on local storage, migration must done offline. Any storage used in the guest (e.g., ZFS) must be available on
the target node. guests can be live moved to shared storage (e.g., NFS or Ceph) and then live migrated.

5.5.5 VM Cloning

Linked clones allow the fast spin-up of machines as only diverging blocks need to be written to the disk. Linked clones
require file-level storage system, i.e., snapshot-able storage. The conversion of a VM to a template sets the image as
read-only.

13

5 PROXMOXVIRTUALISATION ENVIRONMENT

5.5.6 VM Imports

To performOVA import, first unpack the OVA, for example onto a NAS. Then run qm help importovf for details
of the import command. To perform disk import, run qm help importdisk. vmdebootstrap can be used to build
Debian disk images programmatically. qm help create can be ran for details on creating VMs programmatically.

Note that Windows disk images will not have any virtio drivers installed by default: the hard disk types must be SATA,
the network devices must be E1000. Spice-space spice-guest-tools can be used to install all virtio drivers intoWindows
images. The Spice repository on GitHub has the source code for the installation tools.

5.5.7 User Authentication

PAM authentication can be used for per-machine authentication (may be possible to integrate radius). Proxmox
authentication server replicates authentication across all nodes.

5.6 Proxmox Cluster

The Proxmox VE cluster manager pvecm is a tool to create a group of physical servers called a cluster. It uses the
Corosync Cluster Enginer for reliable group communicaiton, and such clusters can consist of up to 32 physical nodes
or more, dependent on the network latency (must be less than 2 milliseconds). pvecm can be used to create a new cluster,
join nodes to a cluster, leave the cluster, get status information, and do various other cluster-related tasks.

Grouping Proxmox hosts into a cluster has the following advantages:

• Centralised, web-based management of a multi-master cluster: each node can do all management tasks.

• pmxcfs: a database-driven file system for storing configuration files, replicated in real-time on all nodes using the
corosync cluster engine.

• Migration of VMs & containers between physical hosts.

• Fast deployment & cluster-wide services like firewall and High Availability (HA).

5.7 High Availability

Items managed under HA are referred to as resources:

• The HA cluster is managed by pve-ha-crm.service.

• The local HA resources are managed by pve-ha-lrm.service.

The Guest HA is managed either through the dropdown on the guest window, or HA options on the Datacenter
and this allows a guest VM to be automatically migrated or restarted on a different node if it is detected as down, e.g.,
because of node failure or maintenance.

Ensure that pve-ha-crm and pve-ha-lrm are both running under node -> services. All migrations and other ac-
tions on HA resources are managed by the HA daemon. The task viewer only shows status of the request to HA
daemon to carry out the task, not of the actual task.

Migrations (generally, but particularly under HA conditions) may fail due to a number of causes, including:

• The guest has local attached storage which is not available on the target node.

• The guest has NUMA (Non-UniformMemory Access) or other CPU settings not present on the target node.

Changing the HAmanager state for a VMwill cause the VM state to change. If any node hosting a HA resource loses
corosync quorum:

1. The pve-ha-lrm.servicewill no longer be able to write to the watchdog timer service.

2. After 60 seconds, the node will reboot.

3. After a further 60 seconds, the VMwill be brought up on a different node.

14

6 CLOUDCOMPUTING

5.7.1 HA Groups

Group members will prefer selected nodes if available:

• If restricted is selected, members will only run on selected nodes.

• Guests will be stopped by the HAmanager if the node(s) become unavailable.

• If nofailback is not selected, guests will try to migrate back to a preferred node once it becomes available again.

5.8 Performance Benchmarking

• iperf to test network throughput.

• systat to monitor system statistics.

• iostat to test I/O throughput.

6 Cloud Computing

Cloud computing solves web-scale problems, uses large data centers, typically uses different models of computing, and
produces highly-interactive web applications. Web-scale problems are typically highly data-intensive and may also be
processing intensive.

15

	Introduction
	Client-Server Architectures
	Two-Tier Architectures

	Three-Tier Architecture
	Network Programming Paradigms

	Java RMI
	Steps to Creating an RMI Application
	Example Java RMI Program

	Enterprise Java Beans
	Distributed System Scenario
	EJB
	Entity EJBs

	NodeJS
	MEAN

	Proxmox Virtualisation Environment
	KVM
	QEMU
	LXC
	Ceph
	Ceph Network
	Ceph OSDs

	VM Installation
	Hard Drives
	Memory
	VM Backups
	VM Migration
	VM Cloning
	VM Imports
	User Authentication

	Proxmox Cluster
	High Availability
	HA Groups

	Performance Benchmarking

	Cloud Computing

