CT326 Programming III

S
NVA T OLLSCOILNAGAILLIMHE
':'|N|7.' UNIVERSITY OF GALWAY
Lwh

vav -

©

Obijectives for today

- Become familiar with operations for
- Filtering, slicing, and matching
- Finding, matching, and reducing

OLLSCOILNA GAILLIMHE

UNIVERSITY OF GALWAY
Filtering with predicates
List<Dish> vegetarianMenu = menu.stream() Q—‘ A method reference
.filter (Dish::isVegetarian) to check if a dish is
.collect (toList()); vegetarian friendly

Figure 5.1. Filtering a stream with a predicate

Menu stream

filtexr(Dish::isVegetarian)

S
AT OLLSCOILNAGAILLIMHE
flnli' UNIVERSITY oF GALWAY
twh

©

Filtering unique elements

e distinct ()
- Returns a stream with unique elements

- Uses implementation of the equals method of objects produced by a
stream

- How would you filter all even numbers from a list, making sure
there are no duplicates, and print them to the console?

List<Integer> numbers = Arrays.asList(1, 2, 1, 3, 3, 2, 4);

S
NVA T OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

A
-slmgl -

* L wh

Truncating a stream

e limit (n)
- Returns a stream no longer than n
« Adheres to order for ordered streams

- Also works on unordered streams (e.g., a stream of a Set) but
order cannot be assumed

SLkd/ 8
B OLLSCOILNAGAILLIMHE
- -
e UNIVERSITY oF GALWAY

Skipping elements

* skip (n)
- Returns a stream that discards the first n elements
- Or an empty stream

List<Dish> dishes = menu.stream()
filter(d -> d.getCalories() > 300)
.skip(2)
.collect(toList());

SLkd/ 8
B OLLSCOILNAGAILLIMHE
& UNIVERSITY oF GALWAY

- How would you use streams to filter the first two meat dishes?

LD
B OLLSCOILNAGAILLIMHE
& UNIVERSITY oF GALWAY

- How would you print the names of the middle five dishes on the
menu?

OLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Start index End index

l

Menu

\

Start index

\ 4

length

S
NVA T OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

A
-slmgl -

* L wh

Mapping

- Selecting, or extracting, information from certain objects
- Like selecting a column from a table in SQL

- Takes a function as an argument
- Often a method reference is used

- The type of stream returned by the map method is determined
by the return type of the argument function
- E.g., map (Dish: :getName) returns a stream of type Stream<String>

S
VAR OLLSCOILNAGAILLIMHE
. J UNIVERSITY oF GALWAY

- Suppose you have a list of words as follows:

List<String> words = Arrays.asList("Richard", ”Of", ”York", "Gave”, “Battle”, “In”, “Vain”);

- How might you use stream processing to return a list of the
number of characters in each word?

S
NVA T OLLSCOILNAGAILLIMHE
':'|ﬂ|='.' UNIVERSITY OF GALWAY
Lw’h

O —-_—

¢

flatMap

- How would you find the unique letters of dishes on the menu?

S
B OLLSCOILNAGAILLIMHE
& UNIVERSITY oF GALWAY

flatMap

- How would you find the unique letters of dishes on the menu?

List<String> uniqueCharacters = menu.stream()
.map.(Dish:.:getName)

mapl(w_—> w.split(""))
.distinct()
.collect(toList());

System.out.println(uniqueCharacters);

emap(w —> w.split(""))
- Returns type Stream<String [] >

S
NVA T OLLSCOILNAGAILLIMHE
':'|ﬂ|='.' UNIVERSITY OF GALWAY
Lw’h

O —-_—

¢

flatMap

- How would you find the unique letters of dishes on the menu?

List<String []> uniqueCharacters = menu.stream()
.map(Dish: :getName)
.map(w —> w.split(""))
.distinct()

.collect(toList());
System.out.println(uniqueCharacters);

- Compiles but isn’t what we need

- |deally, we wantmap(w => w.split("")) to return something of type
Stream<String>

S l\, >
I OLLSCOILNAGAILLIMHE
& UNIVERSITY oF GALWAY

flatMap

- Arrays.stream takes an array an produces a stream

List<String> uniqueCharacters = menu.stream()
.map(Dish::getName)
map(w._—> w.split(""))
-map(Arrays::stream)
.distinct()
.collect(toList());

System.out.println(uniqueCharacters);

- Now map (Arrays::stream)produces a list of streams
(Stream<Stream<String>>)

S
VAR OLLSCOILNAGAILLIMHE
& UNIVERSITY OF GALWAY

flatMap

- f1atMap allows us to amalgamate all of the separate streams
produced from map(Arrays::stream) into a single stream

- Maps each array not with a stream, but with the contents of
that stream

ListkString> uniqueCharacters = menu.stream()
.map(Dish::getName)
.map(w —> w.split(""))
.flatMap(Arrays::stream)
.distinct()
.collect(toList());

System.out.println(uniqueCharacters);

S
NA T\ OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

-slmgl -

* L wh

Finding and matching

- allMatch

- anyMatch

- noneMatch
- findFirst

- findAny

S
VAR OLLSCOILNAGAILLIMHE
& UNIVERSITY OF GALWAY

Reducing

- What if we want to express more complicated queries like
- “Calculate the sum of all calories in the menu,” or
- “What is the highest calorie dish in the menu?”
- Combine all elements in the stream repeatedly to produce a
single value like an integer
- i.e., reduce the stream to a single value
- Known as a fold in functional programming

AL
VAT OLLSCOILNAGAILLIMHE
',3|ﬂ|=3 UNIVERSITY OF GALWAY
Lwh

O _—m—

Summing numbers

- For-each loop

int sum = 0;

for (int x : numbers) { 2 parameters:
sum += X; * Initial \{alue
} » operation

- Using a stream

int sum = numbers.stream().reduce(o, (a, b) -> a + b);

OLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Numbers stream

Rl 5 3 9 Stream<Integer>

reduce (0, (a, b) -> a + b)

Integer

S
NA T OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

- slmgls -

* L wh

Stream operations: stateless vs. stateful

- Stateless operations

- Some operations like map and filter don’t have an internal state
- They take each element from an input stream and produce zero or one
results in the output stream
- Stateful operations

- Operations like reduce and limit need to have internal state in order to
produce their result (e.g. accumulating)

- This internal state can be bounded in size i.e., isn’t affected by the
number of elements in the stream

- Other operations like sorted and distinct are unbounded as they require
knowing the previous history in order to produce their result

- Sorted requires all elements to be buffered before a single element can
be added to the output stream

« Can be problematic if the stream is large

