
CT3532 Database Systems - Further Design

Colm O’Riordan



We have seen that through design by synthesis we can obtain a
good design.

This guarantees that the final design schema exhibits certain
desirable features



However, occasionally we wish to violate the above guidelines
to improve performance.
We must pay attention to transaction requirements.
Try to:

Identify future required transactions
their relative frequency
the required response time



Indexing strategies
The information gleaned from the above analysis can inform
the design of the indexing strategy.

Usually place index on fields that are to be frequently queried
upon.



Choice of index (primary, secondary, B-tree, B+-tree,
clustering) will depend on:

type of query expected
types permitted by DBMS
type of field involved

Also try to identify which tables will be joined frequently and on
which attributes. Common to build indexes on these attributes.



Key choice
Performance requirements can lead to a change in the logical
design.
Consider a table containing 1000 employees. The SSN number
was chosen in the conceptual design as a choice of key.

Now consider the performance requirements involve joining this
table to another table which has SSN as a foreign key.

This query is expected to be very frequent with a short short
response time required.



SSN numbers are 8 characters long. Any index built on this will
contain index values of 8 characters wide.

We only have 1000 employees - could introduce surrogate key
(emp id) and use this for indexes to handle joins.



Denormalisation
Denormalisation is the process of making compromises to the
normalised tables by introducing intentional redundancy for
performance reasons.

Decisions regarding denormalisation are made during the
transaction requirements analysis.

Denormalisation involves a tradeoff between:
introducing redundancy and potential for anomalies
increased efficiency of certain transactions



Downward Denormalisation
Consider the following relations:

CUSTOMER: ID, address, name, telephone
ORDER: orderno, date, date invoice, cus ID

Assume that the queries of the following type are extremely
frequent and require a fast response time:

SELECT ID, name
FROM CUSTOMER, ORDER
WHERE CUSTOMER.ID = ORDER.cus_ID
AND orderno = 46;



Main cost in evaluating this query is the join operation.
We can avoid this costly join be adding the name field to
ORDER table.

This gives us:

ORDER: orderno, date, date invoice, cus ID, name

We have now introduced redundancy (violates 3NF), which
leads to potential update, delete and insert anomalies.
However, queries of the type above can be dealt with more
efficiently.



Other types of denormalisation exist:
Upward denormalisation: store aggregate of values from
one table in another
Intra-table denormalisation: explicitly store information in a
table that can be derived from other attributes


