
Programming Paradigms
CT331 Week 2 Lecture 2

Finlay Smith
finlay.smith@universityofgalway.ie

Imperative and Procedural
Programming

Imperative Programming

● Eg. Assembly, (also Fortran and Basic, sometimes)
○ List of instructions

○ GOTO statements

○ Little or no structure

Telling the computer to perform a set of actions, one after the other.

Most programming languages have imperative aspects.

Procedural Programming

● Eg. C, Pascal, Ada (also Fortran and Basic, sometimes)
○ Code is structured

○ Uses functions, or procedures *

○ Encourages code re-use

○ Encourages encapsulation and composition.

Splits actions into procedures or tasks.

Procedures can be made up of other procedures. Composition (Recursion…)

*Procedural functions are distinct from “functional programming”

Structured Programming

● Eg. Basically everything but Assembly

○ Code is structured

○ While, For, if, else, switch, class, function,

etc.

○ Less emphasis on GOTO statements.

● Creating a structure to manage

instructions.

● Allows more complex programs to be

built.

● Easier to understand.

● Avoids GOTO bugs and spaghetti code.

The C programming Language

The C programming language

● Procedural, Imperative, Structured, “systems language”

● Came into being in 1969-1973 in parallel with the development of the unix

OS

● BCPL -> B -> C -> …

● ANSI standard (since 1980s)

● Now one of the most popular (and powerful) languages in use today.

Thompson was faced with a hardware environment cramped and spartan even for
the time: the DEC PDP-7 on which he started in 1968 was a machine with 8K 18-bit
words of memory and no software useful to him. While wanting to use a higher-
level language, he wrote the original Unix system in PDP-7 assembler. At the start,
he did not even program on the PDP-7 itself, but instead used a set of macros for
the GEMAP assembler on a GE-635 machine. A postprocessor generated a paper
tape readable by the PDP-7.

These tapes were carried from the GE machine to the PDP-7 for testing until a
primitive Unix kernel, an editor, an assembler, a simple shell (command
interpreter), and a few utilities (like the Unix rm, cat, cp commands) were
completed. After this point, the operating system was self-supporting: programs
could be written and tested without resort to paper tape, and development
continued on the PDP-7 itself.

-Denis M. Richie, The Development of the C Programming Language, Bell Labs.
https://www.bell-labs.com/usr/dmr/www/chist.html

https://www.bell-labs.com/usr/dmr/www/chist.html

BCPL, B, and C all fit firmly in the traditional procedural family typified by Fortran
and Algol 60. They are particularly oriented towards system programming, are
small and compactly described, and are amenable to translation by simple
compilers. They are `close to the machine' in that the abstractions they introduce
are readily grounded in the concrete data types and operations supplied by
conventional computers, and they rely on library routines for input-output and other
interactions with an operating system.

-Denis M. Richie, The Development of the C Programming Language, Bell Labs.
https://www.bell-labs.com/usr/dmr/www/chist.html

https://www.bell-labs.com/usr/dmr/www/chist.html

An Example C Program: helloWorld.c

An Example C Program: helloWorld.c

Main function:

Entry point to the program

Returns int.

Two arguments:

arg: number of command line

arguments.

argv: the arguments.

An Example C Program: helloWorld.c

Header inclusion

Functionality defined in stdio.h

is added into helloWorld.c by

the compiler.

(specifically the Linker step of

compiler)

Stdio.h = “Standard

Input/Output”

An Example C Program: helloWorld.c

Function Prototype.

Tells compiler that the function

exists before it has been

implemented.

Allows the compiler to handle

recursion, or functions calling

each other.

An Example C Program: helloWorld.c

Function Definition.

Implements the function.

Note:

Data type

Arguments…

return...

An Example C Program: helloWorld.c

Calling a function.

Printf takes a char* argument.

sayHello takes no argument.

Nothing being returned.

An Example C Program: addNumbers.c

“add” is a function that

returns an int.

Int is stored in the

“result” variable.

Must have same data

type.

Note:

Printf with multiple

parameters…

%d for ints – strictly

decimal ints (%i is any

int including oct and

hex)

Pointers

int* p; // variable p is pointer to integer type

int i; // integer value

Pointers

You turn a pointer into a value with *

int i2 = *p;

// integer i2 is assigned with integer value that pointer p is pointing to

Pointers

You turn a value into a pointer with &:

int* p2 = &i;

// pointer p2 will point to the address of integer i

Using Pointers (side effects!)

int a = 8;

int b = 4;

swap(&a, &b);

(should make a=4 and b=8)

A function effectively breaking the convention that args are not changed in a

function is a side effect – done by passing addresses

Using Pointers (side effects!)

Arrays and Pointers

int intArr[5]; // an integer array of size 5

intArr is a pointer to 1st element of array

–same as &intArr[0]

intArr[2]=3;

–Same as *(intArr+2) = 3;

(intArr + 2) is of type (int*)

–while intArr[2] is of type int.

–Latter case - the pointer is dereferenced

(intArr + 2) is same as (&(intArr[2]))

Note: the + operator here is not simple addition – it

moves the pointer by the size of the type

Generic swap function?

What about a swap function that works on any data type?

???????

void swap(void* x, void* y){

void temp = *x;

*x = *y;

*y = temp;

}

???????

Generic swap function?

What about a swap function that works on any data type?

???????

void swap(void* x, void* y){

void temp = *x;

*x = *y;

*y = temp;

}

???????

We don’t know what size

data *x point to…

So void temp can’t work.

It is impossible to have a

variable of type void for

this reason.

But we can have a

pointer of type void*

void*

● Is a specific pointer type - void *

● Points to *some* location in memory

● No specific type

● Therefore: No specific size

sizeof()

sizeof(type)

Returns the size, in bytes, of the object representation of type

(Built in to C language)

memcpy()

void * memcpy (void * to, const void *from, size_t size)

The memcpy function copies size bytes from the object beginning at from

into the object beginning at to. The value returned by memcpy is the value of

to.

(Not built in. Defined in string.h - #include <string.h>)

Generic Swap function

