
CT5106

WebSocket

Introduction to WebSocket

 Protocols used in the
application layer include
HTTP and WebSocket

 HTTP is called unidirectional
in that the client sends the
request and the server sends
a response
 After which the connection is

closed

 HTTP is stateless, runs on top
of TCP
 Each HTTP request opens a

separate TCP connection to the
server

WebSocket

 WebSocket is bidirectional
 ws:// or wss://

 Stateful – connection is kept alive until client or server terminates it

 Once connected through an HTTP request/response pair
 the client can use a mechanism called an upgrade header to switch their

connection from HTTP over to WebSockets

 A WebSocket connection is established through a websocket handshake
over the TCP

Use for WebSocket

 When you want continuous updates between client
and server, e.g.
 Real-time trading
 Gaming
 Chat

 When not to use WebSocket
 When accessing persisted (old) data on a once-off /

infrequent basis
 RESTFul web services are sufficient in such cases

Simple example app

 A simple app
which allows
client to send
message to
server

 Server in this
case just sends
acknowledgem
ent back

HelloWebSocket

Creating a connection

 The connection is initialised by the client, using
Javascript

 In this case the Javascript is simply embedded in the
index.html, but usually it would be in a separate file

 When we have established the socket connection,
then we can send messages to the server very
simply

var webSocket = new WebSocket("ws://localhost:8080/HelloWebSocket/hello");

index.html

webSocket.send(msgToSend);

Web Sockets Events

 There are 4 main events
 Open
 Message
 Close
 Error

Open

 Once the connection has been established between the client
and the server, the open event is fired from Web Socket
instance. It is called as the initial handshake between client and
server. The event, which is raised once the connection is
established, is called onopen.

 Useful for debugging to write messages to the console

webSocket.onopen = function ()
{

console.log("connection opened");
};

index.html

Message

 Message event happens usually when the server sends some
data. Messages sent by the server to the client can include
plain text messages, binary data or images. Whenever the
data is sent, the onmessage function is fired

index.html

webSocket.onmessage = function (message)
{

divMsg.innerHTML += "Server> : " + message.data;
};

Close

 Close event marks the end of the communication between
server and the client. Closing the connection is possible with the
help of onclose event. After marking the end of communication
with the help of onclose event, no messages can be further
transferred between the server and the client. Closing the
event can happen due to poor connectivity as well.

 Closing the browser tab will trigger the close message being
sent to the server

index.html

webSocket.onclose = function ()
{

console.log("connection closed");
};

Error

 Error marks for some mistake, which happens during the
communication. It is marked with the help
of onerror event. Onerror is always followed by termination of
connection

webSocket.onerror = function wserror(message)
{

console.log("error: " + message);
};

index.html

Web Sockets Actions

 Events are usually triggered when something happens. On the
other hand, actions are taken when a user wants something to
happen. Actions are made by explicit calls using functions by
users.

 The Web Socket protocol supports two main actions, namely −
 send()
 close()

send()

 This action is usually preferred for some communication with
the server, which includes sending messages, which includes text
files, binary data or images

function sendMsg()
{

webSocket.send(msgToSend);
divMsg.innerHTML += "<div style='color:red'>Client> " + msgToSend + "</div>";
msgField.value = "";

};

index.html

close(

 This method stands for goodbye handshake. It terminates the
connection completely and no data can be transferred until the
connection is re-established.

socket.close();

Handling String messages from server

 Websocket supports text and binary data
 Strings in the form of JSON are very useful for communication

and transferring information
 Can check the type of data received if necessary

socket.onmessage = function(event)
{

if (typeOf event.data === String)
{

console.log(“Received data string”);
}

}

JSON (JavaScript Object Notation)

 lightweight format
for transferring
human-readable
data between the
computers. The
structure of JSON
consists of key-value
pairs

 Acccessing the data
is fairly easy using js

{
sender: “Ari”,
message: “Time for Tea”

}

socket.onmessage = function(event)
{

if(typeOf event.data === String)
{

//create a JSON object
var jsonObject = JSON.parse(event.data);
var sender = jsonObject.sender;
var message = jsonObject.message;

console.log(“Received data string”);
}

}

Server end

 At it’s most basic, we simply need to annotate a class as a
server endpoint, e.g.

 The endpoint is annotated to receive messages coming in with
a particular path

 The endpoint must also handle the 4 events types
 Open
 Error
 Message
 Close

@ServerEndpoint("/hello")
public class HelloWorldEndpoint

HelloWorldEndpoint.java

Open

 Normally you would want to keep track of the different clients, but in this
basic example, we just echo back the clients message directly to them

 To send messages to the other end of the ‘conversation’ you get the remote
endpoint from the session

 Each client-server connection creates a new session – a MessageHandler
can be registered for this session to handle incoming messages (in another
example)

HelloWorldEndpoint.java

@OnOpen
public void onOpen(Session session)

{
System.out.printf("Session opened, id: %s%n", session.getId());
try
{

session.getBasicRemote().sendText("Hi there, we are successfully connected.");
} catch (IOException ex) { }

}

@OnClose

 onClose trigger when client closes the session

 If the server endpoint is keeping track of clients it
would remove this one from the list

@OnClose
public void onClose(Session session)
{

System.out.printf("Session closed with id: %s%n", session.getId());
}

HelloWorldEndpoint.java

@OnMessage

 The OnMessage event is raised when a client sends data to
the server – the session (to identify the client) is included

 Inside this event handler, the incoming message can be
transmitted to all clients, or perhaps just selected ones

@OnMessage
public void onMessage(String message, Session session) {

System.out.printf("Message received. Session id: %s Message: %s%n", session.getId(),
message);

try {
session.getBasicRemote().sendText(String.format("We received your message: %s%n",

message));
} catch (IOException ex) {
}

}

HelloWorldEndpoint.java

Second example

 dukeetf – a version of part of the standard Java EE
tutorial

 This app sends updated stock price and trade
volume for a fictitious stock every second – to every
client

PriceVolumeBean

 This is a single session bean which is instantiated immediately
on application startup

 It uses the application container’s timer service

 This method is called by the container every time the timer
elapses

@Startup
@Singleton
public class PriceVolumeBean

@Resource TimerService tservice;

tservice.createIntervalTimer(1000, 1000, new TimerConfig());

This creates a timer interval, set to elapse after 1000ms and
every 1000ms thereafter

@Timeout
public void timeout() { … }

PriceVolumeBean.java

The endpoint class

 This class is annotated as the endpoint for websocket calls
coming in on this path

 To keep track of the client sessions, their Session’s are stored in
a queue

@ServerEndpoint("/dukeetf")
public class ETFEndpoint {

static Queue<Session> queue = new ConcurrentLinkedQueue<>();

@OnOpen
public void openConnection(Session session) {

/* Register this connection in the queue */
queue.add(session);

ETFEndpoint.java

If a client closes a connection

 Then we only remove that client’s session from the
queue

@OnClose
public void closedConnection(Session session) {

/* Remove this connection from the queue */
queue.remove(session);

logger.log(Level.INFO, "Connection closed.");
}

ETFEndpoint.java

In case of error from client

 Again handle that as an isolated client problem (it
could be)

@OnError
public void error(Session session, Throwable t) {

/* Remove this connection from the queue */
queue.remove(session);

logger.log(Level.INFO, t.toString());
logger.log(Level.INFO, "Connection error.");

}

ETFEndpoint.java

Sending to the clients

 Every 1000ms the session bean calls the send method of the endpoint

 In the endpoint send method, the string message is created and formatted,
and send to all the clients in the queue, using their session objects to get the
remote endpoint of the websocket connection

ETFEndpoint.send(price, volume);

public static void send(double price, int volume)
{

String msg = String.format("%.2f / %d", price, volume);
try
{

…
for (Session session : queue) {

session.getBasicRemote().sendText(msg);
..

}
…

}

ETFEndpoint.java

Message received at client

 The js script on the client end splits the incoming string using the
“/” delimiter and put’s the text into specific table cells

function onMessage(evt)
{

var arraypv = evt.data.split("/");
document.getElementById("price").innerHTML = arraypv[0];
document.getElementById("volume").innerHTML = arraypv[1];

}

index.html

Example 3 – multiple clients sharing information

Web app description

 The app allows multiple clients to share information on
currently used devices (e.g. electrical)

 Each new session (client) is given the current list of devices to
display

 Each client can add or remove devices as well as toggle each
device’s status (on / off)
 Updates are shared with all other devices

Device class

 A simple Java Bean class

public class Device {

private int id;
private String name;
private String status;
private String type;
private String description;

// + constructor, getters and setters

Device.java

The web socket server

 One instance per application, responding to client messages on
the /actions path

 Uses an @ApplicationScoped bean to manage the sessions

@ApplicationScoped
@ServerEndpoint("/actions")
public class DeviceWebSocketServer

DeviceWebSocketServer.ja
va

@Inject
private DeviceSessionHandler sessionHandler;

Delegates handling of events to handler

 The @OnMessage has a bit of work to it – the method
parses the incoming JSON to either get the full info for a new
Device, or it’s id

 First get the JSON object (we assume the incoming string is
formatted correctly!)

@OnMessage
public void handleMessage(String message, Session session) {

try (JsonReader reader = Json.createReader(new StringReader(message))) {
JsonObject jsonMessage = reader.readObject();

}

If adding a device

if ("add".equals(jsonMessage.getString("action"))) {
Device device = new Device();
device.setName(jsonMessage.getString("name"));
device.setDescription(jsonMessage.getString("description"));
device.setType(jsonMessage.getString("type"));
device.setStatus("Off");
sessionHandler.addDevice(device);

 If the action value of the JSON string is “add” then parse out
the properties and create a new Device object

 Then ask the session handler to add it to the list, and inform
all the clients

 Code continued
 Remove and toggle only need the id of the Device

if ("remove".equals(jsonMessage.getString("action"))) {
int id = (int) jsonMessage.getInt("id");
sessionHandler.removeDevice(id);

}

if ("toggle".equals(jsonMessage.getString("action"))) {
int id = (int) jsonMessage.getInt("id");
sessionHandler.toggleDevice(id);

}
}

}

Session handler

 Application scoped bean
 Keeps track of sessions and devices

@ApplicationScoped
public class DeviceSessionHandler {

private int deviceId = 0;
private final Set<Session> sessions = new HashSet<>();
private final Set<Device> devices = new HashSet<>();

DeviceSesionHandler.java

If a new client connects

 Then add it to the list of sessions
 Also send an ‘add device’ message to the client for each

Device in the list
 The client will need to create a new div on the HTML page

holding the Device information

public void addSession(Session session)
{

sessions.add(session);
for (Device device : devices)
{

JsonObject addMessage = createAddMessage(device);
sendToSession(session, addMessage);

}
}

DeviceSesionHandler.java

On the client side

 Too much to go through in slides here
 Check out websocket.js – the code the client uses to manage

incoming and outgoing messages
 Worth looking at how the printDeviceElement method builds a

new <div> for a new device and adds it to the document

 Each device <div> is given the device id, so this makes
removal, and toggling of device status easier

	CT5106
	Introduction to WebSocket
	WebSocket
	Use for WebSocket
	Simple example app
	Creating a connection
	Web Sockets Events
	Open
	Message
	Close
	Error
	Web Sockets Actions
	send()
	close(
	Handling String messages from server
	JSON (JavaScript Object Notation)
	Server end
	Open
	@OnClose
	@OnMessage
	Second example
	PriceVolumeBean
	The endpoint class
	If a client closes a connection
	In case of error from client
	Sending to the clients
	Message received at client
	Example 3 – multiple clients sharing information
	Web app description
	Device class
	The web socket server
	Delegates handling of events to handler
	If adding a device
	Slide Number 34
	Session handler
	If a new client connects
	On the client side

