CT420

Real-Time Systems

Name: Andrew Hayes
Student ID: 21321503 2025-02-27

E-mail: a.hayes18@universityofgalway.ie

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents

(1__Introduction|

(1.3 Introduction to Real-Time Systems|

[2 The Essence of Time: From Measurement to Navigation & Beyond|

[3 Time Synchronisation in Distributed Systems|

[3.1 SynchronisationintheRealWorld
3.1.1 Cristian’s Algorithm|

3.1.2 Berkeley Algorithm|.
[3.2 LogicalClocks|.
321 VectorClocksf.
The N'TP Protocol
.................................
4.1.1 r I|Headen
(4.1.2 Mitigation Algorithms|
[5.1 Quality of Service (QoS)|. Lo

|S.1.1 908 Metrics|
|5.2 Real-Time Multimedia Technologies|

5.2.1 Transport Layer for Real TimeMedia

5.2.2 Service Requirements for Real-Time Flows (Voice / Video)|

523 RIDl . oo ooooee e e e e
[5.2.4 Mouth-to-EFar M2E Delay|
[5.3 Packet Loss Strategies|
[5.3.1 Network-Based Strategies|.
[.4 CloudGaming|
5.4.1 ResponseDelay|.
55 WebRTC|
[5.5.1 WebRTC Working Model|
................................

—_ e

2 THE ESSENCE OF TIME: FROM MEASUREMENT TO NAVIGATION & BEYOND

1 Introduction

1.1 Lecturer Contact Information
* Name: Dr. Michael Schukat.
* E-mail: michael.schukat@universityofgalway.ie.
* Office: CSB-3002.
* Name: Dr. Jawad Manzoor.

* E-mail: jawad.manzoor@universityofgalway.ie.

¢ Office: CSB-3012.

1.2 Assessment
* 2 hours of face-to-face & virtual labs per week from Week 03.
* 30% Continuous Assessment:

— 2assignments, 10% each.
— 2in-class quizzes between Week 07 & Week 12, worth 5%.

1.3 Introduction to Real-Time Systems

A system is said to be real-time if the total correctness of an operation depends not only upon its logical correctness
but also upon the time in which it is performed. Contrast functional requirements (logical correctness) versus non-
functional requirements (time constraints). There are two main categorisation factors:

* Criticality:

— Hard RTS: deadlines (responsiveness) is critical. Failure to meet these have severe to catastrophic conse-
quences (e.g., injury, damage, death).
— Soft RTS: deadlines are less critical, in many cases significant tolerance can be permitted.

* Speed

— Fast RTS: responses in microseconds to hundreds of microseconds.

— Slow RTS: responses in the range of seconds to days.

A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in death or
serious injury to people, loss of equipment / property or severe damage, & environmental harm.

2 The Essence of Time: From Measurement to Navigation & Beyond

Time is the continued sequence of existence & events that occurs in an apparently irreversible succession from past,
through the present, into the future. Methods of temporal measurement, or chronometry, take two distinct forms:

* The calendar, a mathematical tool for organising intervals of term;

* The clock, a physical mechanism that counts the passage of time.

Global (maritime) exploration requires exact maritime navigation, i.e., longitude & latitude calculation. Latitude
(north-south) orientation is straightforward; longitude (cast-west orientation) requires a robust (maritime) clock.

Ground-based navigation systems like LOR AN (LOng R Ange Navigation) were developed in the 1940s and
were in use until recently, and required fixed terrestrial longwave radio transmitters, and receivers on-board of ships &
planes. They are also referred to as hyperbolic navigation or multilateration. The principles of ground-based navigation
systems is as follows:

mailto://michael.schukat@universityofgalway.ie
jawad.manzoor@universityofgalway.ie

3 TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

1. A master with a known location broadcasts a radio pulse.

2. Multiple slave stations with a known distance from the master send their own pulse, upon receiving the master
pulse.

3. A receiver receives master & slave pulses and measures the delay between them.

4. This allows the receiver to deduce the distance to each of the stations, providing a fix.

NEED TO FINISH

3 Time Synchronisation in Distributed Systems

A distributed system (DS) is a type of networked system wherein multiple computers (nodes) work together to
perform a task. Such systems may or may not be connected to the Internet. Time & synchronisation are important
issues here: think of error logs in distributed systems — how can error events recorded in different computers be cor-
related with each other if there is no common time base? The problem is that GNSS-based time synchronisation
may or may not be available, as GPS signals are absorbed or weakened by building structures. There is no other time
reference such systems can rely on because in such a distributed system there are just a series of imperfect computer clocks.

In distributed systems, all the different nodes are supposed to have the same notion of time, but quartz oscillators
oscillate at slightly different frequencies. Hence, clocks tick at different rates (called clock skew), resulting in an increasing
gap in perceived time. The difference between two clocks at a given pot is called clock offset. The clock synchronisation
problem aims to minimise the clock skew and subsequently the offset between two or more clocks. A clock can show a
positive or negative offset with regard to a reference clock (e.g., UTC), and will need to be resynchronised periodically.
One cannot just set the clock to the “correct” time: jumps, particularly backwards, can confuse software and operating
systems. Instead, we aim for gradual compensation by correcting the skew: if a clock runs too fast, make it run slower
until correct and if a clock runs too slow, make it run faster until correct.

Synchronisation can take place in different forms:

* Based on physical clocks: absolute to each other by synchronising to an accurate time source (e.g., UTC),
absolute to each other by synchronising to locally agreed time (i.e., no link to a global time reference), where the
term absolute means that the differences in timestamps are proper time intervals.

* Based on logical clocks (i.c., clocks are more like counters): timestamps may be ordered but with no notion of
measurable time intervals.

In either case, the DS endpoints synchronise using a shared network. For physical clock synchronisation, network
latencies must be considered as packets traverse from a sending node to a receiving node. In a perfect network, messages
always arrive, with a propagation delay of exactly d; the sender sends time 7" in a message, the receiver sets its clock to
T + d, and synchronisation is exact.

In a deterministic network, messages arrive with a propagation delay 0 < d < Dj the sender sends time 7" in
a message, the receiver sets its clock to 71" + %, and therefore the synchronisation error is at most %. Deterministic
communication is the ability of a network to guarantee that a message will be transmitted in a specified, predictable
period of time.

3.1 Synchronisation in the Real World

Most off-the-shelf networks are asynchronous, that is, data is transmitted intermittently on a best-effort basis. They
are designed for flexibility, not determinism, and as a result, propagation delays are arbitrary and sometimes even
unsymmetric (i.e., upstream & downstream latencies are different). Therefore, synchronisation algorithms are needed
to accommodate these limitations.

3 TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

3.1.1 Cristian’s Algorithm
Cristian’s algorithm attempts to compensate for symmetric network delays:
1. The client remembers the local time 7§ just before sending a request.
2. The server receives the request, determines 7's, and sends it as a reply.
3. When the client receives the reply, it notes the local arrival time 7.
T1—To)).

. . (
4. The correct time is then approximately (Ts + *—

The algorithm assumes symmetric network latency. If the server is synced to UTC< all clients will follow UTC.
Limitations of Cristian’s algorithm include:

* Assumes a symmetric network latency;
* Assumes that timestamps can be taken as the packet hits the wire / arrives at the client;

* Assumes that Ty is right in the middle of the server process; for example, consider the server process being
pre-empted just before it sends the response back to the client, which will corrupt the synchronisation of the
client.

3.1.2 Berkeley Algorithm

In the Berkeley algorithm, there is no accurate time server: instead, a set of client clocks is synchronised to their
average time. The assumption is that offsets / skews of all clocks follow some symmetric distribution (e.g., a normal
distribution) with some clocks going faster and others slower, and therefore a mean value close to 0.

1. One node is designated to be the master node M.

2. The master node periodically queries all other clients for their local time.

3. Each client returns a timestamp or their clock offset to the master.

4. Cristian’s algorithm is used to determine and compensate for RT'Ts, which can be different for each client.

S. Using these, the master computes the average time (thereby ignoring outliers), calculates the difference to all
timestamps it has received, and sends an adjustment to each client. Again, each computer gradually adjusts its
local clock.

Client clocks are adjusted to run faster or slower, to be synced to an overall agreed system time. The client networks is an
intranet, i.e., an isolated system. Therefore, the Berkeley algorithm is an internal clock synchronisation algorithm.
The Berkeley algorithm was implemented in the TEMPO time synchronisation protocol, which was part of the Berkelely
UNIX 4.3BSD system.

3.2 Logical Clocks

Logical clocks are another concept linked to internal clock synchronisation. Logical clocks only care about their
internal consistency, but not about absolute (UTC) time; subsequently, they do not need clock synchronisation and
take into account the order in which events occur rather than the time at which they occurred. In practice, if clients or
processes only care that event a happens before event b, but don’t care about the exact time difference, they can make
use of a logical clock.

We can define the happens-before relation a — b:

* If events a and b are within the same process, then a — b if a occurs with an earlier local timestamp: process
order.

* If a is the event of a message being sent by one process, and b is the event of the message being received by another
process, then a — b: causal order.

3 TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

* We also have transitivity: if ¢ — band b — ¢, thena — c.

Note that this only provides a partial order: if two events a and b happen in different processes that do not exchange
messages (not even indirectly), then neither @ — b nor b — a is true. In this situation, we say that @ and b are
concurrent and write @ ~ b, i.e., nothing can be said about when the events happened or which event happened first.

Happens-before can be implemented using the Lamport scheme:
1. Each process P; has a logical clock L;, where L; can be simply an integer variable initialised to 0.
2. L;is incremented on every local event e; we write L;(e) or L(e) as the timestamp of e.
3. When P; sends a message, it increments L; and copies its content into the packet.
4. When P; receives a message from Py, it extracts Ly, and sets L := max(L;, Lj) and then increments Lj;.

This guarantees that if @ — b, then L;(a) < L (b), but nothing else.

The primary limitation of Lamport clocks is that they do not capture causality. Lamport’s logical clocks lead to
a situation where all events in a distributed system are ordered, so that if an event a (linked to P;) “happened before”
event b (linked to P), i.e., @ — b, then awill allso be positioned in that ordering before b such that L;(a) < Ly (b)
or simply L(a) < L(b); however, nothing can be said about the relationship between two events a & b by merely
comparing their time values L;(a) and Ly, (b.): we can’t tell if @ — bor b — a or a ~ b unless they occur in the same
process.

3.2.1 Vector Clocks

In practice, causality is captured by means of vector clocks:

1. There is an ordered list of logical clocks, with one per process. Each process P; maintains a vector V;, initially
containing all zeroes. Each index k of a vector clock V;[k]| represents the number of events that process P; knows

have occurred in process Py. V;[i] is the count of events that have occurred locally at process P;, while V;[k] (for
k # 1) is the count of events in process P, that P; is aware of.

2. On alocal event e, P; increments its own clock component V;[i]. If the event is “message send”, a new V; is
copied into the packet, so that on message sends the current vector state is included in the message.

3. If P; receives a message from P, then each index Vi[k] where k # i is set to max(V,, [k], Vi[k]), and V;[4] is

incremented.

Intuitively, 171 [k]is the number of events in process P, that have been observed by P;.

(1,0,0) (2,0,0)
P1 >

a b\ m,
(2,1,0) (2,2,0)

P2

o > physical time

(0,0,1) (2,2,2)

P3 ®

Figure 1: Vector clocks example

4 THENTPPROTOCOL

In the above example, when process P receives message my1, it merges the entries from P;’s clock by choosing the
maximum value of each position. Similarly, when P3 receives ma, it merges in P»’s clock, thus incorporating the
changes from P that P, already saw. Vector clocks explicitly track the transitive causal order: f’s timestamp captures

the history of a, b, ¢, & d.

To use vector clocks for ordering, we can compare them piecewise:

* Wesay V; = V; if and only if V;[k] = V;[k]Vk.

* Wesay V; < V; ifand only if V;[k] < V;[k]Vk.

* Wesay V; < V;ifand onlyif V; < V; and V; # V.

* We say V. ~ V; otherwise, e.g., V= [2,0,0] and ‘7} =[0,0,1].
For any two event timestamps 7'(a) & T'(b):

s ifa — b, thenT'(a) < T'(b); and

* ifT'(a) < T'(b), thena — b.

Hence, we can use timestamps to determine if there is a causal ordering between any two events.

Lamport Clocks Vector Clocks

o b lcldle | (M Jalblcldle f
1 2 P, !

P, 100 (200)
P, 3 4 P, (21,00 (220)
P3 'l 5 P3 (2,2,1) (2,2,2)
Isite — core ~ c2 It ise ~ c!
1 2 {1,0,0) (2,0,0)
P1 ° > P1 * >
a b ml a b ml
3 4 (2,1,0) (2,2,0)
P2 > P2 . >
c m, c m;
1 5 (0,0,1) (2,2,2)
P3 - P3 b
e f e f

Figure 2: Lamport clocks versus vector clocks

4 'The NTP Protocol

The options for computer clocks are essentially as follows:

* Option A: stick to crystals.

Costly precision manufacturing.

Works indoors.

— Temperature Compensated Crystal Oscillator (TCXO).
Oven Controlled Crystal Oscillator (OCXO).

4 THENTPPROTOCOL

* Option B: buy an atomic clock ($50,000 — $100,000) or a GNSS receiver (based on an atomic clock, but doesn’t
work indoors), or a time signal radio receiver if you are based in central Europe.

* Option C: use software-based approaches to discipline cheap crystal clocks. Less quality, but useful for certain
applications, and works indoors.

Distributed master clocks provide a time reference to hosts that are inter-connected via a network. The underlying
time-synchronisation protocols combine aspects of Cristian’s algorithm (i.e., RTD calculation) and Berkeley’s algorithm
(i.e., combining multiple reference time sources). Good time synchronisation requires:

* Good time references: easily done with GPS, atomic clocks, etc.

* Predictable / symmetric / deterministic network latencies: doable in LAN setups, but not guaranteed in Internet
data communication.

There are two main distributed master clock protocols:

* Network Time Protocol (NTP): defined in RFC 5905, originally used in the Unix-based NTP daemon, one
of the first Internet protocols that ever evolved.

* Precision Time Protocol (PTP): designed for managed networks, e.g., LAN.

- Synchronous Ethernet
- Optimised network
- Project “White Rabbit”

Clock Synchronisation Error

1 second 1 millisecond 1 microsecond 1 nanosecond

Engineering Effort

Out of the box Highly optimised network
Cost

Low Expensive

Figure 3: NTP & PTP characteristics

In uni-directional synchronisation a reference clock sends a timestamp to a host via a network. The host then uses
the timestamp to set its local clock. Useful when message latencies are minor relative to the synchronisation levels
required.

In round-trip synchronisation (RTS) a host sends a request message, receives a reference clock response message with
known (local) submission & arrival times, allowing for the calculation of the round-trip delay (1) and the host clock
error (2), i.e., the phase offset. Variations of RT'S form the basis for NTP & PTP.

6 = (Tivs — Ti) — (Tiv2 — Tit1) (1)

Tivs =T
9=<n+1—n>+(“’2+3’) ()

4 THENTPPROTOCOL

Host Reference

Request

Response

-+
[i+3 + 4--

Y Y

® O

Figure 4: RTS example

4.1 NTP

The NTP architecture, protocol, & algorithms have evolved over the last 40 years to the latest NTP Version 4. NTP is
the standard Internet protocol for time synchronisation & co-ordinated UTC time distribution. It is a fault-tolerant
protocol, as it automatically selects the best of several available time sources to synchronise with. It is highly scalable, as
the nodes form a hierarchical structure with reference clock(s) at the top:

* Stratum 0: Time Reference Source (e.g., GPS, TAI atomic clocks, DCF 77).
* Stratum 1: Primary Time Server.

NTP applies some general aforementioned principles such as avoiding setting clocks backwards and avoiding large step
changes; the required change (positive or negative) is amortised over a series of short intervals (e.g., over multiple ticks).

NTP is the longest-running and continuously operating Internet protocol (since around 1979). Government agencies
in many other countries and on all continents (including Antarctica) operate public NTP primary servers. National &
regional service providers operate public NTP secondary servers synchronised to the primary servers. Many government
agencies, private & public institutions including universities, broadcasters, financial institutions, & corporations operate
their own N'TP networks.

NTP Hierarchy

GPS/Radio Clock

Timing Signals

NTP Primary Server
Stratum 1

S

NTP

NTP Secondary
Secondary Server
Server Stratum 2
Stratum 2
RS
] i T
NTP Secondary

NTP Secondary NTP Secondary Server Server Stratum 3
Server Stratum 3 Stratum 3

Figure 5: NTP hierarchy

4 THENTPPROTOCOL

In client/server mode, UDP is used for data transfer (no TCP), i.e., NTP over UDP on UDP port 123. There is also
the optional use of broadcasting or multicasting (not covered here). Several packet exchanges between the NTP client
and the Stratum server take place to determine the client offset:

1. The client sends a packet with originate timestamp A.

2. The server receives the packet and returns a response containing the originate timestamp A as well as the receive
timestamp B and the transmit timestamp C'.

3. The client receives this packet and processes A, B, C, as well as the packet arrival time D of the received packet;
it then determines the offset and the round-trip delay (RTD).

Server B 3.59.020 C 3.59.022

Client A 3.59.000 D 3.59.032

Figure 6: NTP operation

The above example is of a symmetric network with a 15ms delay each way; the client’s clock lags Sms behind the server’s
clock:

RTD = (D — A) — (C — B) = 32 — 2 =30ms

oo (B=A)+(C=D)) _ @0+(-10)
2 2
B 3.59.015 C 3.59.017
10 ms 20 ms
A 3.59.000 D 3.59.032

Figure 7: Network delay asymmetry

In the above example, the client’s clock still lags Sms behind the servers clock, but there is an asymmetric network
Iatency: 10ms versus 20ms:

RTD = (D — A) — (C — B) = 32 — 2 =30ms

e — (B=4) ' (C-D)) _ (15 +§—15)) o

Typical NTP performance for various set-ups is as follows:

¢ Small LAN: ~10 microseconds best possible case on a 2-node LAN, ~220 microseconds on a real-world small
LAN.

4 THENTPPROTOCOL

* Typical large-building LAN: ~2ms.
* Internet with a few hops: 10-20ms.
* Long distance and/or slow or busy link: 100ms-1s.

Accuracy is further degraded on networks with asymmetric traffic delays.

The NTP time format has a reference scale of UTC. Time parameters are 64 bits long:
* Seconds since January 1, 1900 (32 bits, unsigned).
* Fraction of second (32 bits, unsigned).

The NTP time format has a dynamic range of 136+ years, with rollover in 2036. Its resolution is 2732 seconds ~232
picoseconds.

4.1.1 NTP Protocol Header

0 1 2 3
012345678901234567859012345678901
B s e S s A T e i st s e e e e e S

|LT | VN |Mode | Stratum | Poll | Precision
e T e e e e s T St TR
| Root Delay |

R e e e e et T e e
| Root Dispersion |
e e s S e e St ¥
| Reference ID |
e e e e e s T e e T s s s s s S bt &
Reference Timestamp (64)

e e e e e T e i e e e e

Origin Timestamp (64)

Receive Timestamp (64)
-+-+-+-+-+-+-F+-F+-F-F-F-F-F-F-F-F-F+-F-F-F-F-F+-F+-F-F+-F+-+-+-+-+-+

|

+

I

-+

I

+

I

B e T e e kT e S e e dak LT TSR S S
I

+

I

-+

I

Transmit Timestamp (64) +

I
-+

b — b — b — ot — o — o — o — f —

B e e e S e e S a T T e Tt s T S s o Sttt St et

Figure 8: NTP protocol header

* LI (Leap Indicator) 2-bit:

— 0: no warning;
— 1: last minute of the day has 61 seconds;

— 2: last minute of the day has 59 seconds.
* VN (Version Number) 2-bit: currently 4.
* Mode: 3-bit integer, including:

— 3: client;

— 4: server.
* Stratum: 8-bit integer for Stratum server hierarchy level, including:

— 1: primary server (i.e., stratum 1);

4 THENTPPROTOCOL

— 2-15: secondary server.

* Poll: 8-bit signed integer representing the maximum interval between successive message, in log, seconds. This
field indicates the interval at which the client will poll the NTP server for time updates. The client dynamically
adjusts this interval based on its clock’s stability & the network conditions to balance accuracy & network load.

* Precision: 8-bit signed integer representing the resolution of the system clock (the tick increment) in log,
seconds; e.g., a value of -18 corresponds to a resolution of about one microsecond (2#) seconds.

* Root Delay: round-trip packet delay from a client to a stratum 1 server. It gives a crude estimate of the worst-case
time transfer error between a client and a stratum 1 server due to network asymmetry, i.e., if all of the round-trip
delay was in one direction and none in the other direction.

For a single client clock, the dispersion is a measure of how much the client’s clock might drift during a synchronisation
cycle:

Dispersion = DR x (D — A) + TS

where (D — A) is the duration of a synchronisation cycle, with A being the first timestamp and D being the last
timestamp, DR being the local clock skew (i.e., the deviation of actual clock tick frequency to nominal clock tick
frequency), and 7S being the timestamping errors due to the finite resolution of the clock and delays in reading the
clock when fetching a timestamp.

The root dispersion of a client clock is the combined dispersions of all stratum servers along the path to a Stra-
tum 1 server.

The root distance is the sum of root dispersion and half the root delay. It provides a comprehensive measure of
the maximum error in time synchronisation as the total worst case timing error accumulated between the Stratum 1
server and the client.

Stratum 1 server
root delay =0
root dispersion = 0

/ Stratum 1 server

root delay =0

300 ps delay root dispersion = 0

800 s delay

/I Stratum 2 server
Y root delay = 300 us
‘ 500 us dela A root dispersion = 10 us

Client

root delay = 800 us
dispersion = 100 us
Root dispersion = 110 us

Figure 9: Example root dispersion & root delay

10

4 THENTPPROTOCOL

0 1 2 3
01234567890123456789012345678901 III.
Fod—dododototodotododotodododododododoFotododododododododbotododot
|LI | VN |Mode | Stratum | Poll | Precision

B e e e T T e ot T T T s A T T S S e et S S o
| Root Delay

B i e s e s e S e s e e s
| Root Dispersion

S T S S S S L S R S
| Reference ID

B T e T e s s S S T S S S e S S S o

Reference Timestamp (64
B e e e e e e e e e e S e e s ety st SEE SR
Origin Timestamp (64)
R e e e e e e e T e e T e e e ol s st 2
Receive Timestamp (64)

B e e s 2 T s S et St

Transmit Timestamp (64)

+
+
+
+
+
+

B e T T i S s M S St S s S e S

b — et —F— o — o —+ — +— + —

Figure 10: Annotated NTP protocol header

A reference ID (refid) is a 32-bit code (4 ASCII bytes) identifying the particular server or reference clock, e.g.,:

* GPS: Global Positioning System;

GAL: Galileo Positioning System;

* PPS: Generic Pulse-Per-Second;

DCF: LF Radio DCF77 Mainflingen, DE 77.5 kHz;

wwv: HF Radio WWYV Fort Collins, Colorado;

* 600G: unofficial Google refid used by Google NTP servers as time4.google. com.

_"’: Peer/Poll | | i i e e
Server 1 | | 1 'ET’ 11 Clock Discipline
! ¥ Selection, Clustering " Process
—~T Peer/Poll | | ! d Mitigati ¥
Server 2 | ! ==l - an |}gu|on > Loop Filter
< % X Algorithms o
> Peer/Poll | || (System Process) T
Server 3 | ! B i '
| 3 i " //’“\\ i
Remote | t e : VFO :
emote 1 peer/Poll | | v :
Servers . i ! :
L__Processes | ! Clock Adjust !
! Process i

Figure 11: NTP architectural overview

An NTP client synchronises with multiple stratum servers. It uses a range of algorithms to deal with variable &
asymmetric non-deterministic network delays and to determine its most likely offset, thereby running a series of
processes:

* The peer process runs when a packet is received;
* The poll process sends packets at intervals determined by the clock discipline process & remote server;

* The system process runs when a new update is received;

11

4 THENTPPROTOCOL

* The clock discipline process implements clock time adjustments;

* The clock adjust process implements periodic clock frequency (VFO) adjustments.

For each stratum there is a poll process that sends NTP packets at intervals ranging from 8 seconds to 36 hours.
The corresponding peer processes receive NTP packets and, after performing some packet sanity tests, 7'1 — T4 are
determined / extracted. The NTP daemon calculates offset & delay as seen before. The time series of oftset & delay
values calculated by multiple peer processes are processed by a sequence of algorithms, thus eliminating servers with
long RTD or servers that show “strange” offsets which, for example, are often the result of network asymmetries.

4.1.2 Mitigation Algorithms

The clock filter algorithm uses a sliding window of eight samples for each stratum server and picks out the sample with
the least expected error, i.e., it chooses the sample with the minimum RTD. It is effective at removing spikes resulting

from intermittent network congestions.

Offset (sec)
[]
Offset (see)
T

0.01
0.01
T

0.001
0.001

o 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time (NTP days) Time (NTP days)

Figure 12: Clock filter algorithm before and after

30}

Offset (ms)

20t A -
30} 4 ' .

-40 : w w x
90 100 110 120 130 140 150 160 170 180 190

Delay (ms)

Figure 13: The wedge scattergram plots sample points of offset versus delay (RTD) collected over a 24-hour period by a
client clock communicating with a single stratum server. For this experiment, the client clock is externally synced to the
stratum server, so the offset should be zero; however, as the (network) round trip delay increases, the offset variability
increases, resulting in increasingly larger offset errors. Therefore, the best samples are those at the lowest delay. This is
taken into account by the clock filter algorithm.

The intersection algorithm selects a subset of peers (i.e., stratum servers) and identifies truechimers & truetickers
based on the intersection of confidence (offset) intervals (i.e., min/max offsets of a clock over x readings determines its

invterval).

12

5 SOFT RTS

| |
L Z_ | Clocks 1, 2 ,3 are truechimers
i 3 | 4is a falseticker
—— ‘
e

Figure 14: Plot range of offsets calculated by each peer with 1, 2, & 3 overlapping

Marzullo’s algorithm is an agreement protocol for estimating accurate time from a number of noisy time sources by
intersecting offset intervals; if some intervals don’t intersect, it considers the intersection of the majority of intervals. It
eliminates false tickers.

The clock cluster algorithm processes the truechimers returned by the clock intersection algorithm. It produces a list
of survivors by eliminating truechimers that have a comparably large root delay & root dispersion. Finally, the clock
combining algorithm averages the time offsets of survivors using their root dispersions as a weight, i.e., survivors with
a small root dispersion have a higher weight.

The combining algorithm provides a final offset, so the client clock can be adjusted. The UNIX Clock Model
provides the kernel variable tickadj which amortises the required change gradually by making adjustments every tick
e.g., every 10 milliseconds.

5 Soft RTS

A soft RTS is a RTS in which performance is degraded but not destroyed by failure to meet response time constraints,
e.g., multimedia systems.

5.1 Quality of Service (QoS)

Perceived QoS reflects the subjective evaluation of service quality from the end user’s perspective and overall satisfaction.
It encompasses factors like application responsiveness, ease of use, consistency, reliability, and the overall user interface
delay. Itis challenging to measure accurately as it involves subjective experiences & user feedback, often gathered through
surveys, user studies, or feedback mechanisms.

Intrinsic QoS refers to the technical & measurable characteristics of a network or service that directly affects its
performance & reliability. Intrinsic QoS parameters include bandwidth, latency, packet loss rate, jitter, & throughput.
Intrinsic QoS measures are typically quantifiable and can be objectively measured using various tools & monitoring
techniques.

5.1.1 QoS Metrics

Latency is the time it takes to send a packet from point A (say, the client) to point B (say, the server). It is physically lim-
ited by how fast signals can travel in wires or the open air. Latency depends on the physical, real-world distance between
A and B. Typical latencies are conceptually small, between roughly 10 and 200 milliseconds. High latency can result in
delays between user actions and system responses, leading to sluggish or unresponsive behaviour in real-time applications.

Jitter is the inconsistency or fluctuations in the arrival time of data packets at the receiver. It can be caused by
various factors, such as network congestion, packet loss, routing changes, etc. It can have significant implications for
real-time communication applications, particularly voice & video sharing. Inconsistent packet arrival times can lead to
disruptions, distortion, and out-of-sync audio or video playback.

Bandwidth measures the amount of data that is able to pass through a network at a given time. It is measured
in bits per second. Real-time applications with high-bandwidth requirements, such as high-definition video streaming &

13

5 SOFT RTS

VOIP may experience performance issues if the available bandwidth is insufficient to accommodate the data transmission
demands.

5.2 Real-Time Multimedia Technologies

5.2.1 Transport Layer for Real-Time Media

TCP provides reliability, ordered delivery, & congestion control. Retransmissions can lead to high delay and cause delay

jitter. TCP is not suitable for real-time systems and does not support mulitcast.

UDP has no built-in reliability or congestion control, and no defined technique for synchronising. It has low la-
tency and minimal overhead (no handshake, no retransmissions). A feedback channel must be defined for quality
control.

5.2.2 Service Requirements for Real-Time Flows (Voice / Video)

* Sequencing: the process of maintaining the correct order of data packets during transmission and ensuring that
they are re-assembled correctly at the receiver’s end.

* Synchronisation: ensures that different types of data streams (such as audio & video) are aligned in time during

playback.

* Payload identification: different media types (MPEG1, MPEG2, H.261) may require different handling in
terms of decoding or processing.

* Frame indication: specifying which packets belong to the same frame or video sequence and helps with decoding
& rendering video frames accurately.
5.2.3 RTP

Real-time Transport Protocol (RTP) provides end-to-end transport functions suitable for real-time audio/video
applications over multicast & unicast network services. It works in user space over UDP. The working model is as
follows:

* The multimedia application generates multiple streams (audio, video, etc.) that are fed into the RTP library.
* The library multiplexes the streams & encodes them in RTP packets which are fed to a UDP socket.
Secure RTP (SRTP) is used by applications including WhatsApp, Zoom, Skype, etc. for transporting voice & video

streams.

Ethernet IP UDP RTP

User{ Multimedia application hee;der heaIder header header
space RTP Y
Socket interface RTP payload
UDP
Kerf'\): IP ~——— UDP payload ———
Ethernet <« IPpayload ——»
- Ethernet payload >
(a) Protocol Stack (b) Packet Nesting

Figure 15: RTP protocol

RTP services include:

14

5 SOFT RTS

* Payload type identification: determination of media encoding.

* Synchronisation source identification: assigned to each distinct media source (such as a microphone or a camera).
Enables synchronisation of multiple streams coming from the same source (e.g., lip-syncing audio & video).

* Sequence numbering: a counter is used which is incremented on each RTP packet send and is used to detect lost
packets.

* Time-stamping: time monitoring, synchronisation, jitter calculation.

* RTP issues: no QoS guarantees, no guarantee of packet delivery.

32 bits >

'Y

Ver. [P|X CC M Payload type Sequence number

Timestamp

Synchronization source identifier

Figure 16: RTP header

1

4 1] Recolgﬁtcr;uct&

Seq 1 >
RTPR
seq 2 M=1 . . .
ooy TP ROX Jitter in packet arrival,
seqs RTPR2X o/o/o & Pkt 2 lost
RTP
R+3x+Silence

M=1

Figure 17: RTP data delivery

15

S SOFTRTS

RTP Control Protocol (RTCP) is a companion protocol to RTP that is used periodically to transmit control packets
to participants in a streaming multimedia session. It gathers statistics on the media connection, including bytes sent,
packets sent, lost packets, jitter, feedback, & round-trip delay. It provides feedback on the quality of the service being
provided by RTP but does not actually transport any data. The application may use this information to increase the
quality of service, perhaps by limiting flow or using a different codec.

5.2.4 Mouth-to-Ear M2E Delay

- -— —— — — — — — — = > —— P | - —— — — — — — — — — — -
Sender Network Receiver

Sound Card

Internet
Router(s)

Figure 18: M2E delay

M2E delay consists of:

¢ Sender:

Packetisation delay.

Encoding delays.

OS/Application/Driver software.
MAC delays.

¢ Network:

— Propagation delay.
— Queuing delays.

— Processing/serialisation delays in routers.

* Receiver:

NIC delays.
OS/Application/Driver software.

Jitter buffer delays.

Decoding delays.
VOIP QoS strategies include:
* Sender-based:

16

5 SOFT RTS

— RTCP feedback with adaptive codeces: if loss/delay excessive, switch to lower-bandwidth code or implement
Forward Error Correction (FEC) strategy.

* Network-based:
— Prioritising delay-sensitive traffic flows.
¢ Receiver-based:

— Buffering strategies: the human ear is not sensitive to short-term variations; the buffer “absorbs” variation

in network queueing delays and the voice can be reconstructed using RTP timestamps, but this adds to
overall M2E delay.

— Packet Loss Concealment (PLC) and FEC.

5.3 Packet Loss Strategies

The use of UDP limits delays but can lead to packet loss; to mitigate this, compensation strategies can be employed at
the sender or receiver:

* Forward Error Correction (FEC): a form of information redundancy.

* Packet Loss Concealment (PLC): silence (simplest), repetition of last packet, or interpolation.

Packet departs source EI EI

Packet arrives at buffer EI @

Packet removed from buffer I T i eson El El EI
| |

-— Gap in playback
i g 4§ 5 [I T T I

0 5 10 15 20

Packet Interval (typically
5 -50 msec)

Buffer
Delay

Figure 19: Receiver-based packet loss strategies: jitter buffer strategies

The buffer playout delay adds to the M2E delay. In the above figure, packet 8 arrives too late for the playout; we could
drop the packet, or increase the bufter size in response to increasing delays. With a fixed bufter, the limitations are that
if it is too large, it extends overall delay, and if it is too small, there will be additional late packet losses due to late arrival.
An adaptive bufter size can adapt to network conditions:

* Per Talkspurt (PT): operates by elongating/shortening inter talkspurt silence periods; less noticeable.

* Per Packet Scaling (PPS): speed up/slow down speech, like in Skype or Zoom.

5.3.1 Network-Based Strategies

In a LAN environment: switched LANS are typically QoS enabled, and fast ethernet links are rarely congested. In
a WAN environment, we could increase bandwidth (which is costly and mostly a temporary solution) or employ a
reservation policy, traffic categorisation, & prioritisation which requires an admission control policy.

17

5 SOFT RTS

5.4 Cloud Gaming

In cloud gaming, the game is installed and executed on a powerful remote server located in the cloud. The game
rendering (processing graphics, physics, & game logic) is done on this server. Once the game is rendered on the server,
the video frames & audio are compressed and streamed to the player’s device via the internet. The player’s inputs,
such as controller buttons, mouse movements, or keyboard presses are sent back to the could server over the Internet
in real-time. It is commonly used in Massively Multiplayer Online Games (MMOG), and the server must deal with
multiple players. Cloud gaming solves several issues of the traditional approach:

¢ Tedious installation & patching process.
* Extensive hardware & GPUs.

It is an RTC application, so we need to minimise delays (lag) and need time synchronisation to measure delays.
Simultaneity is also required: all players need to see the same game representation.

Game Server Game Client

Game console

Running the selected game

. -
. .
" ’
[] | 4
. ’
. '
'

‘ .
4 (]
.

: e
. .
"

: .
" ’
. []
]

‘ H
']

' .

Audio !_Video
Player

Audio / Video

Replay User Inputs Capturer

(Keyboard, Mouse, ...)

User Inputs
(Keyboard, Mouse, ...)

Audio / Video
Encoder

Audio / Video
Decoder

Agent
Process/Thread

Decode Input Events
(Customized Protocol)

Encode Input Events
(Customized Protocol)

¥

RTSP / RTP / RTCP RTSP / RTP / RTCP

: Data Flow

oo INternet

Figure 20: Client/server architecture of GamingAnywhere

5.4.1 Response Delay

* Response Delay (RD) is the time difference between a user submitting a command and the corresponding
in-game action appearing on the screen.

* Processing Delay (PD) is the time required to receive / process a player’s command and encode / transmit the
corresponding frame.

* Playout Delay (OD) is the time required for the client to received, decode, and render a frame on the display.

* Network Delay (ND) is the round-trip delay.

Response Delay (RD) = PD + OD + ND

18

5 SOFT RTS

5.5

WebRTC

Web Real-Time Communications (WebRTC) is a free, open-source project that provides web browsers & mobile
applications with real-time communication (RT'C) via simple APIs. It allows audio & video communication to work

inside web pages via direct peer-to-peer communication using JavaScript & HTML, that is, eliminating the need to
install plugins or download native apps. It uses DTLS for encryption & SRTP for secure media streams. It works on
major web browsers (Chrome, Firefox, Safari, Edge) and mobile platforms. Use cases include the web versions of Google

Meet, Discord, Facebook Messenger, peer-to-peer file sharing, etc.

5.5.1 WebRTC Working Model

1.

2.

Media capture: accesses camera & microphone using browser APIs.

Connection management: exchanges session control messages (via WebSockets, SIP, or custom methods) to set
up connections.

Data transmission: WebRTC uses the Interactive Connectivity Establishment (ICE) techniques to overcome
the complexities of real-world networking like NAT:

* STUN: finds public IP addresses.

* TURN: relays media if direct connections fail.
RTP/SRTP streams media, ensuring low-latency delivery.

Peer discovery: in P2P communication, the peers need to be able to identify or locate each other over the wire.
Peer discovery mechanisms are not defined by WebRTC, although the process can be as simple as sharing a URL
that peers can use to communicate.

. ICE techniques: ICE will first try to make a connection using the host address obtained from a device’s operating

system. If the network is unsuccessful, ICE will obtain an external address using the STUN server. If that fails,
the traffic is routed via a TURN relay server.

Session Traversal Utilities for NAT (STUN) is a protocol that is used to discover public addresses that determines
any restrictions in your router that would prevent a direct connection to a peer. Clients receive their public addresses as

requested from STUN servers.

y

Signaling -
Signaling
STUN/Server STUN Server
. - | = —|
4_,—)5 @ NAT = » @ NAT :'.(—‘_'._

Figure 21: STUN

19

5 SOFT RTS

Traversal Using Relays around NAT (TURN) bypasses the symmetric NAT restriction by opening a connection
with a TURN server and relaying all information through that server. A connection is required with a TURN server
which will tell all the peers to send packets to the server which will then be forwarded to the requester.

A

Signaling .\\""- — —___ - --______.-"'...
Signaling

'?'ml

e —

TURN Server TURN Server
Figure 22: TURN

5.6 DASH
DASH stands for Dynamic Adaptive Streaming over HTTP:

* Dynamic: reacts to changing scenarios.
* Adaptive: has media represented in different it rates / codecs.
* Streaming: not strictly real-time communication, but timelines are still important.
* HTTP: web model, HTTP good for firewalls etc.
The DASH working model is as follows:

* Encoding & Segmentation: the original video/audio content is divided into small segments (usually 2-10
seconds each). Each segment is encoded at multiple bitrates & resolutions for adaptability. A manifest file is
created, containing metadata about segments, their URLs, codecs, & timing.

* Delivery: segments and the MPD file are uploaded to HT'TP servers or CDNs. The encoded video segments are
pushed out to client devices over the Internet.

* Playback: the client downloads the MPD file to understand the available content & quality options. It chooses
appropriate “representation” based on network conditions, device capabilities, & user preferences, decodes the

chunks, and plays back the video.

* Quality adjustment: the player continuously downloads & plays segments, adjusting the quality as network
conditions change.

20

S SOFTRTS

Bandwidth

Quality

Medium b
Low| = e i b

Best |

Medium|_ii [i .
Low [BAE_ '
Time Network Time
HTTP Server with variable User with
with video content Bandwidth (Internet) Tablet

Figure 23: DASH

Media Presentation

Period,
Period, stan=0s

*stan=100 Representation 1
basel) RL=htip:/iwww.e.com’ *bandwdth=500kbit's
+width 640, height 480
Representation 1 Z
Period, stari=100s

Representation 2

Period, stari=295s -

Figure 24: DASH data model

21

	Introduction
	Lecturer Contact Information
	Assessment
	Introduction to Real-Time Systems

	The Essence of Time: From Measurement to Navigation & Beyond
	Time Synchronisation in Distributed Systems
	Synchronisation in the Real World
	Cristian's Algorithm
	Berkeley Algorithm

	Logical Clocks
	Vector Clocks

	The NTP Protocol
	NTP
	NTP Protocol Header
	Mitigation Algorithms

	Soft RTS
	Quality of Service (QoS)
	QoS Metrics

	Real-Time Multimedia Technologies
	Transport Layer for Real-Time Media
	Service Requirements for Real-Time Flows (Voice / Video)
	RTP
	Mouth-to-Ear M2E Delay

	Packet Loss Strategies
	Network-Based Strategies

	Cloud Gaming
	Response Delay

	WebRTC
	WebRTC Working Model

	DASH

