API-First Design

¥ What is an API?

« An APl is a set of rules and protocols for building and interacting with software applications. It defines how

different software components should interact, specifying the methods, data formats, and conventions to be
followed.

« APIs enable communication between different software systems, allowing them to share data and functionality
securely and efficiently.

wnat is a‘n (A oppiaion programming inferfoce

ollows hwo programs h communicate. On the.
web, APls sik- berween an applicakion apd o
web Server, and fadiliaie tne fransfer of data

oop| HTTP it
o QEVMCN%MKHM
e p
>
) aY

Request Receve 3) Response

APl call is intiaked Our Worker pee adsasan e API trnsfers e
by tne Client applicati BPI, 9og o 0. Fower (server) Fequested data bodk fo He.
Via 0 HTTP request fo llecr necror (dotn) requesting agplication,

Uwoll‘»i in J50N format

v API-First Approach:

« The API-first approach is a development methodology where APIs are designed and documented before any
code is written for the underlying application or service.

e Process:

o Design Phase: Developers and stakeholders collaborate to define the API's endpoints, request/response
formats, error messages, and authentication methods.

o Documentation: The APl is thoroughly documented using specifications like OpenAPI (formerly Swagger),
ensuring clarity and consistency.

API-First Design

o Implementation: Development teams use the API design as a contract, building their services to adhere
strictly to the defined API specifications.

[T 1 ——
| Design/Create | S | OpenaPI |
- . a4 I I
! i ! | | Definitions ! i API Doc.
| B | T I=
| (. | Generate
I i i | API Docs
i Editor [bl
b L, va
1”1
| N
: :\Generate |- i
f \
\
[| Extract e Generate Server
/ Stubs/Mocks
|
[
| g
pieeed | OpenAPI Tooling Client SDKs
Code : . T

¥ Why API-First Matters in Microservices:
» Consistency Across Teams:

o Unified Standards: When multiple teams work on different microservices, starting with a well-defined API
ensures everyone adheres to the same standards.

o Reduced Miscommunication: Clear AP| contracts minimize misunderstandings between teams regarding
data formats, endpoints, and expected behaviors.

* Reduces Integration Risks:

o Early Validation: Designing the API upfront allows teams to identify and resolve potential integration issues
before they become costly problems.

o Parallel Development: Frontend and backend teams can work simultaneously. Frontend developers can use
mock APIs based on the API specifications, accelerating the development process.

Analogy:
» Blueprint of a Building:

o Just as architects create detailed blueprints before construction begins, software teams design APIs first to
serve as a blueprint for development. This blueprint outlines how different components (rooms/services)
connect and interact, ensuring the final structure (application) is cohesive and functional.

API design guide | Cloud API Design Guide | Google Cloud

A set of guidelines for designing APIs that are consistent with Google AlPs.
2 https://cloud.google.com/apis/design

Google Cloud API design tips | Google Cloud Blog s

API design best practices maximize value and efficiency.
D https://cloud.google.com/blog/products/api-management/google-cloud-api-design-tips

v Benefits of API-First Design in Microservices

1. Faster Development:

API-First Design

https://cloud.google.com/apis/design
https://cloud.google.com/blog/products/api-management/google-cloud-api-design-tips

« Parallel Workstreams:
o Once the APl is defined, backend and frontend teams can work independently.

o Backend developers focus on service implementation, while frontend developers can use mock APIs to
develop user interfaces.

+ Reduced Dependencies:
o Teams are less dependent on each other's timelines, leading to faster overall development cycles.
2. Scalability:
« Evolving Architecture:
o An API-first approach accommodates future changes. New features or services can be added without
impacting existing ones.
* Modular Growth:
o Services can be scaled individually based on demand, improving resource utilization.
3. Better Developer Experience:
« Comprehensive Documentation:
o Well-documented APIs make it easier for developers to understand and integrate with services.
« Onboarding Ease:

o New team members or third-party developers can quickly get up to speed using the APl documentation.

¥ Demo: swagger Editor

Of Flev Edtv lnserty GenerateServer v GenerateClient v . “Try our new Editor ~

OpentPT 3.0 Sorv

nitps:/petstored swagger io/apivs v

pet Everyting about your ets Findautmore

/pet Upsateanexising pet @~
/pet Addanew petto e sore @
/pet/findByStatus Finss Ptc by satss av
/pet/findByTags Finds Pts by tags av
/pet/{petId} FndpettyiD av
/pet/{petTd) Updstes apet i th sor wth form dota av

(o= R v

/pet/{petld}/uploadInage upioscssn imsca av
StOre Acos o Potsoro orcors i ot moro aboutour store.

1 Find out more about: /store/inventory Rotums pot inventorios by statss &~

http://smagg

/store/order Piace an order fora et ~

£ OpenAPI and {Swagger}

« An interactive, web-based tool for creating and editing OpenAPI specifications.

 Interactive APl Design: The left side of the editor allows users to define the OpenAPI (formerly Swagger)
specification using YAML or JSON. This includes specifying:

o Endpoints: Define paths (e.g., /users, /products).
o HTTP Methods: Specify methods like cer, rost, put, DELETE .
o Request Parameters: Define query, path, or body parameters for the API (e.g., /users/{id}).

o Request/Response Models: Specify the structure of the data being sent and received by defining schemas,
response codes, and data types.

» Live Preview: On the right side of the editor, users can immediately see:

o Interactive APl Documentation: This mimics how the final APl documentation will look, and allows users to
try out API requests directly from the documentation.

o Real-Time Updates: Any changes made to the YAML or JSON on the left side are immediately reflected in
the interactive documentation on the right.

API-First Design

https://www.notion.so/OpenAPI-and-Swagger-1073d087b577809e9ec7e1ad6cb0bef3?pvs=21
https://www.notion.so/OpenAPI-and-Swagger-1073d087b577809e9ec7e1ad6cb0bef3?pvs=21
https://www.notion.so/OpenAPI-and-Swagger-1073d087b577809e9ec7e1ad6cb0bef3?pvs=21

o API Try-Out Functionality: In the right-hand documentation, you can use the " vy it out " button to interact
with mock APIs based on the current API design.

¥ The API-First Design Workflow

API-First Workflow Patterns - Aggregate

always sync

. latest API spec
Implementation -

Code
Generate 0AS

OpenAPl Spec ——F———
= Y
Author OAS / @ :0)

RAML / etc

Design - Model

1. Define API Contracts:

« Use OpenAPIl/Swagger:

o Specify endpoints, HTTP methods, request parameters, response formats, and error codes.

API Version

®0

automatically
update collections,
docs, mocks,
monitors!

o

_/

o

Documentation

Mocks

Collections

©

Tests

v

Monitors

o Ensure all stakeholders agree on the API's functionality and design.

« Benefits:

o Creates a clear agreement (contract) between teams.

o Serves as a single source of truth for development and documentation.

2. Mock APIs:

¢ Purpose:

—

auto-update
discoverable
assets

-

*

API Network

a

o Allow frontend developers to start building and testing against the API without waiting for the backend

implementation.

« Tools:

o Mock Servers: Automatically generated from the API specification to simulate APl responses.

o Mockoon or Stoplight: Tools for creating local mock servers.

3. Test APIs:

+ Automated Testing:

o Use tools like Postman or automated test suites to verify that the APl behaves as specified.

« Continuous Integration:

o Integrate API tests into CI/CD pipelines to ensure ongoing compliance with the API contract.

4. Implement APlIs:

« Backend Development:

o Developers implement the service logic, ensuring it adheres strictly to the API specification.

« Validation:

o Regularly test the implemented APl against the contract to prevent deviations.

API-First Design

https://youtu.be/YRzpziA35Mg?si=9gALgG_9dU6YtcD4

¥ Building Scalable APIs for Microservices
1. Stateless Communication:
o Definition:

o Each API request contains all the necessary information for the server to process it, without relying on
stored context from previous requests.

« Benefits:
o Simplifies scaling because servers do not need to share session information.
o Improves reliability and performance in distributed systems.
2. Versioning:
+ Purpose:
o Allows APlIs to evolve without breaking existing clients.
¢ Methods:
o URI Versioning: Including the version in the URL (e.g., /vi/users).
o Header Versioning: Using custom headers to specify the API version.
« Best Practices:
o Deprecate old versions gracefully, providing clients time to migrate.
3. Rate Limiting & Throttling:
« Definition:
o Rate Limiting: Restricting the number of API calls a client can make in a given time frame.
o Throttling: Controlling the flow of requests to ensure system stability.
« Benefits:
o Protects services from being overwhelmed by excessive requests.
o Ensures fair usage among all clients.
4. Load Balancing:
+ Purpose:
o Distributes incoming network traffic across multiple servers.
« Benefits:
o Enhances availability and reliability.

o Improves response times and resource utilization.

v Case Study: Netflix

Netflix is renowned for pioneering the use of microservices in modern software architecture, and their approach to
building scalable APIs has become a benchmark for handling large-scale distributed systems.

Api Gateway — Netflix TechBlog

Read writing about Api Gateway in Netflix TechBlog. Learn about Netflix's world class engineering efforts, company culture, product developments
and more.

@ https://netflixtechblog.com/tagged/api-gateway

API-First Design

https://youtu.be/YRzpziA35Mg?si=9qALgG_9dU6YtcD4
https://netflixtechblog.com/tagged/api-gateway

GitHub - Netflix/zuul: Zuul is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more.

Zuul is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more. - Netflix/zuul

© https://github.com/Netflix/zuul

https://youtu.be/CZ3wluvmHeM?si=vPYbhwWKYU-9Uz-2

How [HIliReally Uses £ Java?

) ByteByteGo

LOLOMO
Service

. B
Artwork |
Service | !

Zuul N
-

Gateway “

AP e
Gateway Metadata

Service

_ -+
o LOLOMO
" Service

_Groovy | |

hY

i

3

Artwork |
_Service | |

|
I
I
1
v

~---p

an e ——

Groavy

1

%
e (3o B0

BFFs with Groovy S Lﬂ(f) I
Groovy -»
& RxJava

RxJava :

Metadata :. . —

Service =
o | ' """" "

Top 10
Service

<> 1= i

Metadata
Service

4 \

GraphQL
Federation

v API Design Best Practices
1. Meaningful Resource Names:

o Guidelines:

|_'Schema]

T - A

Search
DGS

o Use nouns to represent resources (e.g., /users, /orders).

Artwork

| Service | .

o Avoid verbs in endpoint names (e.g., /createuser should be /users with a POST method).

API-First Design

Netflix

Zuulis a gatewa)
routing, monitor

A 59 t

Contributors

https://github.com/Netflix/zuul
https://youtu.be/CZ3wIuvmHeM?si=vPYbhwWKYU-9Uz-2

« Benefits:
o Improves readability and intuitiveness of the API.
o Aligns with RESTful principles.

2. HTTP Methods:

« Standard Methods:
o GET: Retrieve resource(s).
o POST: Create a new resource.
o PUT: Update an existing resource (or create if it doesn't exist).
o PATCH: Partially update a resource.
o DELETE: Remove a resource.

« Idempotency:

o Methods like GET, PUT, and DELETE should be idempotent (same result regardless of how many times
they're called).

3. Error Handling:
« Consistent Responses:
o Provide meaningful error messages in a standard format (e.g., JSON with an error object).
« HTTP Status Codes:
o Use appropriate status codes:
= 200 OK: Successful request.
= 201 Created: Resource successfully created.
= 400 Bad Request: Invalid request parameters.
= 401 Unauthorized: Authentication required.
= 403 Forbidden: Insufficient permissions.
= 404 Not Found: Resource not found.
= 500 Internal Server Error: Generic server error.
4. Authentication & Authorization:
e OAuth2:
o An industry-standard protocol for authorization.

o Allows users to grant limited access to their resources on one site to another site without sharing
credentials.

« JWT Tokens (JSON Web Tokens):
o A compact, URL-safe means of representing claims to be transferred between two parties.
o Commonly used for authentication and information exchange.

+ APIKeys:
o Simple tokens that are passed in the request header or query parameters.

o Suitable for identifying the application or client making the request.

¥ API Security Considerations in Microservices
1. Authentication:
¢ OAuth2:
o Provides secure delegated access using access tokens.
o Suitable for third-party access scenarios.

« JWT Tokens:

API-First Design

o Self-contained tokens with embedded user information.
o Stateless, eliminating the need for server-side sessions.
2. Rate Limiting:
+ Implementation:
o Define thresholds for request rates per API key or IP address.
o Use tools or middleware to enforce limits.
« Benefits:
o Protects against DoS attacks.
o Ensures fair resource allocation.
3. Input Validation:
* Purpose:
o Prevent malicious data from compromising the system.
« Best Practices:
o Validate data types, formats, and ranges.
o Use allowlists (preferred over denylists) for permitted values.
o Sanitize inputs to remove or escape harmful characters.
4. HTTPS Everywhere:
¢ Encryption:
o Use TLS (Transport Layer Security) to encrypt data in transit.
« Benefits:
o Protects sensitive information like authentication tokens and personal data.

o Prevents man-in-the-middle attacks.

API-First Design

