
APIFirst Design 1

�
API-First Design

What is an API?
An API is a set of rules and protocols for building and interacting with software applications. It defines how 
different software components should interact, specifying the methods, data formats, and conventions to be 
followed.

APIs enable communication between different software systems, allowing them to share data and functionality 
securely and efficiently.

APIFirst Approach:
The API-first approach is a development methodology where APIs are designed and documented before any 
code is written for the underlying application or service.

Process:

Design Phase: Developers and stakeholders collaborate to define the API's endpoints, request/response 
formats, error messages, and authentication methods.

Documentation: The API is thoroughly documented using specifications like OpenAPI (formerly Swagger), 
ensuring clarity and consistency.



APIFirst Design 2

Implementation: Development teams use the API design as a contract, building their services to adhere 
strictly to the defined API specifications.

Why APIFirst Matters in Microservices:
Consistency Across Teams:

Unified Standards: When multiple teams work on different microservices, starting with a well-defined API 
ensures everyone adheres to the same standards.

Reduced Miscommunication: Clear API contracts minimize misunderstandings between teams regarding 
data formats, endpoints, and expected behaviors.

Reduces Integration Risks:

Early Validation: Designing the API upfront allows teams to identify and resolve potential integration issues 
before they become costly problems.

Parallel Development: Frontend and backend teams can work simultaneously. Frontend developers can use 
mock APIs based on the API specifications, accelerating the development process.

Analogy:

Blueprint of a Building:

Just as architects create detailed blueprints before construction begins, software teams design APIs first to 
serve as a blueprint for development. This blueprint outlines how different components (rooms/services) 
connect and interact, ensuring the final structure (application) is cohesive and functional.

API design guide  |  Cloud API Design Guide  |  Google Cloud
A set of guidelines for designing APIs that are consistent with Google AIPs.

https://cloud.google.com/apis/design

Google Cloud API design tips | Google Cloud Blog
API design best practices maximize value and efficiency.

https://cloud.google.com/blog/products/api-management/google-cloud-api-design-tips

Benefits of APIFirst Design in Microservices
� Faster Development:

https://cloud.google.com/apis/design
https://cloud.google.com/blog/products/api-management/google-cloud-api-design-tips


APIFirst Design 3

Parallel Workstreams:

Once the API is defined, backend and frontend teams can work independently.

Backend developers focus on service implementation, while frontend developers can use mock APIs to 
develop user interfaces.

Reduced Dependencies:

Teams are less dependent on each other's timelines, leading to faster overall development cycles.

� Scalability:

Evolving Architecture:

An API-first approach accommodates future changes. New features or services can be added without 
impacting existing ones.

Modular Growth:

Services can be scaled individually based on demand, improving resource utilization.

� Better Developer Experience:

Comprehensive Documentation:

Well-documented APIs make it easier for developers to understand and integrate with services.

Onboarding Ease:

New team members or third-party developers can quickly get up to speed using the API documentation.

Demo: Swagger  Editor

�  OpenAPI and Swagger}

An interactive, web-based tool for creating and editing OpenAPI specifications.

Interactive API Design The left side of the editor allows users to define the OpenAPI (formerly Swagger) 
specification using YAML or JSON. This includes specifying:

Endpoints Define paths (e.g., /users , /products ).

HTTP Methods Specify methods like GET , POST , PUT , DELETE .

Request Parameters Define query, path, or body parameters for the API (e.g., /users/{id} ).

Request/Response Models Specify the structure of the data being sent and received by defining schemas, 
response codes, and data types.

Live Preview On the right side of the editor, users can immediately see:

Interactive API Documentation This mimics how the final API documentation will look, and allows users to 
try out API requests directly from the documentation.

Real-Time Updates Any changes made to the YAML or JSON on the left side are immediately reflected in 
the interactive documentation on the right.

https://www.notion.so/OpenAPI-and-Swagger-1073d087b577809e9ec7e1ad6cb0bef3?pvs=21
https://www.notion.so/OpenAPI-and-Swagger-1073d087b577809e9ec7e1ad6cb0bef3?pvs=21
https://www.notion.so/OpenAPI-and-Swagger-1073d087b577809e9ec7e1ad6cb0bef3?pvs=21


APIFirst Design 4

API Try-Out Functionality In the right-hand documentation, you can use the " Try it out " button to interact 
with mock APIs based on the current API design.

 The APIFirst Design Workflow

� Define API Contracts:

Use OpenAPI/Swagger:

Specify endpoints, HTTP methods, request parameters, response formats, and error codes.

Ensure all stakeholders agree on the API's functionality and design.

Benefits:

Creates a clear agreement (contract) between teams.

Serves as a single source of truth for development and documentation.

� Mock APIs:

Purpose:

Allow frontend developers to start building and testing against the API without waiting for the backend 
implementation.

Tools:

Mock Servers: Automatically generated from the API specification to simulate API responses.

Mockoon or Stoplight: Tools for creating local mock servers.

� Test APIs:

Automated Testing:

Use tools like Postman or automated test suites to verify that the API behaves as specified.

Continuous Integration:

Integrate API tests into CI/CD pipelines to ensure ongoing compliance with the API contract.

� Implement APIs:

Backend Development:

Developers implement the service logic, ensuring it adheres strictly to the API specification.

Validation:

Regularly test the implemented API against the contract to prevent deviations.



APIFirst Design 5

https://youtu.be/YRzpziA35Mg?si=9qALgG_9dU6YtcD4

Building Scalable APIs for Microservices
� Stateless Communication:

Definition:

Each API request contains all the necessary information for the server to process it, without relying on 
stored context from previous requests.

Benefits:

Simplifies scaling because servers do not need to share session information.

Improves reliability and performance in distributed systems.

� Versioning:

Purpose:

Allows APIs to evolve without breaking existing clients.

Methods:

URI Versioning: Including the version in the URL (e.g., /v1/users ).

Header Versioning: Using custom headers to specify the API version.

Best Practices:

Deprecate old versions gracefully, providing clients time to migrate.

� Rate Limiting & Throttling:

Definition:

Rate Limiting: Restricting the number of API calls a client can make in a given time frame.

Throttling: Controlling the flow of requests to ensure system stability.

Benefits:

Protects services from being overwhelmed by excessive requests.

Ensures fair usage among all clients.

� Load Balancing:

Purpose:

Distributes incoming network traffic across multiple servers.

Benefits:

Enhances availability and reliability.

Improves response times and resource utilization.

Case Study: Netflix
Netflix is renowned for pioneering the use of microservices in modern software architecture, and their approach to 
building scalable APIs has become a benchmark for handling large-scale distributed systems.

Api Gateway  Netflix TechBlog
Read writing about Api Gateway in Netflix TechBlog. Learn about Netflixʼs world class engineering efforts, company culture, product developments 
and more.

https://netflixtechblog.com/tagged/api-gateway

https://youtu.be/YRzpziA35Mg?si=9qALgG_9dU6YtcD4
https://netflixtechblog.com/tagged/api-gateway


APIFirst Design 6

GitHub  Netflix/zuul: Zuul is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more.
Zuul is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more.  Netflix/zuul

https://github.com/Netflix/zuul

https://youtu.be/CZ3wIuvmHeM?si=vPYbhwWKYU9Uz-2

API Design Best Practices
� Meaningful Resource Names:

Guidelines:

Use nouns to represent resources (e.g., /users , /orders ).

Avoid verbs in endpoint names (e.g., /createUser  should be /users  with a POST method).

https://github.com/Netflix/zuul
https://youtu.be/CZ3wIuvmHeM?si=vPYbhwWKYU-9Uz-2


APIFirst Design 7

Benefits:

Improves readability and intuitiveness of the API.

Aligns with RESTful principles.

� HTTP Methods:

Standard Methods:

GET Retrieve resource(s).

POST Create a new resource.

PUT Update an existing resource (or create if it doesn't exist).

PATCH Partially update a resource.

DELETE Remove a resource.

Idempotency:

Methods like GET, PUT, and DELETE should be idempotent (same result regardless of how many times 
they're called).

� Error Handling:

Consistent Responses:

Provide meaningful error messages in a standard format (e.g., JSON with an error  object).

HTTP Status Codes:

Use appropriate status codes:

200 OK Successful request.

201 Created: Resource successfully created.

400 Bad Request: Invalid request parameters.

401 Unauthorized: Authentication required.

403 Forbidden: Insufficient permissions.

404 Not Found: Resource not found.

500 Internal Server Error: Generic server error.

� Authentication & Authorization:

OAuth2

An industry-standard protocol for authorization.

Allows users to grant limited access to their resources on one site to another site without sharing 
credentials.

JWT Tokens JSON Web Tokens):

A compact, URL-safe means of representing claims to be transferred between two parties.

Commonly used for authentication and information exchange.

API Keys:

Simple tokens that are passed in the request header or query parameters.

Suitable for identifying the application or client making the request.

API Security Considerations in Microservices
� Authentication:

OAuth2

Provides secure delegated access using access tokens.

Suitable for third-party access scenarios.

JWT Tokens:



APIFirst Design 8

Self-contained tokens with embedded user information.

Stateless, eliminating the need for server-side sessions.

� Rate Limiting:

Implementation:

Define thresholds for request rates per API key or IP address.

Use tools or middleware to enforce limits.

Benefits:

Protects against DoS attacks.

Ensures fair resource allocation.

� Input Validation:

Purpose:

Prevent malicious data from compromising the system.

Best Practices:

Validate data types, formats, and ranges.

Use allowlists (preferred over denylists) for permitted values.

Sanitize inputs to remove or escape harmful characters.

� HTTPS Everywhere:

Encryption:

Use TLS Transport Layer Security) to encrypt data in transit.

Benefits:

Protects sensitive information like authentication tokens and personal data.

Prevents man-in-the-middle attacks.


