
CT417 SOFTWARE ENGINEERING III

(SQL) INJECTION

Dr. Michael Schukat

Presentation Overview
2

 In this slide deck provides we are going to cover:

 The OWSAP organisation

 The OWASP top 10

 Case Study: (SQL) injection attack

OWASP
3

 Open Web Application Security Project

 https://www.owasp.org

 https://github.com/OWASP/Top10/issues

 Non-profit organization that's focused on improving software
security by providing tools, standards, documents, local chapters,
conferences, and mailing lists to the ICT community

 The OWASP Foundation was established in 2001 and has >
45,000 volunteer members

 OWASP might be best known for a list called the OWASP Top
10

 This is a list of common web application security vulnerability
categories

 See also OWASP documentation on BB

https://www.owasp.org/
https://github.com/OWASP/Top10/issues

What is OWASP Top 10?
4

 A list of the top ten web application vulnerabilities

 Determined by OWASP and the security community
at large

 Released every few years

 Most recently released in 2021

 First release in 2003

 Note that there are far more vulnerabilities in the
wild!

OWSAP Top 10 - 2013 versus 2017

(Source: OWASP)
5

OWSAP Top 10 - 2017 versus 2021

(Source: OWASP)
6

 See https://owasp.org/Top10/

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

Injection Attacks and Trusted Input
8

 Injection attacks can take place, whenever an endpoint
(e.g., webserver or GUI) accepts incoming data from a
potentially unknown / untrusted source

 Therefore,

 Never trust user input, ever!

 Never trust server-side data in DBs or files!

 Never trust network connections (unless fully end-to-end
encrypted)

 Never trust browsers…

 You should trust the OS though…

Command Injection
9

 Command injection requires 2 things:

 A system that processes commands and user inputs

 A way to smuggle commands with user input

 Command-processing systems in web applications
include:

 Browsers

 DBs

 Web-servers

 Command injection is a particular concern for IoT
devices and more generally embedded systems

Injection Attack
10

 The browser sends to the command processor the

sequence:

command; command data; command, …

 But the user-controlled data contains:

data; command; command

 The command processor sees:

command; command; data; command; command;

command, …

and executes (unintentionally) command; command;

General Code Injection Attacks
11

 Enable attacker to execute arbitrary code on the server

 Example: code injection based on eval (PHP function)

 The eval() function evaluates an argument string as PHP code

 The string must be valid PHP code and end with a semicolon

 http://myserver.com/calc.php (server side calculator)

 calc.php contains:

 http://myserver.com/calc.php?exp=“ 10 + 12”

“.” is used for

string

concatenation

HTTP get / post Methods and PHP
12

 PHP is a general-purpose server-side scripting language especially
suited to web development

 The HTTP GET method sends the encoded user information
appended to the page request

 The page and the encoded information are separated by the ?
character

 Example:
http://www.test.com/index.htm?name1=value1&name2=value2

 PHP provides $_GET associative array to access all the sent
information using GET method, e.g.

foo.php:

<?php
…
$var1 = $_GET[‘first_name’];
…

http://www.test.com/index.htm?name1=value1&name2=value2

HTTP get / post Methods and PHP
13

 The POST method transfers information via HTTP headers

 The information is encoded as described in case of GET
method and put into a header called QUERY_STRING

 The POST method does not have any restriction on data size
and type to be sent

 The data sent by POST method goes through HTTP header
(rather than the page request)

 PHP provides $_POST associative array to access all the
sent information using POST method

foo.php:
<?php
…
$var1 = $_POST[‘first_name’];

…

General Code Injection Attacks
14

 Attack:
http://site.com/calc.php?exp=“ 10 ; system(‘rm *.*’) ”

 system() executes an external program and displays the output

 rm (short for remove) is a basic command on Unix and Unix-like
operating systems used to remove objects such as computer files
from the current directory

 *.* is a wildcard argument for rm, specifying any file name with
any file extension

 Evaluated string: $ans = ‘10 ; system(‘rm *.*’) ;’

Code Injection using system()
15

 Example: PHP server-side code for sending email using mail

 The mail command is a popular command to send emails from a [Linux]

terminal

 Attacker can post

What are SQL Injections
16

 SQL injection is a code injection technique, used

to attack data-driven applications, in which

malicious SQL statements are inserted for execution

 A way of exploiting user input and SQL Statements

to compromise the database and/or retrieve

sensitive data

SQL Syntax Review
17

 Basic select query:

SELECT <columns> FROM <table> WHERE

<condition>

 Example:

SELECT * FROM user WHERE id = 1 AND pass =

‘bla’

 Note:

 Literal strings are delimited with single quotes

 Numeric literals aren’t delimited

SQL Syntax Review
18

 Some databases allow semicolons to separate

multiple statements:

DELETE FROM user WHERE id = 1; INSERT INTO

user (id, pass) VALUES (1, 'secure');

 For most SQL variants, the sequence -- means the

rest of the line should be treated as a comment

Types of SQL Injection Attacks
19

 Blind SQL Injection

 Enter an attack on one vulnerable page but it may not display results

 A second page would then be used to view the attack results

 Conditional Response

 Test input conditions to see if an error is returned or not

 Depending on the response, the attacker can determine yes or no
information

 First Order Attack

 Runs right away

 Second Order Attack

 Injects data which is then later executed by another activity (job, etc.)

 Lateral Injection

 Attacker can manipulate values using implicit functions

What is at Risk?
20

 Any web application that accepts user input

 Both public and internal facing sites

 Public facing sites will likely receive more attacks than

internal facing sites

 For the last couple of years (i.e. since 2013), SQL

Injection is the frontrunner on the OWASP top ten

list

 A well understood attack, but still not fully grasped by

the developer community

Some historical Notes
21

 Guess Inc. is an American clothing brand and
retailer

 Guess.com was open to a SQL injection attack

 In 2002 Jeremiah Jacks discovered the hole and
was able to pull down 200,000 names, credit card
numbers and expiration dates in the site's customer
database

 The episode prompted a year-long
investigation by the US Federal Trade
Commission

Some historical Notes
22

 In 2003 JJ used an SQL injection to retrieve

500,000 credit card numbers

from PetCo

 In 2014 Russian hackers used a

Botnet to recover a vast collection of stolen data,

including 1.2 billion unique username/password

pairs, by compromising over 420,000 websites

using SQL injection techniques

What can SQL Injections do?
23

 Retrieve sensitive information, including

 Usernames/ Passwords

 Credit Card information

 Social Security / PPS numbers

 Manipulate data, e.g.

 Delete records

 Truncate tables

 Insert records

 Manipulate database objects, e.g.
 Drop tables

 Drop databases

What can SQL Injections do?
24

 Retrieve System Information

 Identify software and version information

 Determine server hardware

 Get a list of databases

 Get a list of tables

 Get a list of column names within tables

 Manipulate User Accounts

 Create new sysadmin accounts

 Insert admin level accounts into the web-app

 Delete existing accounts

SQL Code Injection Example
25

SQL Code Injection Example
26

Email Password

ms@mail.ie dory123

… …

Table tblclinician:

SQL Code Injection Example
27

$sql = "SELECT * FROM tblclinician WHERE Email=‘’;
DROP TABLE tblclinician; --’ AND Password=‘’

 Note: The SQL DROP TABLE statement deletes an
existing table in a database

 While an attacker does not know the tables’ names,
the attacker can do a blind attack

Other Code Injections if DB structure is

known
28

 SELECT * FROM tblclinician WHERE Email =‘’; INSERT
INTO tblclinician (Email,Password) VALUES (‘hacker’,123);-
-’ AND `Password`=‘’

 SELECT * FROM `login` WHERE Email =‘’; UPDATE
tblclinician SET Password = newpass WHERE Email =
ms@mail.ie ;--’ AND `Password`=‘’

 Often DB tables use predictable names

 If DB details are not known, use a blind SQL injection

mailto:ms@mail.ie

Blind Boolean SQL Injection (Source:

netsparker.com)
29

 I.e. you know nothing about server-side DB

 BUT by using carefully crafted queries and comparing the
server response with its reaction to a known false question,
attackers can trick the server into giving yes/no answers about
database structure and content, table names, column names, etc.

 Assume a PHP DB SQL query structure like:
$sqlQuery = "SELECT * FROM Products WHERE ID = " .
$_GET[“prodid"];

 Here a normal client-side query would look something like
http://store.example.com/storefront?prodid=7

 Now inject something that is false and note the server response
(to have a baseline), e.g.
http://store.example.com/storefront?prodid=7 and 1=42

http://store.example.com/storefront?prodid=7

Blind SQL Attacks (Source:

netsparker.com)
30

 Injecting the following code allows to check if the name of
the first table in the database starts with an “A”:
http://store.example.com/storefront?prodid=7 and (select
top 1 substring(name, 1, 1) from sysobjects where
id=(select top 1 id from (select top 1 id from sysobjects
order by id) as subq order by id desc))=‘A’

 Compare the server response with the reference “false”
response to determine if query was true or not (A or not A)

 Depending on response continue either with next letter, or
move to second letter of the name of the first table

 Subsequently look at other tables

Time-Based Blind SQL Injection
31

 If there is no visible difference in a server response
between after a true / false query, use response
delays as an indicator

 Example:
http://store.example.com/storefront?prodid=10 AND
IF(version() like '5%', sleep(10), 'false’))--

 The version() function returns the current version of the
MySQL database used as a string

 like '5%’ checks is version is 5.x

 sleep() (in MySQL) or waitfor() (in SQL) causes a
customisable response delay

Recap: What is a Password?

 A memorised secret used to confirm the identity of a user

 Typically an arbitrary string of characters including letters, digits, or

other symbols

 A purely numeric secret is called a personal identification number (PIN)

 The secret is memorized by a party called the claimant while

the party verifying the identity of the claimant is called the

verifier

 Claimant and verifier communicate via an authentication

protocol

Verifier and Passwords

 Baseline is that the verifier need to be able to

validate a claimant’s password

 Therefore:

 Keep a copy of this password, or

 Keep a token that is derived from the password

Spot the Difference?

Passwords and One-Way Functions

 Token approach only works, if we can translate the

password into a token:

“KenSentMe!” → “7b24afc8bc80e548d66c4e7ff72171c5”

Note: This token is in hex format, it is128 bit long (32 x 4 bits)

 But not the other way round

 Hence we need a one-way function

Hash Functions

 A hash function is a one-way function, which produces a
fixed-size token hash code (“fingerprint”) based on a
variable size input message

 Hash codes are also called hash values or hashes

 Hash functions are public (i.e. they are not a secret)

 Conventional checksums (e.g. CRCs) are not suitable and
cannot be used (see requirements for hash functions)

 128-512 bits hash values are regarded as suitable

Putting it all together

Claimant
(User)

Verifier

(e.g. Instagram)
Authentication Protocol

over secure connection

Hash Function

User ID Password Hash

ms@gmail.com 1d8922d005733

…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

1. The claimant enters user id and password (e.g.

Instagram login)

2. Both are sent to the verifier using the authentication

protocol

3. The verifier computes the hash value of the received

password

4. The verifier checks if the transmitted user id and the

computed hash have a match in the table

5. The verifier notifies the claimant via the authentication

protocol if the authentication was successful

Problem here: Verifier receives a copy of the plaintext

password!

Putting it all together – Version 2

Claimant
(User)

Verifier

(e.g. Instagram)
Authentication Protocol

over secure connection

Hash Function

User ID Password Hash

ms@gmail.com 1d8922d005733

…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

1. The claimant enters user id and password (e.g.

Instagram login)

2. User id and hashed password are sent to the verifier

using the authentication protocol

3. The verifier checks if the transmitted user id and

hashed password against the stored values in the

table

4. The verifier notifies the claimant via the authentication

protocol if the authentication was successful

Hash Function

Requirements for Hash Functions H(x)

 One way property:

For a given hash code h it is infeasible to find x that

H(x) = h

 Reason:

An opponent could reveal password otherwise:
“KenSentMe!”  “7b24afc8bc80e548d66c4e7ff72171c5”

x h

Requirements for Hash Functions H(x)

 Weak collision resistance:

For a given password x it is infeasible to find another
password y with
y != x with H(x) = H(y)

 Reason:

An opponent could find an alternate password y with the
same hash code as of x, and use it instead to impersonate
the claimant

Examples for Hash Algorithms

 MD2 / MD4 / MD5:
 Produces a 128-bit hash value.

 Specified as Internet standards (RFC1320, RFC1186, RFC1321).

 Broken via collision attacks, DO NOT USE!

 SHA (Secure Hash Algorithm) - X:
 Family of hash functions, designed by NIST & NSA

 SHA-3 (released 2015) produces 224, 256, 384 and 512 bits hash values.

 Internet standard (together with SHA-2)

 RIPEMD-160:
 Creates a 160-bit hash value

 Developed in Europe

Case Study Hash Cracking
42

 Assume you were able to retrieve hashed user

passwords and user IDs using an SQL injection

attack

 For example via a blind SQL attack over multiple steps

 Passwords were hashed using a sound hash function

(i.e. not MD5!)

 Where to go from here?

User ID Password Hash

ms@gmail.com 1d8922d005733

…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

Hash Cracking

User ID Password Hash

ms@gmail.com 1d8922d005733

…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

 Reverse-Engineer passwords?

◼ One-way function, ergo not

possible

◼ But hash functions are public

DEFUSE: A Online Text & File Checksum

Calculator

 https://defuse.ca/checks

ums.htm

https://defuse.ca/checksums.htm

Dictionary-Based Brute-Force Search

 Dictionary search can be used to systematically identify a match for a
given hash value

 The underlying hash function must be known

 Dictionaries are based on large word, phrase or password collections

 ☺ :

 Straight forward process

  :

 Significant computational effort to find match

 No guaranteed result

Lookup Table-Based Attacks

 For a given hash function and dictionary

 Calculate hash value for all dictionary entries

 Add both values to a table (i.e. one line per entry)

 Sort table (e.g. in ascending order of hash values)

◼ Also called lookup table

 Example table (assuming 44-bit hash values):

Hash value Password

0x00000000354 gangster

0x00000001003 Bluemoon

… …

Lookup Table-Based Attacks

 The matching password for a given hash value can be recovered by

systematically searching for it in the dictionary

 ☺ :

 Such a table can be generated offline

 The search process itself is fast (~log2(# of entries))

◼ A table containing 1.8x1019 entry would require just 64 guesses to find (or

not) the correct password for a given hash value

  :

 Huge table, with no guaranteed result

 Different table required for every hash function

Lookup Table-Based Attacks: Example

 Assume a hash function that generates 16 byte (128 bit) hash
values, e.g. MD5

 We calculate a lookup table for all possible 6 character long
passwords composed of 64 possible characters A-Z, a-z, 0-9,
“.” and “/”

 A table would consist of 646 (= 68,719,476,736) entries, with
every entry consisting of a 6 byte password and a 16 bytes
hash

 Total size of table ~ 1.4 Terabyte

Crackstation’s free Password Hash

Cracker

 https://crackstati

on.net/

https://crackstation.net/

FYI: Examples for SQL Injection Attacks
50

 Blind SQL injection

 http://localhost/htm/product-list.php?StatusFilter=' drop table DimUser –

 SELECT * FROM DimUser WHERE UserName='jprom' and Password='' drop table DimUser --’

 Time delay exploitation technique
http://www.example.com/product.php?id=10 AND IF(version() like '5%', sleep(10), 'false'))--

 Conditional response

 http://localhost/htm/product-details.php?ID=603 and substring(@@VERSION,1,20) = 'Microsoft
SQL Server‘

 SELECT ProductKey FROM DimProduct WHERE ProductKey=603 and substring(@@VERSION,1,20) =
'Microsoft SQL Server'

 Return a list of data (such as user accounts)

 http://localhost/htm/product-list.php?StatusFilter=' or 1=0 union select x=null, x=UserName,
x=Password, x=null from DimUser –

 SELECT ProductKey FROM DimProduct WHERE status='' or 1=0 union select x=null, x=UserName,
x=Password, x=null from DimUser --' ORDER BY ProductAlternateKey

FYI: Preventing SQL Injection Attacks

via Suppressing Error Messages
52

 Suppress error messages that may be sent back to the

client browser, as they make it easier for attackers to

gather information about your database; example:

Microsoft OLE DB Provider for ODBC Drivers error

'80040e06'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax

error converting the varchar value ': admin/r00tr0x!

guest/guest chris/password fred/sesame' to a column of

data type int.

FYI: Preventing SQL Injection Attacks

via Input Sanitisation
53

 In PHP use PHP filters to

 Validating data
Determine if the data is in proper form

 Sanitizing data
Remove any illegal character from the data

 See
https://www.w3schools.com/php/php_filter.asp for
details

https://www.w3schools.com/php/php_filter.asp

FYI: Preventing SQL Injection Attacks

via prepared Statements
54

 Used to execute a SQL statement repeatedly with high
efficiency, via the following steps:

 An SQL statement template is prepared and sent to the
database. Dynamic values (parameters) are not specified and
labeled "?“
Example: INSERT INTO MyGuests VALUES(?, ?, ?)

 The database parses, compiles, and performs query optimisation
on the template and stores the result

 Later the application binds values to the parameters, and the
database executes the statement

◼ This process can be repeated as often as desired

 Prepared statements are very useful against SQL injections,
because manipulated parameter values, which are
transmitted later, cannot change prepared statement

FYI: Preventing SQL Injection Attacks

via prepared Statements
55

 Example MySQLi with Prepared Statements

 MySQL “Improved is a relational database driver used in PHP to
provide an interface with MySQL databases

<?php
$stmt = $dbh->prepare("INSERT INTO REGISTRY (name, value) VALUES
(:name, :value)");
$stmt->bindParam(':name', $name);
$stmt->bindParam(':value', $value);

// insert one row
$name = 'one‘
$value = 1
$stmt->execute();
?>

 Improves performance by allowing query plans to be compiled
once and executed multiple times

Compile

once

Bind values &

execute repeatedly

