
CT5106

Java Server Faces (JSF)



JSF Overview

 JSF is an MVC framework for web applications
 Focused around connecting UI components / widgets with data 

sources and (server-side) event handlers
 JSF renders the UI components properly for the client type (in 

our case the web browser)



Setting up JSF on Apache NetBeans

 File / New Project / Java with Maven / Web 
Application



 Enter project name, and accept other defaults





Project Properties

 Right-click on project
 Select ‘Frameworks’ and click on ‘Add…’ button



 Select JSF framework to add



 OK



Then build

 Right-click on project and select ‘Build with Dependencies’

 If you see ‘BUILD SUCCESS’ then it is OK

 Then run the project – should see this in browser:



JSF Architecture - Model

 Again, it is an MVC architecture, where the model is a managed bean, which 
in turn may interact with DAO classes or EJB’s (e.g. session beans acting as 
facades for entity classes) which are the real underlying model in our 
application, but in JSF the managed beans are also considered part of the 
model



JSF Architecture - View

 The view is made up of the UI components on the page, which are rendered 
by JSF

 Generally you use either Facelets (special tag library for use in HTML 
pages) or JSP



JSF Architecture - Controller

 The controller / router which routes incoming requests and selects a view for 
display. In JSF this controller, the FacesServlet, is provided by the framework

 Defined in web.xml

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>



FacesServlet

 JSF has a front controller servlet called FacesServlet

 FacesServlet performs the role of brokering the incoming requests from clients 
to the right places. As mentioned earlier, JSF comes with reusable Web 
components that can be used to develop user interfaces

 These UI components can be associated with objects called managed beans 

 These managed beans handle the logic for the application and interact with 
back-end systems or components like EJBs



First JSF application

 Create a new Java class, LoginBean.java
 Store in beans folder
 Annotate as shown
 Give it 2 properties:

 String userName
 String password

 Create getters and setters





Edit index.xhtml



Update LoginBean.java

 Need to add the String property errorMsg and it’s getter and setter 
methods

 Also note that we are calling a validate method in the bean when we 
submit the form

 Note also that this method returns a string, which is used by JSF to navigate 
to a specific page, in this case “welcome.xhtml”



Run the application



Managed Bean

 Just a Java (POJO) class inside a container that the developer doesn’t have 
to instantiate manually
 Sits behind the JSF page

 @Named – gives the bean we can refer to from our xhtml files
 Properties of bean must have getters and setters

 @RequestScoped
 An instance is created when requested and destroyed when page has loaded in the 

browser



Managed bean scope = lifespan

 Long-lived beans
 Application-scoped
 Session-scoped

 Short-lived beans
 Request-scoped
 View-scoped
 Flash-scoped



Application scoped

 Created on load and kept alive for duration of application

 Only one instance will exist in the application

import javax.enterprise.context.ApplicationScoped;



Session scoped

 Must implement Serializable
 One per HTTP (user’s browser) session

import javax.enterprise.context.SessionScoped;



Request scoped

 Instantiated at beginning of JSF page request and 
destroyed when page is loaded

import javax.enterprise.context.RequestScoped;



View scoped

 Intermediate between session and request scope
 Lives past a single page load, but destroyed if you 

navigate to a different page
 Useful for a conversation with user / set of 

interactions on a single page

import javax.faces.view.ViewScoped;



Flash scope

 Mostly used for transmitting data between JSF pages
 When navigating between pages

 Example – see
 index.xhtml
 WelcomePageBean navigateToFlashPage method
 flashscope.xhtml
 Puts a variable on the flash scope to be picked up by the flashscope.xhtml

page, using the code:

<h:outputText value="#{flash.transmittedVariable}"/>



Initialising data in managed bean

 See the SampleViewScopedBean.java file

 The initialisation of the data is not done in the getDogs() getter method, but in the 
initDogs() method, annotated with @PostConstruct

 Can have only one such method, and it has to return void

 Only want to do it only once when bean is created, for example by calling DAO 
object or session façade for entity bean

 The matching method for when bean is destroyed, is the cleanUp method

 Note also the retrieval and invalidation of the session object – you might use this in 
a logout or session timeout situation



Injecting into beans

 We can inject other beans, including other managed beans, 
into managed beans, e.g. in WelcomePageBean:

 And can then use it in the navigateToFlashPage() method

 Clicking on the Navigate button in index.xhtml results in



 To inject session façade beans like the ones created 
in the AffableBean example, we could use the 
@Inject or the @EJB annotation



facelets

 There is a library of jsf core components in addition to the 
ones already use, which you include using the ../jsf/core 
command, e.g.

jsf/html includes tags that represent common HTML user interface components

jsf/core tag library defines tags that perform core actions and are independent 
of a specific (e.g. HTML) rendering kit

There are other libraries available too, such as PrimeFaces



facelet code tag

 See how the viewParam tag lets us process a request parameter in the 
current view

 It gets the request parameter and uses it to set the welcomeUserName
property on the managed bean

 It then calls theviewAction which ends up setting the value of the 
<h>outputText



Sequence of action events



If the URL parameter is missing

 If the parameter is empty and the call is not from a postback from a bean method 
then display requiredMessage

 When postback is true then page has been refreshed, in which case we don’t want the 
parameter to be required



inputComponents.xhtml

 This page demonstrates how 
to pull data from a 
managed bean into user 
interface components such as 
radio buttons, list boxes,..

 Note the use of the value 
property of the input 
components to tie the 
selected item to a property 
of the backing bean


	CT5106
	JSF Overview
	Setting up JSF on Apache NetBeans
	Slide Number 4
	Slide Number 5
	Project Properties
	Slide Number 7
	Slide Number 8
	Then build
	JSF Architecture - Model
	JSF Architecture - View
	JSF Architecture - Controller
	FacesServlet
	First JSF application
	Slide Number 15
	Edit index.xhtml
	Update LoginBean.java
	Run the application
	Managed Bean
	Managed bean scope = lifespan
	Application scoped
	Session scoped
	Request scoped
	View scoped
	Flash scope
	Initialising data in managed bean
	Injecting into beans
	Slide Number 28
	facelets
	facelet code tag
	Sequence of action events
	If the URL parameter is missing
	inputComponents.xhtml

