
Week 11 Lecture 1

Prolog: Further Examples and Tail Recursion

Deletion
 Representation: del(X, L, L1)

 Delete X from list L resulting in L1

 For example, if del is suitably defined:

 ?- del(a, [c, d, a, f], R).

3

 Base Case:

 If X is head of L then result of deleting X is the tail of L

 Reduce:

 add head of L to Res and delete X from tail of L

Deletion Steps

4

 delete_one(Term, [Term | Tail], Tail).

 delete_one(Term, [Head | Tail], [Head | Result]):-

 delete_one(Term, Tail, Result).

Deletion Steps

5

Question: What happens if the
element is not in the list?

 How can this be fixed?

 Add extra clause at start:

 delete_one(_, [], []).

6

No, stops when/if match found

To delete multiple occurrences:

 Base Cases:

 If L is empty list then result is []

 Reduce:

 If X is head of L then delete X from tail of L.

 If X is not head of L, add head of L to Res and delete
X from tail of L

Question: Will this delete multiple
occurrences of X?

7

delall(_, [], []).

delall(Term, [Term | Tail], Res) :-

delall(Term, Tail, Res).

delall(Term, [Head | Tail] , [Head | Res]):-

delall(Term,Tail,Res).

Question: Will this delete multiple
occurrences of X?

Question: More deletion …

Remove Duplicates from a List

8

 Representation: deldups(L, Res)

 Delete duplicate occurrences of all elements from list L
resulting in list Res

 E.g. if deldups suitable defined:

?- deldups([a, b, a, c, d, c], Res).

Res = [b, a, c, d]

Steps to remove duplicates from a list

9

 Base Case:

 If L is the empty list the result is the empty list.

 Reduction:

 If the first element in the list is a member of the tail of

the list, remove it and check the tail of the list for more

duplicates.

 Otherwise, add it to the result and check the tail of the

list.

Deleting Duplicates in a List

10

deldups([], []).

deldups([H|T], Res1):-

membr(H, T), deldups(T, Res1).

deldups([H|T], [H|Res1]) :-

deldups(T, Res1).

Concatenation of Lists

11

 Representation: conc(L1, L2, L3)

 L1 and L2 are two lists; L3 is their concatenation

 For example, if conc is suitably defined:

 ?- conc([a, b], [c, d], Res).

Res = [a, b, c, d]

 ?- conc([a, b], [c, d], [a, b, a, c, d]).

What is the result?

 So, general rule?

Concatenation/Merging of Two

Lists

12

 Base Case:

 If L1 is empty the result of merging L1 and L2 is?

 Reduce (recursive step):

 keep adding head of L1 to L3 until L1 is empty (i.e. we

reach the base case).

conc([], L, L).

conc([X|L1], L2, [X|L3]):-

conc(L1, L2, L3).

Tail Recursion
 Recursive calls normally take up memory space which is

only freed after the return from the call.

 In special cases, it is possible to execute nested recursive
calls without requiring extra memory

 In such a case a recursive procedure has a special form
called tail recursion.

 A tail recursive procedure only has one recursive call and
this call appears as:

 The last goal of the last clause in the procedure

Tail Recursion

14

 The goals preceding the recursive call must be

deterministic so that no backtracking occurs after the last

call

 In the case of tail recursive procedures, no information is

needed upon the return from a call

 Such recursion can be carried out simply as iteration in

which a next cycle in the loop does not require additional

memory

 When memory efficiency is critical, tail recursive

formulations of procedures help

Reverse Items in a List
 Reverse items in a list (top-level) such that:

 ?- reverselist([a, b, c], R).

 R = [c, b, a]

Steps: reverselist([a,b,c], R).

16

 Base case: If list is empty, result is empty list:

 reverse([], []).

 Reduce:

 Reduce to empty list, by reversing tail of list

 reverse(T,L)

 Add head of list to a new list using merge (conc) already

defined

 conc(L, [H], R).

Using previously defined conc

17

 reverselist([],[]).

 reverselist([H|T], R) :-

reverselist(T, L), conc(L, [H], R).

Try writing tail recursive version
reversetr(L,R)

18

 Use temporary list (Temp) to add each successive
head value of L to.

 Use helper function to call reverse2 with empty list
as current value of the temporary list

 Base Case:
 L is empty, return R

 Reduce:
 Add Head to temporary list for each call of reverse2

Tail recursive version of reverselist

19

reversetr(L, R):-

reverse2(L, [], R).

reverse2([],R,R).

reverse2([H|T], Temp, R) :-

reverse2(T, [H|Temp], R).

