Prog

/ ,

/

Deletion
Representation: del(X, L, L1)

e Delete X from list L resulting in L1

For example, if del Is suitably defined:

o 2evdelitay oy id s as bR

/ B M e e

Deletion Steps

Base Case:
If X is head of L then result of deleting X is the tail of L

Reduce:
add head of L to Res and delete X from tail of L

/ B M e e

Deletion Steps

delete_one(Term, [Term | Tall], Talil).

delete_one(Term, [Head | Tail], [Head | Result]):-
e delete_one(Term, Tail, Result).

Question: What happens If the
element is not In the list?

e How can this be fixed?

e Add extra clause at start:
o delete one(,[],[D.

Question: Will this delete multiple
occurrences of X?

No, stops when/if match found
To delete multiple occurrences:

Base Cases:
e If L is empty list then result is []

Reduce:
e If X Is head of L then delete X from tail of L.

e If X I1s not head of L, add head of L to Res and delete
X from tail of L

6

Question: Will this delete multiple
occurrences of X?

delall(_,[],[1])-

delall(Term, [Term | Tail], Res) :-
delall(Term, Tail, Res).

delall(Term, [Head | Tail] , [Head | Res]):-
delall(Term, Tail,Res).

““Question: More deletion ...
Remove Duplicates from a List

Representation: deldups (L, Res)

Delete duplicate occurrences of all elements from list L
resulting in list Res

E.g. iIf deldups suitable defined:
=odetldupsitiay; by aay i crady el Res)
Rea g e

Steps to remove duplicates from a list
Base Case:

e If L Is the empty list the result is the empty list.

Reduction:

e |f the first element in the list Is a member of the tail of
the list, remove it and check the tail of the list for more
duplicates.

e Otherwise, add it to the result and check the tail of the
lISt.

Deleting Duplicates in a List
deldups([1, [D

deldups([H|T], Resl):-
membr(H, T), deldups(T, Resl).

deldups([H|T], [H|Resl]) :-
deldups(T, Resl).

10

P
Concatenation of Lists

Representation: conc(L1, L2, L3)

e L1 and L2 are two lists: L3 Is theilr concatenation

For example, if conc is suitably defined:
o econcilla, bl o adl i Reany
RE et e e
e S econctia, b le d e e a e e

What as the vesuglE?

So, general rule?

11

“Concatenation/Merging of{o

Lists

Base Case:
e [f L1 is empty the result of merging L1 and L2 is?

Reduce (recursive step):

» keep adding head of L1 to L3 until L1 is empty (i.e. we
reach the base case).

conc([], L, L).
conc([X|L1], L2, [X|L3]):-
conc(L1, L2, L3).

12

e AR R

/ P

/

Tall Recursion

Recursive calls normally take up memory space which is
only freed after the return from the call.

In special cases, it is possible to execute nested recursive
calls without requiring extra memory

In such a case a recursive procedure has a special form
called tail recursion.

A tail recursive procedure only has one recursive call and
this call appears as:
e The last goal of the last clause in the procedure

e AR R

/ P

/

Tall Recursion

The goals preceding the recursive call must be
deterministic so that no backtracking occurs after the last
call

In the case of tail recursive procedures, no information Is
needed upon the return from a call

Such recursion can be carried out simply as iteration in
which a next cycle in the loop does not require additional
memory

When memory efficiency Is critical, tail recursive
formulations of procedures help

14

Reverse ltems In a List

Reverse items In a list (top-level) such that:

?- reverselist([a, b, c], R).

L e

Steps: reverselist([a,b,c], R).

Base case: If list is empty, result is empty list:
e reverse([], []).

Reduce:
e Reduce to empty list, by reversing tail of list
« reverse(T,L)

e Add head of list to a new list using merge (conc) already
defined

« conc(L, [H], R).

16

Using previously defined conc

reverselist([],[]).

reverselist([H|T], R) :-
reverselist(T, L), conc(L, [H], R).

17

/ B M e e

Try writing tail recursive version

reversetr (L, R)

Use temporary list (Temp) to add each successive
head value of L to.

Use helper function to call reverse2 with empty list
as current value of the temporary list

Base Case:

e Lis empty, return R

Reduce:

e Add Head to temporary list for each call of reverse2

18

Tall recursive version of reverselist

reversetr (L, R) :-
resreraa it R

Farrapaae b R R

reverseZ G PlhoTemp, Rjiaie
reverse2 (T, [H|Temp], R).

19

