
Name: AndrewHayes
E-mail: a.hayes18@universityofgalway.ie
ID: 21321503

CT331 2023–11–25

Assignment 3: Declarative Programming with Prolog

1 Question 1

1.1 Rule that returns true if a given instructor teaches a given student

1 teaches(Instructor, Student) :- instructs(Instructor, Course), takes(Student, Course).

1.2 Query that uses the teaches rule to show all students instructed by bob

For this, I wasn’t sure if the desired answerwas a query that returned a student instructed by bob, followed by a couple semi-colons
to get every student instructed by bob, or if the desired answer was a single query that returned a list of students taught by bob,
so I did both.

1 ?- teaches(bob, Student).

Figure 1: Using the teaches rule to show all students instructed by bob

Alternatively, this could be done using the findall() predicate:

1 ?- findall(Student, teaches(bob, Student), Students).

Figure 2: Using the teaches rule & the findall predicate to show all students instructed by bob

1.3 Query that uses the teaches rule to show all instructors that instruct mary

1 ?- teaches(Instructor, mary).

Figure 3: Using the teaches rule to show all instructors that instruct mary

Alternatively, this could be done using the findall() predicate:

1 ?- findall(Instructor, teaches(Instructor, mary), Instructors).

Figure 4: Using the teaches() rule & the findall() predicate to show all instructors that instruct mary

1

mailto://a.hayes18@universityofgalway.ie

1.4 Result of query teaches(ann,joe).

Figure 5: Result of query teaches(ann,joe).

The result of the query teaches(ann,joe). is false. because ann only instructs ct345 and joe only takes ct331, and therefore
ann does not teach joe because ann does not teach a course that joe takes.

1.5 Rule that returns true if two students take the same course

1 takesSameCourse(Student1, Student2) :- takes(Student1, Course), takes(Student2, Course).

Figure 6: Queries to test takesSameCourse()

1 ?- takesSameCourse(tom,mary).

2 ?- takesSameCourse(joe,mary).

3 ?- takesSameCourse(joe,tom).

4 ?- takesSameCourse(bob, mary).

2 Question 2

2.1 Query that displays the head & tail of a list

1 ?- [Head | Tail] = [1,2,3].

Figure 7: Query to display the head & tail of the list [1,2,3]

2.2 Display the head of a list, the head of the tail of the list, & the tail of the tail of the list

1 ?- [Head | [HeadOfTail | TailOfTail]] = [1,2,3,4,5].

Figure 8: Query to display the head of the list, the head of the tail of the list, & the tail of the tail of the list [1,2,3,4,5]

2

2.3 Rule that returns true if a given element is the first element of a given list

1 contains1(Element, [Element | Tail]).

2

3 ?- contains1(1, [1,2,3,4]).

4 ?- contains1(3, [1,2,3,4]).

5 ?- contains1(1, [2,3,4]).

Figure 9: contains1() testing

2.4 Rule that returns true if a given list is the same as the tail of another given list

1 contains2(Sublist, [Head | Sublist]).

2

3 ?- contains2([2,3,4], [1,2,3,4]).

4 ?- contains2([2,3,4], [1,2,3,4,5]).

Figure 10: contains2() testing

2.5 Query to display the first element of a given list using contains1()

1 ?- contains1(FirstElement, [1,2,3,4,5]).

Figure 11: Query to display the first element of a given list using contains1()

3 Determine if a given element is not in a given list

1 % base case: any element is not in an empty list

2 isNotElementInList(_, []).

3

4 % return true if Element is not the Head of the list and it's not found recursively searching the rest of

the list↪→

5 isNotElementInList(Element, [Head | Tail]) :- Element \= Head, isNotElementInList(Element, Tail).

6

7 % testing

8 isNotElementInList(1, []).

9 isNotElementInList(1, [1]).

10 isNotElementInList(1, [2]).

3

11 isNotElementInList(2, [1, 2, 3]).

12 isNotElementInList(7, [1, 2, 9, 4, 5]).

Figure 12: Testing isNotElementInList()

4 Facts & rules to merge three lists

1 % predicate to merge two lists

2 % base case: if the first list is empty, just return the second

3 mergeTwoLists([], List, List).

4

5 % recursive predicate to merge two lists

6 % split the first list into head and tail, and recurse with its tail and the second list until the first

list is empty (base case)↪→

7 % then merge the original head of the first list with the resulting tail

8 mergeTwoLists([Head | Tail], List2, [Head | ResultTail]) :- mergeTwoLists(Tail, List2, ResultTail).

9

10 % predicate to merge 3 lists

11 % base case: merging an empty list and two others is the same as merging two lists

12 mergeLists([], List2, List3, Merged) :- mergeTwoLists(List2, List3, Merged).

13

14 % split the first list into head and tail, and recurse with its tail and the other two lists until the

first list is empty (base case)↪→

15 mergeLists([Head1 | Tail1], List2, List3, [Head1 | MergedTail]) :- mergeLists(Tail1, List2, List3,

MergedTail).↪→

16

17 ?- mergeLists([7],[1,2,3],[6,7,8], X).

18 ?- mergeLists([2], [1], [0], X).

19 ?- mergeLists([1], [], [], X).

Figure 13: Testing mergeLists()

5 Facts & rules to reverse a given list

1 % call the helper predicate with the list to be reversed and an empty Accumulator to build up

2 reverseList(List, Reversed) :- reverseListHelper(List, [], Reversed).

3

4

4 % base case fact: when the list to reverse is empty, the accumulator is the reversed list

5 reverseListHelper([], Accumulator, Accumulator).

6

7 % recurse with the tail after prepending the head to the accumulator

8 reverseListHelper([Head | Tail], Accumulator, Reversed) :- reverseListHelper(Tail, [Head | Accumulator],

Reversed).↪→

9

10 ?- reverseList([1,2,3], X).

11 ?- reverseList([1], X).

12 ?- reverseList([], X).

Figure 14: Testing reverseList()

6 Facts & rules to insert an element into its correct position in a given list

1 % base fact: if the list is empty, the list to be returned is just the element

2 insertInOrder(Element, [], [Element]).

3

4 % if the element to be inserted is <= the head of the list, insert it at the head of the list

5 insertInOrder(Element, [Head | Tail], [Element, Head | Tail]) :- Element =< Head.

6

7 % if the element to be inserted is greater than the head of the list, recurse with the tail of the list

until↪→

8 insertInOrder(Element, [Head | Tail], [Head | NewTail]) :- Element > Head, insertInOrder(Element, Tail,

NewTail).↪→

Figure 15: Testing insertInOrder()

5

	Question 1
	Rule that returns true if a given instructor teaches a given student
	Query that uses the teaches rule to show all students instructed by bob
	Query that uses the teaches rule to show all instructors that instruct mary
	Result of query teaches(ann,joe).
	Rule that returns true if two students take the same course

	Question 2
	Query that displays the head & tail of a list
	Display the head of a list, the head of the tail of the list, & the tail of the tail of the list
	Rule that returns true if a given element is the first element of a given list
	Rule that returns true if a given list is the same as the tail of another given list
	Query to display the first element of a given list using contains1()

	Determine if a given element is not in a given list
	Facts & rules to merge three lists
	Facts & rules to reverse a given list
	Facts & rules to insert an element into its correct position in a given list

