
University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Lecturer: Dr Frank Glavin
Frank.Glavin@nuigalway.ie

Office : Room 404, Information Technology Building

Note:
The bulk of this course content was originally developed by

Dr Conor Hayes

Contact Information

2

University
ofGalway.ie

Lecture - Thursday 9 am – 10 am:
AC003, D’Arcy Thompson Lecture Theatre

Lecture - Friday: 10 am – 11 am:
IT250, Information Technology Building

Lab – Tuesday 11 pm – 1 pm:
BLE2012 Comp Suite
Arts Sci Rm 105
Block E, Ground Flr, E102

Lab – Friday 3pm – 5pm
IT106 [4BSE1 and 4BSE4]

Lecture/Lab Times and Location

3

University
ofGalway.ie

• Lecture content will be provided in advance

• Lectures themselves will be in tutorial format

• You will need to bring a laptop to each lecture

• Weekly lab sessions

Learning Materials

4

University
ofGalway.ie

• Attendance at each lecture/tutorial will be recorded

• Attendance will be captured using the Qwickly app

• You will have time during the lecture to enter the pin

Attendance

5

University
ofGalway.ie

Objects First with Java:
A Practical Introduction
using BlueJ

David J. Barnes,
Michael Kölling

Recommended Reading

6

University
ofGalway.ie

• Think Java by Allen B. Downey
http://www.greenteapress.com/thinkapjava/

• Thinking in Java by Bruce Eckel
http://www.mindview.net/Books/TIJ/

• The Java Tutorials hosted by Oracle

http://docs.oracle.com/javase/tutorial/index.html

Java, A Beginner's Guide, 5th Edition by Herbert Schildt
Effective Java (2nd Edition) by Joshua Bloch
Head First Java by Kathy Sierra, Bert Bates

Other Reading Texts

7

University
ofGalway.ie

•https://www.geeksforgeeks.org/java/
•https://www.w3schools.com/java/default.asp
•https://www.w3schools.com/java/exercise.asp?filename=exercise_syntax1
•https://www.tutorialspoint.com/java/index.htm
•https://www.tutorialspoint.com/java/java_online_quiz.htm

Useful Online Resources

8

University
ofGalway.ie

Room 205 in the Information Technology Building
https://www.universityofgalway.ie/science-engineering/school-of-computer-science/currentstudents/computerdisc/
https://www.universityofgalway.ie/science-engineering/school-of-computer-science/currentstudents/computerdisc/timetable/

Extra Support

9

University
ofGalway.ie

Assessment:
• There will be between 3 and 5 lab assignments

• Computer-based programming exam at the end of semester

• Attendance/participation at the weekly lecture tutorials

• If you should have to repeat in Autumn, your overall result is capped at 40%

Module Assessment

10

University
ofGalway.ie

• In December, you will have a two-hour computer-based exam
• You will be required to solve two/three problems by programming in Java
• You will not be able to pass this exam without having developed programming

competence
• Like riding a bicycle, this is not something you can learn from a book.
• You should be programming for at least two hours every week

Computer Based Exam

11

University
ofGalway.ie

Learning Objectives 1

12

University
ofGalway.ie

Learning Objectives 2

13

University
ofGalway.ie

• Classes, objects, methods
• Primitive and reference types
• Object interactions
• Arrays and collections and how to iterate
• Modelling decisions - what classes, relationships and methods to design
• Inheritance: using it to improve structure
• Polymorphism: how to use to implement the open-close principle
• Object interactions again: composition
• Java libraries
• Using Interfaces
• Good programming practice: unit testing and exception handling
• Using a design pattern to solve an OOP problem

Topics

14

University
ofGalway.ie

You should be able to:

• Describe what an Object Oriented Programming language is

• Differentiate between a class and an object

• Create a simple class in BlueJ and create several objects of that class

• Create some simple methods in Java

Learning Objectives: Week 1

15

University
ofGalway.ie

What is an Object-Oriented
Programming language?

Object-oriented Programming (OOP)

16

University
ofGalway.ie

“Hello World”

17

What are the similarities and differences between the
two code snippets?

C Java

Information on public static void main...
https://www.journaldev.com/12552/public-static-void-main-string-args-java-main-method

University
ofGalway.ie

• Class
• Something from which you create objects.

• Template

• Object
• A Java object is a self-contained component which consists of methods and

properties
• E.g. in an ecommerce program, we could have customer object, item object, or book

object (it will have name, ID, Price etc.)

Definitions:

18

University
ofGalway.ie

• A class is a type of blueprint or template from which you make objects
• The use of classes and objects are the principal differences between

programming in C and programming in Java.
• However, it entails a fundamentally different way of designing your code

What is a class?

19

University
ofGalway.ie

• A piece of programming code that has a state and has behaviour
• Often it represent a real thing
• It is created in code by instantiating a class

What is an object?

20

University
ofGalway.ie

Unlike other high-level programming languages, Java code is not compiled into machine specific code that
can be executed by a microprocessor.
Instead, Java programs are compiled into something called bytecode. The bytecode is input to a Java
Virtual Machine (JVM), which interprets and executes the code. The JVM is usually a program itself.
The bytecode is platform independent. So, the JVM is specific for each platform, but the bytecode for the
program remains the same across different platforms. This is a very nice feature of Java.
Of course there is always a trade off….
The main trade off is the effect it has on the execution speed.

Bytecode

21

University
ofGalway.ie

• Lets write a simple program in BlueJ

• In the lecture, you are going to
• Create your first class
• Create several objects of this class

Creating your first class

22

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

How Java Works?
Different types of languages
Compilation
Interpretation

Overview

2

University
ofGalway.ie

Machine Code

3

University
ofGalway.ie

Assembly

4

University
ofGalway.ie

Java C

Assembly Machine Code

5

University
ofGalway.ie

• Both Java and C are high-level languages and assembly is a low-level
language

• What does that mean?

High-level vs Low-level

6

University
ofGalway.ie

‘High level’ is a relative term - the level of abstraction above a low level language
A low level language has little or no abstraction over the machine code of a particular processor.

High Level Language

7

University
ofGalway.ie

High-level vs Low-level Language

8

University
ofGalway.ie

High Level vs Low level Language

9

C is very fast, but not portable Java is fairly fast, but is portable

University
ofGalway.ie

• Easier to program in a high- level language
• Syntax can be understood by people
• Program takes less time to write, shorter and easier to read, more likely

to be correct.
• Portable – they can be run on different kinds of computers

High Level Programming Languages

10

University
ofGalway.ie

• Unless you are writing machine code (!) – your code has to be translated
into machine code to run on your computer

Translating your code so that it runs

11

Code

......

Machine code

Translation

University
ofGalway.ie

Compilation

Two Types of Translation

12

Interpretation

University
ofGalway.ie

• A compiler is a program that takes human readable source code and
translates it in one go into machine code using a Compiler

C is a compiled language

13

C Code

............

..............

...............

......

...

Compiler (e.g. gcc)

......

Machine code

With compilation translation occurs before
the program is run

University
ofGalway.ie

• A compiler translates source code in one go into machine code for a
particular machine

• However, the machine code generated is not portable
• You have to compile the code again if you want it to run on a different

type of machine.
• However, the generated code typically executes very efficiently

Compilation

14

University
ofGalway.ie

• The second type of translation approach
• Code is translated on-the-fly at runtime into commands that can be

executed on the machine.

Interpretation

15

Python
Code
............
..............
...............
......
...

Python
interpreter

With Interpretation
translation occurs
when the program is
executed

University
ofGalway.ie

• A compiler translates source code in one
go into machine code before the
programme is run

• Typically, translating to native machine
code means very efficient run-time
speed

• For big projects, compile time can be
slow

Compilation vs Interpretation

16

• Code read and executed by another
program (the interpreter) when the
program is run

• This makes the code portable (as
long as there is an interpreter)

• Typically, slower to run as each
statement has to be interpreted into
machine code on-the-fly

• Greater chance of run-time errors

Compilation Interpretation

University
ofGalway.ie

It is important to understand how and why Java does this differently

Translating Java Code

17

Java Code

......

Machine code

Which Type of Translation?

University
ofGalway.ie

• Portability (typically interpreted languages)
• High Performance (typically compiled languages)
• How does Java achieve both?

Java’s Design Goals include:

18

University
ofGalway.ie

Java is typically both compiled and interpreted.

1. Java is compiled to Byte Code – an intermediate language which is portable
2. Then a Java interpreter reads and executes the Byte Code

Java Translation

19

Java Compiler Java Interpreter

University
ofGalway.ie

Java Architecture

20

The code you write

The byte code that is executed by
the Java Virtual Machine

Each JVM
translates the byte
code into machine
code that can run
on each type of
hardwareFor Windows For Linux For Mac

University
ofGalway.ie

• JVM is a piece of software not hardware
• A virtual computer on which Java byte code is executed
• Oracle provide a JVM abstract specification and a concrete

implementation for each operating system type (e.g. Windows, OSX,
Linux)

• There are multiple other specialised JVMs that all run
• See: https://en.wikipedia.org/wiki/List_of_Java_virtual_machines#ActiveJava

Java Virtual Machine (JVM)

21

University
ofGalway.ie

Java Runtime Environment (JRE)

22

• JRE containts the JVM and all libraries required
to run the Java Program

University
ofGalway.ie

• Open BlueJ
• Compile an existing or new project
• Go to your Project Folder
• You will see 5 files

What happens when you compile code?

23

University
ofGalway.ie

• Java is a high-level language.

• Its source code is compiled to intermediate level bytecode

• Bytecode is executed on the Java Virtual Machine

Summary of How Java Works

24

University
ofGalway.ie

In Blue J:
Create a Bicycle class and a Car class
Each Bicycle object should its own speed and gear (.e.g. 1st, 2nd, 3rd etc) state
What type of variable in Java could be used to represent speed and gear (look it up on
the Web)?
Create setSpeed and setGear method that can set the speed /gear state of a bicycle
and a car object and print out the current speed of each
Then Create 3 Bicycle and 3 Car objects
Using the methods above set and print different speed and gear values for each

Learning exercise

25

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

• In the last session, you wrote your first class and created several objects from it

• You were introduced to the notion of state
• Every object has its own state

• An object’s state is generally defined by the values it holds

• Multiple objects can be created from a single class. Each object can have its own state.

Last Lecture - First Java Code

2

University
ofGalway.ie

By the end of this lecture you will be able to implement the following in Java:

• Correct class and method structure

• Define and initialise an int variable

• Use accessor and mutator methods

• Explain the concept of encapsulation

• Print out the object state

• Use the Java conditional statement (if else)

Topics

3

University
ofGalway.ie

In Blue J:
• Create a Bicycle class and a Car class
• Each Bicycle object should its own speed, gear and cadence (e.g. 1st, 2nd, 3rd etc) state
• What type of variable in Java could be used to represent speed, gear and cadence (look it up on the

Web)?
• Create setSpeed, setGear and setCadence method that can set the speed /gear state of a bicycle and a

car object and print out the current speed of each
• Then Create 3 Bicycle and 3 Car objects
• Using the methods above set and print different speed, gear and cadence values for each

Today’s Learning exercise

4

University
ofGalway.ie

Every class has the following structure

Class Structure:

5

public class ClassName
{

Fields
Constructors
Methods

}

University
ofGalway.ie

• Fields store values for an object.
• They are also known as instance variables.
• Fields define the state of an object.
• Use Inspect in BlueJ to view the state.
• Some values change often.
• Some change rarely (or not at all).

Fields

6

public class Bicycle
{

private int speed;
private int gear;
private int cadence;

Further details omitted.
}

private int speed;

visibility modifier
type

variable name

University
ofGalway.ie

Data Type: int

7

University
ofGalway.ie

In encapsulation, the variables of a class will be hidden from other classes
and can be accessed only through the methods of their current class,
therefore it is also known as data hiding.
• Why?
• Basic OOP philosophy: each object is responsible for its own data
• This allows an object to have much greater control
o Which data is available to be viewed externally
o How external objects may change (mutate) the object’s state

Principle 1 of OOP: Encapsulation

8

University
ofGalway.ie

• Making the fields private encapsulates their values inside each object

• No external class or object can access them.

Encapsulation Type: Private

9

public class Bicycle
{

private int speed;
private int gear;
private int cadence;

Further details omitted.
}

University
ofGalway.ie

• Initialize an object.
• Have the same name as their class.
• Close association with the fields:
o Initial values stored into the fields.
o Parameter values often used for these.

Constructors (1)

10

public Bicycle(int spd, int gr, int cad)
{

speed = spd;
gear = gr;
cadence = cad;

}

University
ofGalway.ie

• If input parameter variables have the same name as your fields
• Then you must use the this keyword to distinguish between the two
• this = “belonging to this object”

Constructors (2)

11

public Bicycle(int speed, int gear, int cadence)
{

this.speed = speed;
this.gear = gear;
this.cadence = cadence;

}

University
ofGalway.ie

• There is a lot of freedom over choice of names. Use it wisely!
• Choose expressive names to make code easier to understand:

o price, amount, name, age, etc.
• Avoid single-letter or cryptic names:

o w, t5, xyz123

Choosing Variable Names

12

University
ofGalway.ie

• Methods implement the behaviour of an object.
• Methods have a consistent structure comprised of a header and a body.

• Accessor methods provide information about the state of an object.
• Mutator methods alter the state of an object.
• Other sorts of methods accomplish a variety of tasks.

Methods

13

University
ofGalway.ie

• The header:
o public int getSpeed ()

• The header tells us:
o the visibility to objects of other classes;
o whether the method returns a result;
o the name of the method;
o whether the method takes parameters.

• The body encloses the method’s statements.

Method structure

14

University
ofGalway.ie

Accessor (get) methods

15

public int getSpeed ()
{

return speed;
}

return type
method name

parameter list
(empty)

start and end of method body (block)

return statement

visibility modifier

University
ofGalway.ie

• An accessor method always has a return type that is not void.
• An accessor method returns a value (result) of the type given in the

header.
• The method will contain a return statement to return the value.
• NB: Returning is not printing!

Accessor methods

16

University
ofGalway.ie

C vs. Java

17

• Unlike a C program, an OOP program will not have a pool of
global variables that each method can access

• Instead, each object has its own data – and other objects rely
upon the accessor methods of the object to access the data

University
ofGalway.ie

…

• The instance variables
(or fields) are declared
private

• Cannot be accessed
directly

• accessor/mutator methods
used to access the data

• These are often called
getter/setter methods

18

University
ofGalway.ie

What is wrong here?

Test:

19

public class Bicycle
{
private speed;

public Bicycle()
{

speed = 300
}

public int getSpeed
{

return Speed;
}

(there are five errors!)

University
ofGalway.ie

• Have a similar method structure: header and body.

• Used to mutate (i.e., change) an object’s state.

• Achieved through changing the value of one or more fields.
They typically contain one or more assignment statements.
Often receive parameters.

Mutator Methods (1)

20

University
ofGalway.ie

Mutator Methods (2)

21

public void speedUp(int amount)
{

speed = speed + amount;
}

return type method name
formal parameter

visibility modifier

assignment statementfield being mutated

University
ofGalway.ie

• Each field may have a dedicated set mutator method.

• These have a simple, distinctive form:
void return type
method name related to the field name
single formal parameter, with the same type as the type of the field
a single assignment statement

Mutator Methods: ‘set’

22

University
ofGalway.ie

Mutator Methods: ‘set’

23

public void setGear(int number)
{

gear = number;
}

• We can easily infer that gear is a field of type ‘int’,
• private int gear;

• A typical ‘set’ method

University
ofGalway.ie

• A set method does not have to always assign unconditionally to the
field.

• The parameter may be checked for validity and rejected if inappropriate.

• Mutators thereby protect fields.

• Mutators support encapsulation.

Protective Mutators

24

University
ofGalway.ie

Printing From Methods

25

public void printState()
{

// Simulates output from a bike computer.
System.out.println("##################");
System.out.println("# Speed: " + speed);
System.out.println("# Gear : " + gear);
System.out.println("# Cadence: " + cadence);
System.out.println("##################");
System.out.println();

}

University
ofGalway.ie

Printing From Methods 2

26

public void printState()
{

// Simulates output from a bike computer.
System.out.println("##################");
System.out.printf("# Speed: %d \n ”, speed);
System.out.printf("# Gear : %d \n ”, gear);
System.out.printf("# Cadence: %d \n”, cadence);
System.out.println("##################");
System.out.println();

}

University
ofGalway.ie

Conditional Statement

27

• It has the same format that you have seen in C

if(I have enough money left) {
I will go out for a meal;

} else {
I will stay home and watch a movie;

}

University
ofGalway.ie

Making choices in Java

28

if(perform some test) {
Do these statements if the test gave a true result

}
else {

Do these statements if the test gave a false result
}

‘if’ keyword

boolean condition to be tested

actions if condition is true

actions if condition is false
‘else’ keyword

University
ofGalway.ie

Protecting a Field (1)

29

public void setGear(int gearing)
{

if(gearing <= 18) {
gear = gearing;

}
else {

System.out.println(
”Exceeds maximum gear ratio.

Gear not set”);
}

}
This conditional statement avoids an inappropriate action. It
protects the gear field from too large values

University
ofGalway.ie

public void setGear(int gearing)
{

if(gearing >= 1 && gearing <= 18) {
gear = gearing;

}
else {

System.out.println(
”gear input value not in the

correct range”);
}

} This conditional statement avoids an inappropriate action. It
protects the gear field from too large AND too small values

Protecting a Field (2)

30

University
ofGalway.ie

Summary

31

• You have encountered some of the fundamental ideas in OOP
• A class has fields, a constructor(s) and methods
• Encapsulation - each object’s data (fields) is protected by its

accessor/mutator methods
• If you want to access/change an object’s state, you must use

its accessor/mutator methods
• The use of the ‘private’ keyword prevents external access to an

object’s data

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

• A class has fields, a constructors and methods

• Encapsulation - each object’s data (fields) is protected by its accessor/mutator methods

• If you want to access/change an object’s state, you must use its accessor/mutator methods

• The use of the ‘private’ key word prevents external access to an object’s data

• Java is both compiled and Interpreted

• Java uses JVM to execute the same code on multiple platforms/machines

Summary of Last Two Lectures

2

University
ofGalway.ie

• How to implement a scenario?
• An object can be composed of other objects
• Objects can call each other’s methods
• Java uses Reference types as well as primitive types
• What to watch out for in Integer division
• To use double and boolean primitive values
• To use conditional statements

Today’s Lecture

3

University
ofGalway.ie

We wish to be able to create several Car (objects)

Each car object has an Engine

Each Engine has the following properties
kpg (kilometers per gallon)
fuel (amount of fuel in the tank)

Each Car has a totalDistance (travelled)

An Example Problem to Solve/Implement

4

University
ofGalway.ie

Each Car should have a move method specifying the distance to be
travelled

You may call this method as often as you wish, and the car will print out
– Total distance travelled so far
– Remaining fuel
– Estimated distance left to travel

If you are out of fuel, the car will notify you

Problem

5

University
ofGalway.ie

Firstly, identify the classes

Code up the basic classes

Remember each class should have
Fields
At least one constructor
Methods

How to Start

6

University
ofGalway.ie

Each Car object “has a”/ “has an” Engine

In OOP terms, this means that a Car object relies upon the service of an Engine object

Linking classes

7

University
ofGalway.ie

• Two fundamental relationships between classes in OOP
o has-a (or composition)
o is-a (or inheritance) : we’ll encouter this later

• A RacingBike is-a type of Bicycle (Inheritance)
• A RacingBike has-a Wheel (Composition)

Is-a vs has-a relationships

8

University
ofGalway.ie

• has-a relationship denotes composition
• One object is composed of another and relies upons its services for its

own functionality
• A Vehicle has-a(n) Engine; A Bicycle has a wheel

Representing has-a relationships

9

University
ofGalway.ie

• In OOP class diagrams a diamond shape like this indicates a composition
or has-a relationship

• This class diagram tell us that a Vehicle object is composed of a single
Engine object

Representing has-a relationships

10

University
ofGalway.ie

• To realise a has-a relationship you have to create a link between the
participant classes

• You do this using a new type of variable type: a reference variable type
• The reference declaration is in the owner class
• In our example, the Car class will have reference variable that points to

an Engine object

Realising composition in Java

11

University
ofGalway.ie

Two reference variable of
type Wheel are declared

The variables are
initialised in the
constructor

12

University
ofGalway.ie

13

}

Wheel Class

University
ofGalway.ie

Following this example, you can create a link between Car and Engine

14

University
ofGalway.ie

• What information does the Car object require from Engine object?
o “Each car should have a move method specifying the distance to be

travelled”

• You may call this method as often as you wish and the Car will print out:
o Total distance travelled so far
o Remaining fuel
o Estimated distance left to travel

“If you are out of fuel, the car will notify you”

Information Required

15

University
ofGalway.ie

• What information does the Car object require from Engine object?
•
• We know this
o Engine object has:

 Fuel amount
 kpg (the amount of fuel used per distance)

• Car object has
o The distance amount
o The total distance travelled amount
o A move method

Objects Communicating

16

University
ofGalway.ie

• Car has no information about
fuel levels

• It requires Engine to give it
that

17

Car to Engine Engine to Car
• Engine has no information

about distance
• It requires Car to give it this

(so that it can calculate fuel
consumption)

University
ofGalway.ie

go(int distance) method in Engine class

18

University
ofGalway.ie

setFuel(int fuel) from the Car class

19

University
ofGalway.ie

move(int distance) from the Car class

20

University
ofGalway.ie

• Based on this example sand will be posted later today.

• It will be due next Friday.

First Assignment

21

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

• A class has fields, a constructors and methods

• Encapsulation - each object’s data (fields) is protected by its accessor/mutator methods

• If you want to access/change an object’s state, you must use its accessor/mutator methods

• The use of the ‘private’ key word prevents external access to an object’s data

• Java is both compiled and Interpreted

• Java uses JVM to execute the same code on multiple platforms/machines

Summary of Last Two Lectures

2

University
ofGalway.ie

• How to implement a scenario?
• An object can be composed of other objects
• Objects can call each other’s methods
• Java uses Reference types as well as primitive types
• What to watch out for in Integer division
• To use double and boolean primitive values
• To use conditional statements

Today’s Lecture

3

University
ofGalway.ie

We wish to be able to create several Car (objects)

Each car object has an Engine

Each Engine has the following properties
kpg (kilometers per gallon)
fuel (amount of fuel in the tank)

Each Car has a totalDistance (travelled)

An Example Problem to Solve/Implement

4

University
ofGalway.ie

Each Car should have a move method specifying the distance to be
travelled

You may call this method as often as you wish, and the car will print out
– Total distance travelled so far
– Remaining fuel
– Estimated distance left to travel

If you are out of fuel, the car will notify you

Problem

5

University
ofGalway.ie

Firstly, identify the classes

Code up the basic classes

Remember each class should have
Fields
At least one constructor
Methods

How to Start

6

University
ofGalway.ie

Each Car object “has a”/ “has an” Engine

In OOP terms, this means that a Car object relies upon the service of an Engine object

Linking classes

7

University
ofGalway.ie

• Two fundamental relationships between classes in OOP
o has-a (or composition)
o is-a (or inheritance) : we’ll encouter this later

• A RacingBike is-a type of Bicycle (Inheritance)
• A RacingBike has-a Wheel (Composition)

Is-a vs has-a relationships

8

University
ofGalway.ie

• has-a relationship denotes composition
• One object is composed of another and relies upons its services for its

own functionality
• A Vehicle has-a(n) Engine; A Bicycle has a wheel

Representing has-a relationships

9

University
ofGalway.ie

• In OOP class diagrams a diamond shape like this indicates a composition
or has-a relationship

• This class diagram tell us that a Vehicle object is composed of a single
Engine object

Representing has-a relationships

10

University
ofGalway.ie

• To realise a has-a relationship you have to create a link between the
participant classes

• You do this using a new type of variable type: a reference variable type
• The reference declaration is in the owner class
• In our example, the Car class will have reference variable that points to

an Engine object

Realising composition in Java

11

University
ofGalway.ie

Two reference variable of
type Wheel are declared

The variables are
initialised in the
constructor

12

University
ofGalway.ie

13

}

Wheel Class

University
ofGalway.ie

Following this example, you can create a link between Car and Engine

14

University
ofGalway.ie

• What information does the Car object require from Engine object?
o “Each car should have a move method specifying the distance to be

travelled”

• You may call this method as often as you wish and the Car will print out:
o Total distance travelled so far
o Remaining fuel
o Estimated distance left to travel

“If you are out of fuel, the car will notify you”

Information Required

15

University
ofGalway.ie

• What information does the Car object require from Engine object?
•
• We know this
o Engine object has:

 Fuel amount
 kpg (the amount of fuel used per distance)

• Car object has
o The distance amount
o The total distance travelled amount
o A move method

Objects Communicating

16

University
ofGalway.ie

• Car has no information about
fuel levels

• It requires Engine to give it
that

17

Car to Engine Engine to Car
• Engine has no information

about distance
• It requires Car to give it this

(so that it can calculate fuel
consumption)

University
ofGalway.ie

go(int distance) method in Engine class

18

University
ofGalway.ie

setFuel(int fuel) from the Car class

19

University
ofGalway.ie

move(int distance) from the Car class

20

University
ofGalway.ie

• Based on this example sand will be posted later today.

• It will be due next Friday.

First Assignment

21

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• A variable is a symbol used to store a value
• E.g. x = 5

• In strongly typed language, you have to tell the compiler/interpreter what type the variable is

• The Compiler/Interpreter knows how much space to allocate it in memory

Variables and Types

2

University
ofGalway.ie

Java Primitive Variables

3

University
ofGalway.ie

• Each primitive variable has a default value.

• The default value is used only when the variable is used as a field (instance variable)

• If the field is not explicitly assigned a value, the default value is used

• For example, the default value for an int variable is 0 (zero)

Default values

4

Useful example and summary:
https://www.codejava.net/java‐core/the‐java‐language/java‐default‐initialization‐of‐
instance‐variables‐and‐initialization‐blocks

University
ofGalway.ie

Example

5

University
ofGalway.ie

6

speed value returned
is the default value for
an int: 0

University
ofGalway.ie

• The Code pad in Blue J automatically initialises variables just as if they were instance variables.

• This will not happen in a true Java program!

• But it is useful for learning the default values.

Default Values

7

University
ofGalway.ie

Your turn – type a variable of each type into
Code Pad
E.g type: int y;
Hit return
then type: y
Hit return
Write down the default
value returned for each
type

Default Values

8

University
ofGalway.ie

Starting Example

9

University
ofGalway.ie

10

University
ofGalway.ie

Java Primitive Variables

11

Default values

University
ofGalway.ie

• A reference type is a data type that’s based on a class rather than
on one of the primitive types that are built into the Java language.

• In fact, there are four categories of reference type:
o Object Types
o Interface Types
o Enum Types
o Array Types

• For now, we will focus on Object types, the others will follow
easily

Reference/Object Types

12

University
ofGalway.ie

• A variable that is a reference type is a variable that points to an
object

• A primitive variable contains the value of the primitive type .
• e.g. int x = 7; x contains the int value 7
• A reference variable contains the value of the memory location
of an object

• E.g.Wheel wheel = newWheel();
• The wheel variable contains the value of the memory location of
the new Wheel object

Object Reference Type: Key points

13

University
ofGalway.ie

• A reference variable does not contain the value of the object

• A reference variable contains the value of the memory
location of the object

• It is a pointer

Key point to Remember

14

University
ofGalway.ie

• The default value of all reference variables is null;
• null is a special value in Java
• It means ‘No object’
• When you first declare a reference variable, its value is null

Null Default value

15

University
ofGalway.ie

• One of the most common errors generated when running a program in Java is NullPointerException

• This error is thrown when your program encounters a reference variable that has not been initialised

• This means that the variable points to its default value = null

• Your program then tries to get the object that the variable is pointing to to do something.

• But the object doesn’t exist. Variable actually points to null.

• This causes Java to generate a NullPointerException

NullPointerException

16

University
ofGalway.ie

Using your previously defined Bicycle class, type the following into Code
Pad

Example

17

bike1, bike2 are assigned to
point to the Bicycle objects just
initialised

bike1, bike2 again point to null

What has happened to the previously initialised
Bicycle objects?

University
ofGalway.ie

Understanding References

18

bike1

bike2

null

University
ofGalway.ie

Understanding References

19

bike1

bike2

Objects stored at
memory locations

A@15641d

The actual values of bike1,
bike2 are memory
locations

A@93041f

A@15641d

University
ofGalway.ie

Understanding References

20

bike1

bike2

Objects stored at
memory locations

A@15641d

bike1 now takes the
same value as bike2

A@93041f

A@15641d

University
ofGalway.ie

Understanding References

21

bike1

bike2

What happens to
this object?

A@15641d

bike1 now takes the
same value as bike2

A@93041f

A@15641d

University
ofGalway.ie

Understanding References

22

bike1

bike2

What happens to
both these object?

null

A@93041f

A@15641d

University
ofGalway.ie

This is what is called a memory leak.
In this case, you have two objects
occupying memory and you have
not deallocated them from memory
In fact, there is no way to
deallocate them
in Java!
So how do you
deal with
lost objects?

Memory Leak

23

bike1

bike2

What happens to
both these object?

null

A@93041f

A@15641d

University
ofGalway.ie

• The Garbage collector is part of the JRE’s memory management system

• It runs in the background keeping track of the live objects in a program and marking the rest as garbage

• The data in these marked areas are subsequently deleted, freeing up memory

Garbage Collector

24

University
ofGalway.ie

Understanding References

25

bike1

bike2

null

Garbage Collector

University
ofGalway.ie

Understanding References

26

bike1

bike2
A@15641d

The actual values of bike1,
bike2 are memory locations

Garbage collector

A@93041f
A@15641d

live
live

A@93041f

A@15641d

University
ofGalway.ie

Understanding References

27

bike1

bike2
A@15641d

Bike1 now takes the
same value as bike2

Garbage collector

A@93041f
A@15641d

unreferenced
live

A@93041f

A@15641d

University
ofGalway.ie

Understanding References

28

bike1

bike2
A@15641d

Bike1 now takes the
same value as bike2

Garbage collector

A@93041f
A@15641d

delete
live

Yum, yum

A@93041f

A@15641d

University
ofGalway.ie

Understanding References

29

bike1

bike2
A@15641d

Bike1 now takes the
same value as bike2

Garbage collector

A@15641d live

A@15641d

University
ofGalway.ie

Understanding References

30

bike1

bike2

null

Garbage collector

A@15641d unreferenced

A@15641d

University
ofGalway.ie

Understanding References

31

bike1

bike2

null

Garbage collector

A@15641d delete

A@15641d

University
ofGalway.ie

Understanding References

32

bike1

bike2

null

Garbage collector

waiting…for its next
unreferenced object

University
ofGalway.ie

The value of a variable in Java can be
1) A primitive
2) A reference value
3) An object

True or False?

33

University
ofGalway.ie

The value of a variable in Java can be
1) A primitive
2) A reference value
3) An object

False

34

The value of a variable is never an object. However, it
can take a reference value to an object

University
ofGalway.ie

Car car = new Car("X7");
Engine engine = new Engine("DR9", 43);
car.add(engine);
Wheel wheel = new Wheel ("Wichelin15", 15);
car.add(wheel);
car.setFuel(100);
car.run();
car.getDistance();

Assignment Steps

35

University
ofGalway.ie

The code before is our test
It specifies the minimum we have to do to demonstrate the overall
program works as per the problem specification
Once the code we have written outputs what we want, we can stop
This will be version 1 of our assignment

Test‐driven development

36

University
ofGalway.ie

We have three classes: Car, Engine and Wheel
We know the properties of each class
We have composition relationships between them

Car composed of Engine
Engine composed of Wheel

We know that they have to create a few methods in each class so
that objects can call each other in order for the program to
deliver the functionality we require

What we know

37

University
ofGalway.ie

Test‐driven development = incremental approach to solving a problem
Incrementally create Stub classes and Stub methods so that your code compiles and runs at all times
To start with, it may run – but it may do nothing interesting.
Gradually we add functionality – making sure it compiles and runs
We keep doing this until we achieve our minimum criteria for success
In this case ‐ we want to print out the distance achieved

Approach

38

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• An object is responsible for how its data is represented internally.
• Constructors are special methods used to bootstrap an object into existence – and generally used to

initialise its state.
• Java has two types of variables

o Primitive types
o Reference types

• The Java Garbage Collector runs in the background monitoring which objects are live (referenced). The
remainder of objects in memory are marked for deletion

Ideas Encountered So Far

2

University
ofGalway.ie

• A major part of OOP is modelling the problem. The goal is to identify:
o The principle objects in the problem domain
o We model these as a classes

• The responsibility of each of these objects
o What does it do?

• What are the collaborations between objects?
o What other object does it communicate with?

OOP modelling

3

University
ofGalway.ie

• Identify the main (real) concepts in the problem domain

• Our objective is to produce a simplified class diagram
• classes represent real‐world entities
• associations represent collaborations between the entities
• attributes represent the data held about entities
• generalization can be used to simplify the structure of the model (we’ll look at this later)

When attempting an OOP solution

4

University
ofGalway.ie

• This should be a fairly quick process

• You can expect your model to be incomplete on your first iteration

• There may well be important conceptual objects in the domain that
you do not discover until implementation

Perspective

5

University
ofGalway.ie

• Write down a description of what your program is required to do?
• Identify and list the nouns in each description
• The goal is to identify
o Potential Objects
o Attributes of objects

• Some of these objects may eventually be modelled as software
classes and objects

• This is the beginning of a process of identification, refinement and
(re‐)modelling

Identify the Objects/Classes

6

University
ofGalway.ie

• Nouns = candidate objects

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer provides payment and address to process
the sale. The System validates the payment and responds by confirming the order, and provides the order
number that the customer can use to check on the order status. The System will send the customer a copy
of the order details by email

Example: Stage 1: Identify nouns

7

University
ofGalway.ie• Nouns = candidate objects

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer provides
payment and address to process the sale. The System validates the
payment and responds by confirming the order, and provides the order
number that the customer can use to check on the order status. The
System will send the customer a copy of the order details by email

Identify nouns

8

University
ofGalway.ie

• Identify duplicates (e.g sale and order)
• You may find yourself combining/splitting
some of these concepts

• Which are properties?
9

University
ofGalway.ie

Attributes of Order

Avoid global objects such as System
These will tend to accumulate too much responsibility

10

University
ofGalway.ie

Now we want to understand
the relationships between

these objects

A simple class diagram of the conceptual objects

11

University
ofGalway.ie

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart.
Customer provides payment and address to process the
sale. The System validates the payment and responds by
confirming the order, and provides the order number that
the customer can use to check on the order status. The
System will send the customer a copy of the order details
by email

Initially associations may be identified by the relationships in the
description

Stage 2: Identify assocications

12

University
ofGalway.ie

Customer, Shopping Cart
Shopping Cart, Item
Customer, Order
Order, Payment, Address, Email

Potential Associations

13

University
ofGalway.ie

May be useful to add a short
note to describe the

relationships

14

University
ofGalway.ie

Examine the verbs and verb phrases in each Use Case

Stage 3: Identify Responsibilities

15

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart.
Customer provides payment and address to process the
sale. The System validates the payment and responds by
confirming the order, and provides the order number that
the customer can use to check on the order status. The
System will send the customer a copy of the order details
by email

University
ofGalway.ie

Stage 3: Identify Responsibilities

16

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart.
Customer provides payment and address to process the
sale. The System validates the payment and responds by
confirming the order, and provides the order number that
the customer can use to check on the order status. The
System will send the customer a copy of the order details
by email

Examine the verbs and verb phrases in each Use Case

University
ofGalway.ie

However, it may not be obvious from the description where
these responsibilities should reside

• Examine the verbs and verb phrases in each Use Case

Stage 3: Identify Responsibilities

17

‐ Verify Items
‐ Provide Payment and address
‐ Process sale
‐ Validate Payment

‐ Confirm order
‐ Provide order number
‐ Check order status
‐ Send order details by email

University
ofGalway.ie

Determine which responsibilities belong to which class
Stage 4: Assign Responsibilities

18

Customer
Shopping Cart
Payment
Order
Email
AddressConfirm order

Provide order number
Check order status
Send order details by email

Verify Items
Provide Payment and address
Process sale
Validate Payment

Candidate responsibilities Candidate Classes

University
ofGalway.ie

Consider the following principles when assigning responsibilities
1. An Object is responsible for its own data

An object has responsibility for communicating its state
2. Single Responsibility Principle: Each Class should have a single responsibility

All its services should be aligned with that responsibility

OO Principles

19

University
ofGalway.ie

• Consider the responsibility Check order status
• The real customer initiates this action
• However which object should be responsible for checking the order status?

20

An object is responsible for
communicating its own state

get status

University
ofGalway.ie

Now Attach method to the classes

21

• Verify Items
• Provide Payment and address
• Process sale
• Validate Payment

• Confirm order
• Provide order number
• Check order status
• Send order details by email

get status

University
ofGalway.ie

1. An Object is responsible for its own data
An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a
single responsibility

All its services should be aligned with that responsibility

Recall OO Principles

22

University
ofGalway.ie

Assigning Responsibilities

23

University
ofGalway.ie

Some objects seems to have no/few responsibilities – not a problem
The scenario we presented focused on one aspect of the overall
The diagram doesn’t show which entities initiate actions

A commonmistake in OO modelling is to assign too much responsibility to the actor (the user)
Another common mistake is to assign lots of responsibility to a centralised System object

Perspective

24

University
ofGalway.ie

Working with ‘System’

25

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart.
Customer provides payment and address to process the
sale. The System validates the payment and responds by
confirming the order, and provides the order number that
the customer can use to check on the order status. The
System will send the customer a copy of the order details
by email

University
ofGalway.ie

On first inspection it may seem that you need a centralised System object with many responsibilites.
Often this will be a poor design decision
“System validates payment” = “some part of the system validates payment”
Your job is to figure out which part of the System should have this responsibility

Working with ‘System’

26

University
ofGalway.ie

Avoid ‘God Objects’: Objects that know and do too much

27

University
ofGalway.ie

https://en.wikipedia.org/wiki/God_object

28

University
ofGalway.ie

Responsibilities should be distributed

29

University
ofGalway.ie

• A major part of OOP is modelling the problem
• Identifying the principle objects, their responsibilities and

collaborations between objects
• Key idea is to develop a description of how the program ought to

work
• Extract nouns ‐> candidate classes/objects
• Examine relationships in text ‐ > object associations
• Examine verbs ‐> possible methods
• Asssign responsibilities to classes

• Consider the single responsibility principle, and object encapsulation
(in charge of its own state)

• Avoid God objects

Lecture Summary

30

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• A major part of OOP is modelling the problem
• The goal is to identify:
• The principle objects in the problem domain
o We model these as a classes

• The responsibility of each these objects
o What does it do?

• What are the collaborations between objects
o What other object does it communicate with

OOP Modelling

2

University
ofGalway.ie

• Identify the main (real) concepts in the problem domain
• Our objective is to produce a simplified class diagram
o classes represent real‐world entities
o associations represent collaborations between the entities
o attributes represent the data held about entities
o generalization can be used to simplify the structure of the model

(we’ll look at this later)

When attempting an OOP solution

3

University
ofGalway.ie

• Write down a description of what your program is required to do
• Identify and list the nouns in each description
• The goal is to identify
o Potential Objects
o Attributes of objects

• Some of these objects may eventually be modelled as software
classes and objects

• This is the beginning of a process of identification, refinement and
(re‐)modelling

Identify the objects/Classes

4

University
ofGalway.ie

Program Description

5

A Java program for handling a customer online transaction
The customer verifies the items in their shopping cart. Customer
provides payment and address to process the sale. The System
validates the payment and responds by confirming the order, and
provides the order number that the customer can use to check on
the order status. The System will send the customer a copy of the
order details by email

University
ofGalway.ie

Sale = Order

Avoid global objects such as System
These will tend to accumulate too much responsibility

6

Attributes of Order

University
ofGalway.ie

Now we want to understand
the relationships between

these objects

A simple class diagram of the conceptual objects

7

University
ofGalway.ie

Initially, associations may be identified by the relationships in the
description

Stage 2: Identify Assocications

8

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer
provides payment and address to process the sale. The System
validates the payment and responds by confirming the order, and
provides the order number that the customer can use to check on the
order status. The System will send the customer a copy of the order
details by email

University
ofGalway.ie

Customer, Shopping Cart
Shopping Cart, Item
Customer, Order
Order, Payment, Address, Email

Potential Associations

9

University
ofGalway.ie

May be useful to add a short
note to describe the

relationships

10

University
ofGalway.ie

Examine the verbs and verb phrases in each Use Case

However, it may not be obvious from the description
where these responsibilities should reside

Stage 3: Identify Responsibilities

11

Verify Items
Provide Payment and address
Process sale
Validate Payment

Confirm order
Provide order number
Check order status
Send order details by email

University
ofGalway.ie

Determine which responsibilities belong to which class

Stage 4: Assign Responsibilities

12

Customer
Shopping Cart
Payment
Order
Email
Address

Confirm order
Provide order number
Check order status
Send order details by email

Verify Items
Provide Payment and address
Process sale
Validate Payment

Candidate responsibilities Candidate Classes

University
ofGalway.ie

1. An Object is responsible for its own data
o An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a single
responsibility

o All its services should be aligned with that responsibility

Recall OO Principles

13

University
ofGalway.ie

Responsibilities should be distributed

14

University
ofGalway.ie

Iterative, Incremental Development

15

E.g. Create program description
– what is it supposed to do;
Extract nouns, verbs

E.g. Identify classes,
responsibilities,
behaviours and
associations

Create a test scenario, code the
classes and relationships

E.g. does your code
pass the test

Done

Done

University
ofGalway.ie

Firstly create a test class, to test how the candidate classes should work
together

You should set ameasureable objective for your test class to achieve
i.e. If your classes work correctly they should calculate/output a particular
number or message

In fact, you did this for Assignment 1

Starting to Code: Set yourself an objective

16

University
ofGalway.ie

Car car = new Car("X7");
Engine engine = new Engine("DR9", 43);
car.add(engine);
Wheel wheel = new Wheel ("Wichelin15", 15);
car.add(wheel);
car.setFuel(100);
car.drive();
car.getDistance();

Test Output
This program should output how far a particular Car configuration can travel given a full tank of
fuel (say 100 units)

Assumption
If the Test code can output the correct distance value for the fuel value, then the code works

Test Scenario Code

17

University
ofGalway.ie

1. Create Customer object
2. Create Shopping Cart object for the Customer
3. Add 3 items with known cost to cart
4. Finalise the cart and create an order
5. Add a delivery address for the order
6. Add a payment type
7. Validate the payment
8. If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

Test Code Scenario v1

18

University
ofGalway.ie

1. Write a basic test class to test the scenario. The class will have a main method
2. Line by line, write the outline code of the scenario
3. As you write it, you should try to compile it.
4. In each step, do enough to make it compile

At the end of this process you will have a rough outline of v1 of the overall solution.
It may not run properly – but you will have made many of the key modelling/implementation decisions

Turning this into code

19

University
ofGalway.ie

• As you implement your test scenario, you will be faced with fundamental modeling/implementation
questions.

• E.g. What is the correct relationship between Customer and Shopping Cart?
o Cart has a customer?
o Customer has a Cart?

• What is the relationship between a Cart and an Order?
• How does an order object get access to the shopping cart data?
• How do you prevent new items being added to a Cart, once an order (based on the cart) has been

initialised

Modeling Questions

20

University
ofGalway.ie

21

University
ofGalway.ie

• Create a method to hold the code for each scenario
• Alternatively, You could write the code directly into the main
method

• However, having a separate method for each scenario allows
you to test multiple scenarios at once

22

University
ofGalway.ie

23

• To get started, get transaction1 working
• Create stub code for each of these methods in
order to have your code compile

• For now, we’ll only work on transaction1

University
ofGalway.ie

24

University
ofGalway.ie

1. Create Customer object
2. Create Shopping Cart object for the Customer
3. Add 3 items with known cost to cart
4. Finalize the cart and create an order
5. Add a delivery address for the order
6. Add a payment type
7. Validate the payment
8. If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

25

Goal: turn the steps below into code within the transaction1 method

University
ofGalway.ie

1. Add a line of code
2. Do the minimum required to get it to compile
3. Do 1 and 2 until finished the scenario

• At this point you will have compiling stub code for all the classes you need.
• Your code will still require work to make it run correctly – but you have at least 50% of the work done.
• For every change you make, make sure to recompile your code

Method: proceed in steps

26

University
ofGalway.ie

Just write a line of code to create a Customer object

Your program won’t compile because there is no Customer class ‐ yet

Create a Customer object

27

University
ofGalway.ie

28

University
ofGalway.ie

29

University
ofGalway.ie

1. Question you should ask yourself: What are the properties and
responsibilities of the Customer object in this programme.

2. List the properties that a Customer might have
3. These will be the fields of the Customer class
4. Create the field variables ‐ what type will each of these have?

A Customer class

30

University
ofGalway.ie

Step 2 of the scenario:

“Create Shopping Cart object for the Customer”

Shopping Cart class

31

University
ofGalway.ie

• What is the role of the shopping Cart?
• What are its properties/responsibilities/relationships etc
• Recall our earlier analysis

ShoppingCart

32

University
ofGalway.ie

• What is the relationship between ShoppingCart and Customer
a) Does a Customer have a Cart?
b) Does a Cart have a Customer ?

• Justify the decision you will make

Shopping Cart and Customer

33

University
ofGalway.ie

• add Items
• remove items
• print out the the Items in it
• display totals
• lock it so that items cannot be added/removed from it
• We want to be able to clear it completely.

• Write the Shopping Cart code

Shopping Cart Requirements

34

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• Create a test class to test your code
• Line by line create the stub code and methods
• Until you have the outline of your programme compiling
• Even getting to this stage will force you to make many of the key

decisions for your solution
o Object properties and methods
o Object collaboration

Yesterday’s lecture

2

University
ofGalway.ie

• Class
• A blueprint or template or set of instructions to build a specific type of object.
• Every object is built from a class.
• Each class should be designed and programmed to realise a single responsibility
•

• Method
• A method is the equivalent of a function.
• Methods are the actions that perform operations on a variable (Fields)

Revision (1)

3

University
ofGalway.ie

Encapsulation
• Binding ‘object’ state (fields) and behaviour (methods) together.
• Creating a class means you are doing encapsulation.
• The core idea is to:
o Hide the implementation details from users
o No method outside the class can access it directly.

• How?
o Private
o Protected

Revision (2)

4

University
ofGalway.ie

Program Description

5

A Java program for handling a customer online transaction
The customer verifies the items in their shopping cart.
Customer provides payment and address to process the sale.
The System validates the payment and responds by confirming
the order, and provides the order number that the customer
can use to check on the order status. The System will send the
customer a copy of the order details by email

University
ofGalway.ie

6

Uses

1 *

Places

Paid by

Contains

University
ofGalway.ie

1. Create Customer object
2. Create Shopping Cart object for the Customer
3. Add 3 items with known cost to cart
4. Finalise the cart and create an order
5. Add a delivery address for the order
6. Add a payment type
7. Validate the payment
8. If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

Test Code Scenario v1

7

University
ofGalway.ie

We created a test class

8

University
ofGalway.ie

1. Create Customer object
2. Create Shopping Cart object for the Customer
3. Add 3 items with known cost to cart
4. Finalise the cart and create an order
5. Add a delivery address for the order
6. Add a payment type
7. Validate the payment
8. If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

9

Goal: turn the steps below into code (within the transaction1 method)

University
ofGalway.ie

1. Add a line of code
2. Do the minimum required to get it to compile
3. Do 1 and 2 until finished the full scenario

Method: Proceed in steps

10

University
ofGalway.ie

1. Create Customer object
2. Create Shopping Cart object for the Customer
3. Add 3 items with known cost to cart
4. Finalise the cart and create an order
5. Add a delivery address for the order
6. Add a payment type
7. Validate the payment
8. If successful, email the customer with a success email and the cost of

the purchased items

Test Code Scenario v1

11

University
ofGalway.ie

Just write a line of code to create a Customer object

Your program won’t compile because there is no Customer class ‐ yet

Create a Customer object

12

University
ofGalway.ie

13

University
ofGalway.ie

14

University
ofGalway.ie

What are the properties and responsibilities of the Customer object in this
programme?

The Customer object holds the data about the Customer data
Any object can request information about the Customer from it

Customer

15

University
ofGalway.ie

16

University
ofGalway.ie

Update your code in the TransactionTest class

17

University
ofGalway.ie

1. Create Customer object
2. Create Shopping Cart object for the Customer
3. Add 3 items with known cost to cart
4. Finalise the cart and create an order
5. Add a delivery address for the order
6. Add a payment type
7. Validate the payment
8. If successful, email the customer with a success email and the cost of the purchased items

Test Code Scenario v1

18

University
ofGalway.ie

• Now add the code for the Shopping Cart

• Your code won’t compile, because you haven’t yet created a Shopping
cart class

• This is your cue to create the ShoppingCart class

ShoppingCart Class

19

University
ofGalway.ie

• What fields might a Shopping Cart have? Briefly explain the
reason for each field.

• cartId: a unique numerical Id for the Cart
• time: the date/time it was created
• items: to hold the items in the cart
• total : to hold the total for the items in the cart

Shopping Cart fields?

20

University
ofGalway.ie

• Methods belonging to a shopping cart?

• Here are some potential ones:
• add Item
• remove item
• print out the the Items in it
• display total
• lock it so that items cannot be added/removed from it
• clear the cart.

Shopping Cart behaviours?

21

University
ofGalway.ie

a) Does a Customer have a Cart?
b) Does a Cart have a Customer ?

Customer / Cart Relationship?

22

University
ofGalway.ie

Fields:
cartId: numerical
time: String
items: holds a collection
total: numerical
customer: ref type Customer

Class exercise: Create a Shopping Cart class

23

Methods:
addItem
removeItem
getTotal
getCartId
getCustomer
printItems
close
clear

The Item class is in the
next slide – you can
download if from
Blackboard

University
ofGalway.ie

Item Class

24

University
ofGalway.ie

After you have defined the fields start with defining the addItemmethod
See the tutorial on Collections for help with this
adding an object (in this case, an Item) to a collection

addItem

25

University
ofGalway.ie

• Based on the code we’ve written so far

• Remember:
• Code in increments
• Always set your code a measureable objective
• Such as the test scenario mentioned earlier

• Create a version 0.1 with basic functionality – this will teach you a lot
about the problem

Assignment 2

26

University
ofGalway.ie

• Much of OOP is about making modeling decisions

• A model is a simplified representation of reality

• Core modeling decisions: what are the objects, what data do they
contain, what are their responsibilities, what are their associations with
each other

Lecture Wrap‐up (1)

27

University
ofGalway.ie

• Start by identifying the objects and relationships in the problem domain
– these are candidate objects for your code solution

• It is important to set your code an objective or test before writing the
code

• Create the stub code for your classes/methods

• Compile and develop step by step

Lecture Wrap‐up (2)

28

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• Much of OOP is about making good modeling decisions
• A model is a simplified representation of reality
• Core modeling decisions: what are the objects, what are their responsibilities, what are their

associations with each other
• Start by identifying the objects and relationships in the problem domain – these are candidate objects
• It is important to set your code an objective or test before writing the code
• Create the stub code for your classes
• Development, particularly OO development is incremental and iterative

Last Week

2

University
ofGalway.ie

This lecture will prepare the groundwork for the next major topic we
cover in OOP:

• Inheritance

Today’s topics:
• Object equivalence

This lecture

3

University
ofGalway.ie

• Open BlueJ
• Create a new Project
• Make sure Code Pad is displayed
• (View‐> Show Code Pad)

4

University
ofGalway.ie

1. Create a String variable str1 to hold a String value “Java”
2. Type str1 into CodePad. It should return the value “Java”
3. Create another String variable str2 to hold a String value “Ja”
4. Create another String variable str3 to hold a String value “va”
5. Create another String object str4 to hold the String value when str3 is added

to str2
6. Type str4 into CodePad. It should return the value “Java”

Instructions 1

5

University
ofGalway.ie

You are now going to check for the equality of the values of str1 and str4
1. Write an if statement to test if str1 has the same value as str4
2. The if statement should print out true if str1 has the same value as

str4 and false if they do not print out the same value
(Hold down the Shift and Enter keys to enter more than one line in
CodePad)

Instructions 2

6

University
ofGalway.ie

int x = 8;
int y = 9;

if(x==y){
System.out.println(“true”);

} else{
System.out.println(“false”);

}

Hint

7

University
ofGalway.ie

How many wrote something like this?

8

University
ofGalway.ie

What will the output be?

9

University
ofGalway.ie

• Why is the value of str1 not equal to the value of str4
• The answer is that the values of str1 and str4 are memory references to
different objects

• It doesn’t t matter that the objects may contain the same data (“Java”)
• When you use == with reference variables you are simply checking if
the variables point to the same object

Why?

10

University
ofGalway.ie

String str1

String str2

String str3

String str4

11

Variables Objects

“Java”

“Ja”

“va”

“Java”

Different String objects

University
ofGalway.ie

The value of str1 is the memory location where its String object is stored
The value of str4 is the memory location where its String object is stored
So str1 is not equal (==) to str4

12

University
ofGalway.ie

• When checking for equality between objects
you must use the equalsmethod

• The equals method is an instance method that
all objects have

• Its specific purpose is to define equality
between objects

• It returns a boolean value

Object Equality

13

University
ofGalway.ie

You can download this code snippet from Blackboard

14

University
ofGalway.ie

Rewrite the code and run

15

true

Output:

University
ofGalway.ie

In this case, we use the equals method of the String object
referenced by str1
It accepts the value of str4 as an input parameter and returns true
or false

16

University
ofGalway.ie

str1.equals(str4)

must return the same boolean value as…

str4.equals(str1)

equals must be commutative

17

University
ofGalway.ie

• Every single object has an equals method
• Because evaluating the equality between objects is a very common
function
o E.g for searching, sorting

• For the built‐in classes of Java, the equals method will already be
defined

• But for any class that you define you will have to write the equals
method

Every object has an equals method

18

University
ofGalway.ie

• We will now spend a few minutes looking at the collection tutorial
• There are two separate PDFs that can be found in Week 4 on Blackboard

• We will also look at looping over items in a collection

Tutorial ‐ Collections

19

Grouping objects

Introduction to collections

6.0

2

Main concepts to be covered

• Collections
(especially ArrayList)

3

The requirement to group
objects

• Many applications involve collections of
objects:
– Personal organizers.
– Library catalogs.
– Student-record systems.

• The number of items to be stored varies.
– Items added.
– Items deleted.

4

Java Class libraries

• Collections of useful classes.
• We don’t have to write everything from

scratch.
• Java calls its libraries, packages.
• Grouping objects is a recurring

requirement.
– The java.util package contains multiple

classes for doing this.

5

An organizer for music files

• Single-track files may be added.
• There is no pre-defined limit to the

number of files/tracks.
• It will tell how many file names are

stored in the collection.
• It will list individual file names.
• It will allow you to remove a file

6

v1

• One class : Music Organizer
• We will use Strings as Files for version 1
• Methods:

– addFile
– getNumberOfFiles
– listFile
– removeFile

7

Collections

• We specify:
– the type of collection: ArrayList
– the type of objects it will contain:
<String>

– private ArrayList<String> files;

• We say, “ArrayList of String”.

8

Generic classes

• Collections are known as parameterized or
generic types.

• ArrayList implements list functionality:
– add, get, size, etc.

• The type parameter says what we want a list
of:
– ArrayList<Person>
– ArrayList<TicketMachine>

– etc.

9

Creating an ArrayList object

• In versions of Java prior to version 7:
– files = new ArrayList<String>();

• Java 7 introduced ‘diamond notation’
– files = new ArrayList<>();

• The type parameter can be inferred
from the variable being assigned to.
– A convenience we will use.

10

Object structures with
collections

11

Adding a third file

12

Features of the collection

• It increases its capacity as necessary.
• It keeps a private count:

– size() accessor.

• It keeps the objects in order.
• Details of how all this is done are

hidden.
– Does that matter? Does not knowing how

prevent us from using it?

• No - this is a key idea of encapsulation

13

Generic classes

• We can use ArrayList with any class
type:
ArrayList<TicketMachine>
ArrayList<ClockDisplay>
ArrayList<Track>
ArrayList<Person>

• Each will store multiple objects of the
specific type.

14

Using the collection
public class MusicOrganizer
{

private ArrayList<String> files;

...

public void addFile(String filename)
{

files.add(filename);
}

public int getNumberOfFiles()
{

return files.size();
}

...
}

Adding a new file

Returning the number of files
(delegation)

15

Index numbering

16

Retrieving from the collection

Index validity checks
public void listFile(int index)
{

if(index >= 0 && index < files.size()) {
String filename = files.get(index);
System.out.println(filename);

}
else {

// This is not a valid index.
}

}

Retrieve and print the file name

Needed? (Error message?)

17

Removal may affect
numbering

18

The general utility of indices

• Using integers to index collections has a
general utility:
– ‘next’ is: index + 1
– ‘previous’ is: index – 1
– ‘last’ is: list.size() – 1
– ‘the first three’ is: the items at indices 0,
1, 2

• We could also think about accessing
items in sequence: 0, 1, 2, …

19

Review

• Collections allow an arbitrary number
of objects to be stored.

• Class libraries usually contain tried-
and-tested collection classes.

• Java’s class libraries are called
packages.

• We have used the ArrayList class
from the java.util package.

20

Review

• Items may be added and removed.
• Each item has an index.
• Index values may change if items are

removed (or further items added).
• The main ArrayList methods are
add, get, remove and size.

• ArrayList is a parameterized or
generic type.

21

Learning task

Create a class that can organise a group
of objects
• E.g. a Library of books
• A course with students registered
• A Team with players
• A league with teams

The choice is yours

Grouping objects

the for-each and while loops

33

Iteration

• We often want to perform some actions an
arbitrary number of times.
– E.g., print all the file names in the organizer. How

many are there?

• Most programming languages include loop
statements to make this possible.

• Java has several sorts of loop statement.
– We will start with its for-each loop.

34

Iteration fundamentals

• The process of repeating some actions
over and over.

• Loops provide us with a way to control
how many times we repeat those
actions.

• With a collection, we often want to
repeat the actions: exactly once for
every object in the collection.

35

For-each loop pseudo code

for(ElementType element : collection) {
loop body

}

Using each element in collection in order, do the things in the
loop body with that element.

loop header
for keyword

Action(s) to be repeated

Pseudo-code expression of the
operation of a for-each loop

General form of the for-each loop

36

A Java example

/**
* List all file names in the organizer.
*/
public void listAllFiles()
{

for(String filename : files) {
System.out.println(filename);

}
}

Using each filename in files in order, print filename

37

Review

• Loop statements allow a block of
statements to be repeated.

• The for-each loop allows iteration over a
whole collection.

• With a for-each loop every object in the
collection is made available exactly once
to the loop’s body.

38

Selective processing

• Statements can be nested, giving
greater selectivity to the actions:

public void findFiles(String searchString)
{

for(String filename : files) {
if(filename.contains(searchString)) {

System.out.println(filename);
}

}
}

contains gives a partial match of the filename;
use equals for an exact match

39

break

• What if we wanted to stop searching
immediately after we find the first
match?

• break

40

Selective processing

• Statements can be nested, giving
greater selectivity to the actions:

public void findFiles(String searchString)
{

for(String filename : files) {
if(filename.contains(searchString)) {

System.out.println(filename);
break;

}
}

}

breaks out of the loop;

41

Critique of for-each

• Easy to write.
• Termination happens naturally.
• The collection cannot be changed by the

actions (e.g. can’t remove an element)
• There is no index provided.

– Not all collections are index-based.

• We can stop part way using the break
keyword.

• It provides ‘definite iteration’ – aka
‘bounded iteration’.

Grouping objects

Indefinite iteration - the while loop

43

Main concepts to be covered

• The difference between definite
and indefinite (unbounded)
iteration.

• Loops: the while loop

44

While loop

• A for-each loop repeats the loop body
for every object in a collection.

• You use a while loop when you want to
keep iterating until a certain
condition is met

• This is indefinite (unbounded)
iteration

• Beware – if the condition isn’t met then
you will have have an infinite loop

45

The while loop

• We use a boolean condition to decide
whether or not to keep iterating.

• This is a very flexible approach.
Termination of the loop depends on
the condition

• Not just tied to collections.

46

While loop pseudo code

while(loop condition) {
loop body

}

“while we wish to continue, do the things in the loop body”

boolean test
while keyword

Action(s) to be repeated

General form of a while loop

47

Search

• What if we want to search for a
filename and we want to return the the
index of the first element that matches
our input

• Remember, the for-each loop doesn’t
have an index as part of its syntax

48

We keep searching until

• Either there are no more items to
check:
index >= files.size()

• Or the item has been found:
found == true

49

public int findFile(String searchString){

int index = 0;
boolean found = false;
while(index < files.size() && !found) {

String file = files.get(index);
if(file.contains(searchString)) {

found = true;
return index; // We don't need to keep looking.

}
else {

index++;
}

}
return -1; // if we get this far, the item has not been
found
}

50

for-each versus while

• for-each:
– easier to write.
– safer: it is guaranteed to stop.

• while:
– we don’t have to process the whole

collection.
– doesn’t even have to be used with a

collection.
– take care: could create an infinite loop.

51

Learning exercise

• Write the previous method using a
while loop and a conventional for loop
so that it prints out the first 3 matches
of the searchString

• Once it encounters 3 matches it can
exit the loop

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• The top of the hierarchy represents the most generic attributes and
behaviours

• The bottom (the leaves) represent the most specific attributes and
behaviours

• Each level inherits and customises the attributes and behaviours from
the level above it

Key idea in a class hierarchy

2

University
ofGalway.ie

The means by which objects automatically receive features (fields) and
behaviours (methods) from their super classes

OOP Inheritance

3

University
ofGalway.ie

• At the top of the Java class hierarchy is a class called java.lang.Object
• All classes inherit implicitly from java.lang.Object
• This means that a class doesn’t have to specify explicitly that

java.lang.Object is its superclass

Java class hierarchy

4

University
ofGalway.ie

We are used to reference type declarations like this

Bicycle bike = new Bicycle(2,14);
String strng1 = ”Hello”;
String strng1 = new String(“Hello”);

i.e. the variable type matches the object type;

Revision

5

University
ofGalway.ie

• In Java, the variable type can be the superclass of the object

Object obj = new Bicycle(2,14);
Object object1 = ”Hello”;
Object object2 = new String(“Hello”);

• The variable type can be any superclass of the object, not just
java.lang.Object

Rules of class Hierarchy

6

University
ofGalway.ie

• All classes inherit methods implicitly from java.lang.Object
• In other words you don’t have to tell Java that a class inherits from

java.lang.Object
• Two common methods inherited from java.lang.Object ?
o equals()
o toString()

• In every other case, you have to tell Java which classes are in a
superclass relationship

Explicit Inheritance

7

University
ofGalway.ie

Assignment 3: Implement this hierarchy

8

University
ofGalway.ie

What class is missing?

9

java.lang.Object

University
ofGalway.ie

• The Canary Type inherits features from the Bird Type and the Bird Type
inherits features from the Animal Type. The Animal Type inherits from
java.lang.Object

• The Canary adds its own features (yellow, sings) to the features
inherited from the Bird type

• The Bird Type adds its own features (feathers, wings) and adapts a
feature from the Animal type (move - > fly)

Inheritance

10

University
ofGalway.ie

Fields or Methods

11

java.lang.Object

University
ofGalway.ie

• Some properties are definitely fields (hasSkin, hasFeathers)
• Which are methods ?
• The decision will be helped by the context of the application
• Let’s say that these classes are part of a game, where animal avatars have

certain behaviours
Move
Eating
Making noise

• Now the decision is easy

Fields or Methods?

12

University
ofGalway.ie

1. Create the classes - lets start with the left hand side of the tree
2. Insert the inheritance relationships
3. Insert the fields
4. Insert the methods
5. Override necessary fields
6. Override necessary methods
7. Test by putting objects in an array and calling their behaviours

Steps

13

University
ofGalway.ie

14

Don’t make the fields
private if you want them to
be inherited

University
ofGalway.ie

15

University
ofGalway.ie

extends indicates the subclass to be extended (inherited from)
You must call the constructor of the superclass using the method call
super()
If the superclass constructor takes a parameter then the call to super must
include a value of the parameter. E.g. super(“joey”)

16

University
ofGalway.ie

17

University
ofGalway.ie

Code pad

18

University
ofGalway.ie

Code pad

19

University
ofGalway.ie

• Sing method in Canary overrides the Sing method inherited from Bird
• Canary overrides the value of the colour field inherited from Bird. Bird

objects are black. Canary objects are yellow

20

University
ofGalway.ie

• It may not make sense to have an object of type superclass
• E.g. have you ever seen an an Animal or Bird object walking about
• Java allows you to specify which classes can be made into objects
• And which are used just for inheritance purposes

Abstract

21

University
ofGalway.ie

Adding the word abstract to the class definition tells Java that it can’t make objects from this class

22

University
ofGalway.ie

• However an abstract class can still can be used as the type of a
reference variable

Bird bird = new Canary(“John”);
Animal animal = new Canary(“Mary”)

Code pad example

23

University
ofGalway.ie

1. You must explicitly invoke the constructor method of the superclass using
super() or super(params);

2. Private fields or methods are not inheritable
3. A subclass inherits the fields and field values of the superclass
4. A subclass can override any fields or methods inherited from the superclass
5. The abstract keyword can be used to designate classes that can only be

extended
6. An abstract class can still be used to as the type of a reference variable

Key points to remember

24

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

• Abstract classes and methods
• Polymorphism

Lecture Topics

2

University
ofGalway.ie

• It may not make sense to have an object of type superclass. E.g. Animal
or Bird

• E.g. have you ever seen an Animal or Bird object walking/flying about?
• You’ve seen specific types of Animals and specific types of Birds
• Animal and Birds are abstractions

Abstract

3

University
ofGalway.ie

Abstraction

4

https://www.collinsdictionary.com/dictionary/english/abstraction

University
ofGalway.ie

• You can declare a class to be abstract

• Java allows you to specify which classes can be made into objects
• ..and which are abstract and used just for inheritance purposes

Abstract Keyword

5

University
ofGalway.ie

In BlueJ
Make the
Animal and
Bird classes
abstract

Code

6

University
ofGalway.ie

Adding the word abstract to the class definition tells Java that it can’t make objects from this class
Now, as you did before, try to create an Animal and Bird object

abstract Keyword

7

University
ofGalway.ie

• First effect is that you no longer can create objects from the abstract class
• However, all the existing rules of inheritance still apply

abstract

8

• Sub‐classes of Bird inherit its
non‐private fields

University
ofGalway.ie

Even though Bird is declared as an abstract class a subclass (e.g. Canary)
still has to invoke super()

abstract

9

University
ofGalway.ie

• In situations where you want to use inheritance but do not want
another developer to create an object from the superclass.

• E.g a banking app has two bank account types :
• Current Account and Deposit Account

Why use an abstract class?

10

University
ofGalway.ie

• Both account types share many of the same fields and methods
• So the developer creates a superclass, Account, to hold all the shared
fields and methods

Why use abstract

11

University
ofGalway.ie

• However a trainee developer then writes the following line of code

• This is a problem as there is no such thing in the Banking app as an
Account.

• An account must either be a Current Account or a Deposit Account

Why use abstract

12

University
ofGalway.ie

To prevent this happening, the senior developer declares the Account
class abstract

13

University
ofGalway.ie

As before, CurrentAccount and DepositAccount still inherit fields and
methods from the abstract Account class
But Account itself cannot be instantiated (an object cannot be made of it)

Why use abstract

14

University
ofGalway.ie

As you’ve seen, an abstract class can have standard methods
These methods are inherited automatically by the subclass

Methods in an abstract class

15

University
ofGalway.ie

As we’ve seen, a subclass can override (provide their own specific
implementation) of the inherited methods

Methods in an abstract class

16

e.g. this is the overriden move method in the Bird class

University
ofGalway.ie

• Abstract classes can also have abstract methods
• Abstract methods are methods with no body

• In other words, they do nothing
• So what are abstract methods used for?

Abstract methods

17

E.g.

University
ofGalway.ie

• Open up the Animal class in BlueJ
• Go to the movemethod

• Make it an abstract method
• This involves removing its body and simply keeping the method signature followed by a ‘;’

• Now compile the full project

Demonstration

18

University
ofGalway.ie

• Your code still compiles
• In code pad, type the the following (hit return after each line)

• Where is the move functionality coming from?
• From Bird’s move method

Demonstration

19

University
ofGalway.ie

Canary’s move functionality comes from Bird
Now delete (or comment out) the move method from Animal

Recompile your project

Demonstration

20

University
ofGalway.ie

Now Bird won’t compile
Check what the error is
So what is the role of move in Animal ?

21

As an abstract method, it provides the
definition of a method that at least
one of its subclassesmust implement

University
ofGalway.ie

The meaning of the the abstract method move in the Animal class:

“All animals must move, but it is up to each specific animal to decide how
it moves”

22

University
ofGalway.ie

• The adjective concrete is often used in OOP to denote a class or method
that is not abstract

• i.e. The class or method is fully implemented
• In our example, Canary is a concrete class
• The move method in Bird is a concrete method

Concrete

23

University
ofGalway.ie

An abstract class is often used as the type of a reference variable
Try this in code pad

Here we have two concrete objects referenced by variables whose type is an abstract class
Very common approach in OOP

Reference Type

24

University
ofGalway.ie

• The abstract keyword allows you to represent a class that should not be instantiated (made an
object of)

• Inheritance from the abstract class happens the same as before
• An abstract class may have concrete and abstract methods
• An an abstract method does not have a method body
• It is there to provide a definition of a method that at least one of its subclasses must

implement (make concrete)
• In our case – having an abstract method move is like saying “All animalsmust move, but it is up

to each animal to decide how it moves”

abstract class and method summary

25

University
ofGalway.ie

Polymorphism

26

University
ofGalway.ie

• Polymorphism (from Greek polys, "many, much" and morphē, "form,
shape")

• Polymorphism refers to how an object can be treated as belonging to
several types as long as those types are higher than the object’s type in
the class hierarchy

• Thus, In the code snippet below, a Canary can be treated as a Bird type
and as an Animal type

Polymorphism

27

University
ofGalway.ie

Open a new Project in Blue J, create an abstract class called Animal with
one abstract methodmove
Write the code for three subclasses: Fish, Frog and Bird

Example

28

move()
Animal

move()
Fish

move()
Frog

move()
Bird

swims 3
metres

jumps 0.5
metre flies 10 metres

University
ofGalway.ie

• Open a new Project in Blue J, create an abstract class called Animal with one abstract methodmove
• Create three sub‐classes of Animal: Fish, Frog, Bird

Example

29

move()
Animal

move()
Fish

move()
Frog

move()
Bird

swims 3
metres

jumps 0.5
metre flies 10 metres

• Each inherits and overrides the
move()method
 A Fish swims, a Frog jump, a Bird

Flies

University
ofGalway.ie

Animal Code

30

University
ofGalway.ie

• In general, a variable of type X can point to any object that has an ‘is‐a’ relationship to type X

• A variable of type Animal can point to a Bird, Frog or Fish object
• Bird, Frog or Fish objects have an ‘is‐a’ relationship to the Animal class

Polymorphism Key point

31

University
ofGalway.ie

E.g. a variable of type
Animal can point to
objects of any
type directly
below it
in the
class
hierarchy

‘Is‐a’ relationship

32

University
ofGalway.ie

Create an array of Animal references of size 6

Even though Animal is an abstract class we can still create an array of
Animal references

Codepad

33

University
ofGalway.ie

Now write the code to add a reference to a different animal in each array location
E.g. a bird in the first location
A bird in the second location
A Frog in the third location
And so on

Write the code

34

0

1

2

3

4

5

Array of Animal
References

Bird object

Bird object

Fish object

Fish object

Frog object

Frog object

University
ofGalway.ie

For tomorrow, write the code requested in the previous slide in a new
Class with a main method.

35

University
ofGalway.ie

CT2106
Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

Polymorphism

For examples, see: https://www.javatpoint.com/runtime‐polymorphism‐in‐java

Lecture Topic

2

University
ofGalway.ie

Animal Code

3

University
ofGalway.ie

Write the code to add a reference to a different animal in each array location
E.g. a bird in the first location
a bird in the second location
A Frog in the third location
And so on

Write the code

4

0

1

2

3

4

5

Array of Animal
References

Bird object

Bird object

Fish object

Fish object

Frog object

Frog object

University
ofGalway.ie

0

1

2

3

4

5

Bird object

Bird object

Fish object

Fish object

Frog object

Frog object

5

University
ofGalway.ie

Now write the code
to call the move() method
from each
reference in the array
Use a for loop

Run the code from the main
method

Example

6

Array of Animal
References

Bird object

Bird object

Fish object

Fish object

Frog object

Frog object

0

1

2

3

4

5

University
ofGalway.ie

• Note how you haven’t explicitly called the move methods
of Bird, Frog or Fish

• Just the move method of Animal (which is abstract)

Example

7

University
ofGalway.ie

Examine the output produced in the terminal
The specific move method of each of the referenced animal
objects(Bird, Frog, Fish) has been called

Output

8

University
ofGalway.ie

Output

9

Array of Animal
References

Bird object

Bird object

Fish object

Fish object

Frog object

Frog object

move(5)

move(5)

0

1

2

3

4

5

move(5)

move(5)

move(5)

move(5)

University
ofGalway.ie

• Each element in the array contains a
reference variable of type Animal

• Each reference points
to a Bird, Frog or
Fish object

• So when the move()
method is called
from the Animal
references in the array it
is the move()method of
the respective Bird, Frog,
Fish objects that is invoked

Explanation

10

0

1

2

3

4

5

Array of
Animal
References

Bird object

Bird object

Fish object

Fish object

Frog object

Frog object

University
ofGalway.ie

• This an example of what is called dynamic dispatch or late binding
• The decision as to which method to invoke is decided at program
runtime, not compilation time

• If at run time, animals[0] points to a Bird object, then
animals[0].move() invokes the move() method of the Bird
object

• If animals[0] points to a Fish object, then animals[0].move()
invokes the move()method of the Fish object

Dynamic Dispatch/Late binding

11

University
ofGalway.ie

 We can add new Animal types with new move() behaviours to
the array of Animal references

 As long as these are subclasses of Animal, their move()
method will always be called

Polymorphism

12

University
ofGalway.ie

move()
Animal

move()
Fish

move()
Frog

move()
Bird

swims 3
metres

jumps 0.5
metre flies 10 metres

move()
Deer

runs 15 metres

Example : new Deer class

13

University
ofGalway.ie

• Place a reference to a Deer object in the array and run the program again.

Create a deer object

14

University
ofGalway.ie

• Key message we can change the behaviour of a programwithout changing its code
• E.g. this piece of
code remains the same

Output

15

University
ofGalway.ie

• With polymorphism, we can design and implement systems that are
easily extensible

• New classes with new behaviours can be added with little or no
modification to the general portions of the program

Implications

16

University
ofGalway.ie

Open the code we first looked at yesterday

Let’s look at applying these ideas

17

University
ofGalway.ie

Food:
Make Food an abstract class
Give it two abstract methods getCalories and getFat with a return type int

Animal: make eatmethod abstract
• Create an abstract subclass of Food called Vegetable
• Create a concrete subclass of Vegetable called Seed
• Seed has two fields calories and fat
• Canary must implement a concrete version of the eatmethod
• Canary’s eat method checks if Food object is an instanceof Seed; if it is, the Canary calls Food’s

getCalories method and moves the distance returns. She also calls the sing method.

Instructions

18

University
ofGalway.ie

• We looked at polymorphism – the facility by which an object can be
referenced by a variable of its Superclass

• This allows us to create code that is easily extensible
• We saw that we can create variables of abstract types (classes)

Lecture wrap up

19

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

Food:
Make Food an abstract class
Give it two abstract methods getCalories and getFat with a return type int

Animal: make eat method abstract
• Create an abstract subclass of Food called Vegetable
• Create a concrete subclass of Vegetable called Seed
• Seed has two fields calories and fat
• Canary must implement a concrete version of the eat method
• Canary’s eat method checks if Food object is an instanceof Seed; if it is, the Canary calls Food’s

getCalories method and moves the distance returns. She also calls the sing method.

Instructions from last week

2

University
ofGalway.ie

•We’ll drop the getFat method from Food – as I don’t plan to use it

•Canary’s eat method should do the following:
oCheck if the Food object is null
oChecks if Food object is an instanceof Seed;
o if it is a Seed, the canary calls Food’s extractEnergy method and moves the distance

returns and adds the value returned to its own energy level
o It also calls the sing method (because it is now well fed)

Slight revision to these instructions

3

University
ofGalway.ie

• We’ll look at some modelling issues
• We’ll introduce the background for the next topic: interfaces

• To introduce this topic we’ll model a food chain

This lecture

4

University
ofGalway.ie

Download the zip file provided in the Week 8 folder
Create a new Project in BlueJ
In the Workbench menu, select

Project -> Open Zip/Jar
Then compile the Project

Food Chain

5

University
ofGalway.ie

Rearrange the class icons to give you something like

Blue J workbench

6

University
ofGalway.ie

7

University
ofGalway.ie

Our Food Chain

8

Seeds Canaries Cats

• Canaries eat Seed
• Cats eat Canaries
• Energy passes from Seeds to the Canary to the Cat

University
ofGalway.ie

Canaries eat Seed

9

• Animal class has an abstract eat method
• Canary has to override the eat method it has

inherited from Animal
• We now have to write the specific code to allow

Canaries eat Seed

Note how the eat
method takes as
input a Food
reference

University
ofGalway.ie

• Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;
3. If it is a Seed, the canary calls the extractEnergy method and adds the value

returned to its own energy level
4. It also calls the sing method (because it is now well fed)

• I would also suggest that this method is modified to return a boolean
depending on whether the Food is edible (e.g it is a Seed or not)

Canary’s eat method

10

University
ofGalway.ie

As an Animal object gets energy from the Food objects it can consume, it
needs a numeric field energy to hold this value
This field can then be inherited by all Animal objects, including Canary

First: Animal energy

11

University
ofGalway.ie

You will also need an accessor (getter) method for the new energy field in
Animal

Please remember Getter/Setter methods are not optional.
You must use them to access the fields of an object

getEnergy

12

University
ofGalway.ie

An abstract method defined in the Food class
It must be implemented in one of the subclasses of Food
We implement it in the Seed Class. Implement this method, as described

extractEnergy

13

University
ofGalway.ie

I originally declared the calories field in the Seed class
But all Food has calories
Therefore, we should remove the calories declaration in Seed and move it
to the Food class

It can be then inherited by all sub-classes of Food, including Seed

All Food has calories

14

University
ofGalway.ie

Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;
3. If it is a Seed, the canary calls the extractEnergy method and adds the value

returned to its own energy level
4. It also calls the sing method (because it is now well fed)

I would also suggest that this method is modified to return a boolean depending on
whether the Food is edible (e.g it is a Seed or not)

Implement Canary’s eat method

15

University
ofGalway.ie

Test first part of the food chain

16

Seeds Canaries

• Each seed has 10 calories
• If a Canary eats 3 seeds, its energy level should be 30

University
ofGalway.ie

Or in a main method, type the following

Seed millet = new Seed();
Seed sunflower = new Seed();
Seed hayseed = new Seed();
Canary bluey = new Canary(“Bluey”);
bluey.eat(millet);
bluey.eat(sunflower);
bluey.eat(hayseed);
System.out.println(bluey.getEnergy());
This should print out the value 30

In Code Pad

17

University
ofGalway.ie

Part 2 of our food chain

18

Seeds Canaries Cats

• Cats eat Canaries
• Energy passes from the canary to the Cat

University
ofGalway.ie

Currently the class structure looks like this
You are now going to add two more classes

Feline (abstract)
Cat (concrete)

Part 2

19

University
ofGalway.ie

Feline class (abstract)
Extends Animal
Fields

hasFur
Overrides

move() method
Cat class (concrete)

Extends Feline
Fields

name
Overrides

colour field (colour=black)
eat (Food) method

20

University
ofGalway.ie

21

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

Our Food Chain

2

Seeds Canaries Cats

• Canaries eat Seed
• Cats eat Canaries
• Energy passes from Seeds to the Canary to the Cat

University
ofGalway.ie

Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;
3. If it is a Seed, the canary calls the extractEnergy method and adds the value

returned to its own energy level
4. It also calls the sing method (because it is now well fed)

I would also suggest that this method is modified to return a boolean depending on
whether the Food is edible (e.g it is a Seed or not)

Implement Canary’s eat method

3

University
ofGalway.ie

“The eat method in Animal should be changed to return a boolean value. ”
“In Canary's case, the eat method should return true if the food variable is an instance of Seed.
Otherwise, the method should return false.”

Eat method

4

University
ofGalway.ie

Feline class (abstract)
Extends Animal
Fields

hasFur
Overrides

move() method
Cat class (concrete)

Extends Feline
Fields

name
Overrides

colour field (colour=black)
eat (Food) method

Adding Feline and Cat classes

5

University
ofGalway.ie

Feline class

6

University
ofGalway.ie

Cat class

7

University
ofGalway.ie

8

University
ofGalway.ie

For this to work, a Canary must be a subclass of Food, just as Seed is
However, this is not the case.
Canary is a subclass of Animal

eat method of Cat

9

University
ofGalway.ie

Furthermore, there is no way to cast a Canary object to Food
E.g. Try the following in code pad

For polymorphism to occur, Cat would have to be a subclass of Food

A Canary is not a Food type

10

University
ofGalway.ie

Arrange your classes to look like this

11

University
ofGalway.ie

Copy and paste the body of the eat method in Canary into this method. Modify
Remember a Cat can only eat a Canary
A Cat doesn’t sing

Now open the eat method of Cat

12

University
ofGalway.ie

What problems did you experience?

13

University
ofGalway.ie

Incompatible Types

14

University
ofGalway.ie

Big Problem! Food cannot be converted to Canary
However, the eat method only takes a Food reference as an input
In order to convert the Food reference to a Canary reference, Canary must be a subclass of Food, just as
Seed was
But Canary is a subclass of Animal

eat method of Cat

15

University
ofGalway.ie

A Canary is not a Food Type

16

University
ofGalway.ie

This problem could be solved using multiple inheritance – where a class
can have multiple simultaneous superclasses

Multiple Inheritance

17

University
ofGalway.ie

However, in OOP multiple inheritance has led to major problems due to conflicting field and method
implementations inherited from superclasses

Multiple Inheritance

18

University
ofGalway.ie

Multiple Inheritance

19

Java does not support multiple inheritance

University
ofGalway.ie

Java uses a structure called an interface to achieve a form of multiple
inheritance
An interface is like a class – but it is really more like an outline of what
methods a class should have
Just like a class an interface can be used as a type

Interface names often end in – able - simply by convention

Interface

20

University
ofGalway.ie

Compare and Contrast with a class definition

Interface example

21

University
ofGalway.ie

Note interface not class

Interface example

22

• Note method
definitions
have no body

University
ofGalway.ie

What does it mean?

1. Any class that implements Eatable can be treated as an Eatable type
(Polymorphism)

2. Any class that implements Eatable must provide concrete
implementations of its method

Eatable interface

23

University
ofGalway.ie

While a class can only extend one superclass (direct inheritance)
It can implement multiple interfaces

Implementing an interface

24

University
ofGalway.ie

What does it mean?

1. Any class that implements Food can be treated as a Food type (Polymorphism)
2. Any class that implements Food must provide concrete implementations of its method

Food as an interface

25

University
ofGalway.ie

A class can only extend one superclass (direct inheritance)
A class can implement multiple interfaces
the following class declaration is valid:

public class Canary extends Bird implements Food, Comparable{
…
}

“A Canary is a subclass of Bird and implements the interfaces Food and Comparable”

Implementing an interface

26

University
ofGalway.ie

We are going to make the Food class into an interface

Any object that is edible (in our domain) will be required to implement the
Food interface.

Solving the Cat’s eating problem

27

University
ofGalway.ie

• Change Food to be an interface

• This also will require Vegetable to implement the Food interface
• Seed will need to have its own version of the calories field

Step 1:

28

University
ofGalway.ie

We want Canary to be considered a type of Food
Therefore, Canary should implement the Food Interface

Canary will be required to implement the Food interface’s two methods
getCalories
extractFood

Step 2

29

University
ofGalway.ie

Canary should implement Food

Canary will also be required to implement Foods two methods

Step 2

30

University
ofGalway.ie

If you’ve followed these instructions, you should find that the eat method of Cat now compiles
A Canary is now a Food type as it implements the Food interface

31

University
ofGalway.ie

Cat’s eating problem solved

32

University
ofGalway.ie

• Write a new test method in the
FoodChainTest class

• Call it testv2
• Write Code to execute the code

instructions in the comments
below (Reuse some of the code
in the testv1 method)

• Execute the method
in the main method

• Check that the output
is as expected

Test your code

33

University
ofGalway.ie

Similarities:
• Both can be used to provide ‘templates’ for what subclasses can

implement
• An abstract method plays the same role as an interface method –

Both must be implemented in concrete form by a subclass
• An abstract class and an Interface can be used as the type for a

reference variable.
E.g. Food tasty = new Canary(“tasty”);

• This code works if Food is an abstract class or Interface

Interface vs Abstract class: Similarities

34

University
ofGalway.ie

Differences:
• An abstract class is used for classic inheritance purposes – providing an abstract structure that subclasses

inherit. The subclasses have a lot in common.
• E.g. the abstract class Bird provides common functionality for all feathered, winged animals
Bird canary = new Canary(“mary”);
Bird ossie = new Ostrich(“ossie”);

• However, an interface is often used to impose common functionality on classes that have nothing in
common.

• E.g. The interface Food imposes common (Food) functionality on two quite different classes : Seed and
Canary
Food tasty = new Canary(“tasty”);
Food sunflower = new Seed();

Interface vs Abstract class: Differences

35

University
ofGalway.ie

On the next slide, we compare the similarities and differences between
the abstract class and interface versions of Food

36

University
ofGalway.ie

vs

37

University
ofGalway.ie

• An abstract class has the term abstract class in its class declaration
• An interface has the term interface in its declaration
• An abstract class may have fields; an interface usually will not*
• An abstract class may have a constructor; an interface will not
• A class will use the keyword extends in its class declaration when inheriting from an abstract class
• A class will use the keyword implements in its class declaration to indicate that it will implement an interface
• A class can only extend one superclass (abstract or concrete). However, it can implement multiple interfaces
• An abstract class may have a concrete method; an interface will not
• An abstract method has the abstract keyword in its method declaration; an interface method does not
• An interface method and an abstract method do not have a method body

*When fields are declared in an Interface, they are public, static and, final by default
We will not be covering examples with fields declared in Interfaces

Differences/Similarities: Syntax

38

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Class structure - fields, constructor
Encapsulation
Instance methods
Object communication
Composition
OO design

OOP topics covered to date

2

Collections/ArrayLists/Arrays
Inheritance
Overriding methods
Class hierarchies
Polymorphism
Dynamic Dispatch
Abstract classes and methods
Interfaces

University
ofGalway.ie

Static methods
Private methods
Exception handling

Topics not yet covered

3

University
ofGalway.ie

Over the next few weeks, I am going to focus on getting you to apply the
techniques you’ve already learned to solve different programming
problems

This week we are going to look at creating a hierarchical data structure
In semester II, you’ll be looking at more of these types of structures

Remaining weeks

4

University
ofGalway.ie

We want to design a data structure to keep track of
the parts in a warehouse
Each part has a serial number, name and cost
Parts can be grouped to together into an Assembly
An Assembly can hold other Assemblies as well as
Parts

Assembly

5

University
ofGalway.ie

1. Part
2. Assembly

What is the relationship between a Assembly object and a Part object?

Basic Classes

6

University
ofGalway.ie

1. Part
2. Assembly

What is the relationship between a Assembly object and a Part object?

Any Assembly object is composed of multiple Part Objects
In other words, Assembly object has a has-a relationship with Part

Basic Classes

7

University
ofGalway.ie

Recall that there are two fundamental relationships between classes in
OO

is-a (or inheritance)
has-a (or composition)

A RacingBike is-a type of Bicycle (inheritance)
A RacingBike has-a Wheel (Composition)

Is-a vs has-a relationships

8

University
ofGalway.ie

• A Part object has the following properties
Name
ID number
Cost

• We can represent these as follows in a class diagram

Part

9

University
ofGalway.ie

• Java organises groups of related classes into what is know as packages
• We are going to put all our Part-Assembly code into a package called

warehouse

• In BlueJ create a new Project
• In the BlueJ menu, Choose Edit->New Package
• Enter the name warehouse
• Click on the package icon created

package

10

University
ofGalway.ie

We will create our classes in the warehouse package

11

University
ofGalway.ie

• When a class is part of a package it has a fully qualified name : its name and address
• When you create a Part class in the package warehouse its fully qualified name will

be warehouse.Part

• You’ve already encountered this:

packages

12

package Class name

package Class name

java.util.ArrayList

java.lang.Object

University
ofGalway.ie

Now Write the Code for the Part class
Observe the guidelines on encapsulation
Decide what type your field variables should be
The constructor should initialise the fields with its input parameter values

Part

13

University
ofGalway.ie

1. Now create a test class with a main method
2. In the main method, create an array of Part references, size 1000
3. Create a loop to place a reference to a new Part object in each location of the

array.
E.g. each Part can have the following values:
name = “screw”, number=28834, cost=0.02

Test Code

14

//TODO

University
ofGalway.ie

• Our program is required to hold multiple objects, say, of type Part
• Many Parts will have the same value

• Can you identify any problems with our implementation of Part?

15

University
ofGalway.ie

16

University
ofGalway.ie

• All part objects of the same kind have the
same attribute values (name, number,
cost)
– Wasteful of memory resources
– Hard to maintain e.g. if the cost changes we

have to change the cost in every object

Programing Principle: Avoid Data Replication

17

University
ofGalway.ie

• Create a new class to store shared information about a particular Part
– Call this a ‘catalogue entry’
– Represents a catalogue entry that describes a type of part
– Multiple parts of the same type are then described by one entry

Avoiding Data Replication

18

University
ofGalway.ie

All parts of the same type are linked to a single
CatalogueEntry

19

University
ofGalway.ie

Current model

20

The class diagram tells us all we need to know to
convert it into code

University
ofGalway.ie

Create a new Class called CatalogueEntry

It has the three fields as shown above
Observe the usual guidelines on encapsulation
The constructor should initialise these fields

In BlueJ

21

University
ofGalway.ie

Each Part object should have a
link to its corresponding
CatalogueEntry object

Linking Part to CatalogueEntry

22

`

University
ofGalway.ie

Revise (refactor) your Part code
1. Remove the instance fields
2. Create a new field to hold a reference to a CatalogueEntry object
3. Refactor the Constructor so that it takes a CatalogueEntry object as a

parameter
4. Revise your getter methods so that they call the relevant method from

CatalogueEntry

Part class

23

University
ofGalway.ie

• Now revise your test code

• In the main method
o Create a CatalogueEntry object of type “screw”, id number 28834, cost

0.02
o Then use the CatalogueEntry object to create a 1000 Part objects

Example Code

24

University
ofGalway.ie

Revised Code?

25

University
ofGalway.ie

• We’ve introduced a CatalogueEntry Class that holds the information about
Part types

• When we create a Part of a certain type we use its corresponding
CatalogueEntry object

• So multiple Part objects (of type ‘nail’), all have links to a single
CatalogueEntry object describing a nail

• The link between any nail Part and its CatalogueEntry object is implemented
as an instance variable

Review

26

University
ofGalway.ie

• Linking Part and CatalogueEntry is an example of Object Composition
• Object Composition refer to constructing the functionality of an object

by composing it from other objects.

Composition

27

University
ofGalway.ie

–Assemblies should have a hierarchical structure
–i.e. An Assembly should hold other Assembly objects as well as Part objects

Stock Control Data Structure

28

We’ve implemented
these bits

University
ofGalway.ie

An Assembly needs to hold references to multiple Part objects
This is another example of composition – an object that is composed of
other objects

We don’t know in advance how many Part objects needed
How will we solve that?

Implementing an Assembly

29

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

We want to design a data structure to keep track of the
parts in a warehouse
Each part has a serial number, name and cost
Parts can be grouped to together into an Assembly
An Assembly can hold other Assemblies as well as Parts

2

University
ofGalway.ie

Yesterday, we left off here:

3

University
ofGalway.ie

4

University
ofGalway.ie

• You can continue using your own code from yesterday or you can
download and add the zip file I posted in Week 9

• As usual, in BlueJ
Project -> Add Zip/Jar

5

University
ofGalway.ie

An Assembly is composed of multiple Parts
We don’t know in advance how many Parts it should hold

This suggests that we should use a dynamically resizable container
like an ArrayList

Back to implementing an Assembly

6

University
ofGalway.ie

In the warehouse package
1. Create an Assembly class
2. It should have a private field name of type String
3. It should have a private field parts of type ArrayList. The ArrayList is meant to contain Part references.

(Remember that you will need to use the import java.util.ArrayList statement)
4. Assembly should have an add method that allows a Part to be added to the Assembly
5. Assembly should have a getCost method that returns a double value – leave the implementation blank

Assembly

7

University
ofGalway.ie

The Assembly class has a private
instance variable pointing to an
ArrayList of Part references

The add method adds a Part object to
the ArrayList

getCost returns the overall cost of the
Parts in the Assembly

Assembly class

8

University
ofGalway.ie

We’ve created 3 classes:
Part
CatalogueEntry
Assembly

Status

9

University
ofGalway.ie

Reuse the Test Class from yesterday

10

University
ofGalway.ie

In the costTest method write code to implement the
structure in the figure

1. Create an Assembly
2. Create two CatalogueEntry objects
3. Create 3 Parts of known cost
4. Add them to Assembly
5. Call the cost method of the

Assembly to return the overall
cost

6. If the Assembly returns the
right answer, then our classes are working

Reuse the Test Class from yesterday

11

s1 s2 s3

University
ofGalway.ie

Your code should look like this

12

University
ofGalway.ie

The overall cost of an assembly is a sum of the cost of its Part objects.
Thus the getCost() method for assembly needs a way of iterating over
the ArrayList and calling the getCost() method of each Part

Overall cost of an Assembly ?

13

University
ofGalway.ie

You may use the comments below to guide you

Implement the getCost() method

14

University
ofGalway.ie

getCost() method

15

We used the reduced loop
syntax to iterate over the
ArrayList

University
ofGalway.ie

Subassemblies

16

An Assembly object should
be able to contain
Parts AND other
Assembly objects

University
ofGalway.ie

Any Assembly would be composed of other Assemblies and Parts

Suggestion of an approach?

An Initial Solution

17

?

University
ofGalway.ie

An arraylist that contains other Assembly objects

Initial Solution?

18

?

University
ofGalway.ie

• We’d need to create a new add method for Assembly objects
• In other words, we create another version of add
• We overload the add method

19

University
ofGalway.ie

We’ll need also to create a new cost method for Assembly objects

20

Note : this is a
recursive call

University
ofGalway.ie

Any objections to this approach?

21

University
ofGalway.ie

• From an OOP perspective - this is an awful solution
• Large amount of code repetition and redundancy

22

University
ofGalway.ie

• It is not extensible – for example, let’s say I wanted to add a new type of
object to an Assembly

• Let’s call it Service – representing ‘After Sales Service’
• I would have to completely rewrite and recompile the Assembly class

New ArrayList to hold Service objects
New add method for Service objects
Another loop required in the getCost() method

Problems?

23

University
ofGalway.ie

Too many ArrayLists – one for each type

Implications of Bad Design

24

University
ofGalway.ie

Code bloat : 3 overloaded add methods

Implications of Bad Design

25

University
ofGalway.ie

Unnecessary complexity

Implications of Bad Design

26

University
ofGalway.ie

We can achieve an elegant, extensible and concise solution
using two features of OO programming

1. Abstract classes/ Interfaces
2. Polymorphism

Solution v2

27

University
ofGalway.ie

• The key is to make an abstract class or interface called Component
(the name is not important)

• Part and Assembly should extend/implement Component

• Create an interface called Component with a single method
getCost()

• Part and Assembly should implement Component

Solution

28

University
ofGalway.ie

• An abstract class or interface with a single method getCost()
• It can never be instantiated as an object
• But it can be used to make (polymorphic) references to its subclasses

Component

29

or

University
ofGalway.ie

30

University
ofGalway.ie

• Each Assembly object should be able to hold multiple
Component objects
Some of these will be Part objects
Some will be Assembly objects

• But as far as each Assembly object is concerned, it is holding a collection
of Component objects

Assembly

31

University
ofGalway.ie

Four minor changes required
1. Add ‘implements Component’ to class definition
2. Change ArrayList declaration so that it holds <Component> types
3. Remove the add(Part) and add(Assembly) methods and replace with a

single add(Component) method
4. Modify the getCost() method so that it calls the getCost() method of

the Component type

Refactoring Assembly

32

University
ofGalway.ie

1. Implements Component

2. Type declaration changed to
<Component>

4. getCost() method of
Component invoked

3.existing add() methods
replaced with a single
add(Component) method

33

University
ofGalway.ie

Rearrange your class diagram

34

Assembly has an ‘is-a’ relationship to Component
Component has ‘has-a’ relationship to Assembly

University
ofGalway.ie

• Compare this version of Assembly to the bloated version we created earlier
50% Less Code
Easier to understand
Extensible

• If I want to create a new Service class, I can create it simply by implementing Component
• Assembly will accept any object that is of type Component
• Thus, I can extend the range of data types that Assembly can handle without touching its code
• Just as long as each class implements Component

Compare the solutions

35

University
ofGalway.ie

• Create a new costTest Method – call it costTestv2
• Now, reuse the code you wrote for costTest v1 to represent the data structure on the left

Creating a test method

36

s1 s2 s3

costTestv2
costTest v1

University
ofGalway.ie

What happens when we call the top Assembly object’s getCost() method

37

costTestv2

1
2

3

4

5

6

8

7

9

University
ofGalway.ie

• Every reference to a Component object may be a reference to a Part or another
Assembly object, whereby getCost()will be called again

• For each Component that is an Assembly object, its own getCost() is called
• This means tha the getCost() method in the Assembly class is recursive

• The termination point is when all the Part objects within a particular Assembly
have been encountered and the costs returned.

• The recursive nature of getCost() is enabled by polymorphism

Recursion

38

University
ofGalway.ie

• I will attach a few extra slides on recursion for you to look at.
• While the idea is easy, it is sometimes hard to grasp how a method

executes a recursive call.
• While not an OOP concept per se, recursion is commonly used in

algorithm and data structure design, so it is worth acquainting
yourself with the idea

Recursion

39

University
ofGalway.ie

This data structure is based on a design pattern called composite

Composite

40

getCost() : double

getCost() : double
getCost() : double

getCost() : double

University
ofGalway.ie

• We’ve looked at creating a solution to the Assembly-Part problem
• Version 1 used the most obvious solution – storing Assembly references in another ArrayList
• This solution was inelegant, used more code than necessary – but more importantly, it could not be

extended.
• Using an interface to link Part and Assembly into one type, Component, we were able to create a much

simpler and extensible approach.
• The solution is an implemetation of common OOP design pattern called “Composite”

Lecture Wrap Up

41

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Object-Oriented Design Patterns

Composite Design Pattern

Solving a problem with the Composite design pattern

Lecture Topics

2

University
ofGalway.ie

Download and add the jar file provided in the Week 10 folder

Using BlueJ to quickly test code

3

University
ofGalway.ie

Reminder you can use BlueJ to quickly check your code.

Not a formal test by any means – just a sanity check

4

University
ofGalway.ie

5

University
ofGalway.ie

6

University
ofGalway.ie

7

University
ofGalway.ie

1. The method contains Component objects, not Part and Assembly objects.
Therefore, it doesn't call their methods.

2. Each Component reference is actually a polymorphic reference to a Part or
Assembly object. Polymorphism ensures that when getCost is called on a
component reference, the relevant getCost() method will be called on the
referenced Part or Assembly object.

3. Each Component object is composed of a Part or Assembly object. When
getCost() is called on a Component object it then calls the getCost() method
of the Part or Assembly object it contains.

4. Each Component is enapsulated by a Part or Assembly Interface. This
means that Component will implement the correct getCost method of Part
or Assembly.

This is the getCost method belonging to Assembly. Explain why this
method does not have to distinguish between Part and Assembly
objects to return its overall cost.

8

University
ofGalway.ie

1. When the method loops through each component object adding up the total cost.
2. When the Part method getCost method calls the CatalogueEntry object.
3. Each time a Component reference is used to call the getCost() method on an Assembly Object.
4. When the method returns 0.

Identify where Recursion occurs in this method?

9

University
ofGalway.ie

1. public class Canary<Component> extends Bird
2. public class Canary extends Component
3. public class Canary extends Bird implements Component
4. Add a concrete implementation of the getCost() method as defined by the component interface
5. Option number 3 AND option number 4

For some reason, you are asked to write code to allow a
Canary object to be added an Assembly object. The Canary
code is as follows. What changes do you make to allow a
Canary object to be added to an Assembly.

10

University
ofGalway.ie

“Software entities like classes, modules and functions should be open for
extension but closed for modifications.”

This may seem counter-intuitive at first reading

Design your code so that it can be extended, and any extensions require
the minimum of modification to your existing code

OOP Design Principle: Open-Close Design Principle

11

University
ofGalway.ie

Even though the Assembly class is closed for modification, I can still extend its functionality

Adding a new Component class

12

University
ofGalway.ie

The key idea is that the Assembly object doesn’t view the Canary object as
a Type of Canary

It is just another Component with its own getCost method

Canary as a Component

13

University
ofGalway.ie

• This data structure is in fact a well known object oriented design pattern
- the Composite design pattern

• Used to implement hierarchical data structures
• For example, directory/file structures

Composite Design Pattern

14

University
ofGalway.ie

15

University
ofGalway.ie

Design Pattern

16

A solution to a particular recurring design issue in a particular
context:

“Each pattern describes a problem that
occurs over and over again in our
environment, and then describes the
core of the solution to this problem in
such a way that you can use this
solution a million times over, without
ever doing it the same way twice”

Erich Gamma et al., Design Patterns, 1995

University
ofGalway.ie

In general, a design pattern consists of:
a name, for easy reference

a motivation of the problem being solved

a description of the solution proposed

a discussion of the consequences of adopting the pattern

Design Patterns

17

University
ofGalway.ie

• Capture the knowledge of experienced developers
• Provide a publicly available “repository” of patterns
• Newcomers can learn these and apply them to their design
• Yields a better structure of the software (modularity, extensibility)
• Facilitates a common pattern language for discussions between

programmers
• Facilitate discussions between programmers and managers

Rationale for Design Patterns

18

University
ofGalway.ie

• As mentioned before in lectures, the composite approach can be used to model the
directory/file structure we have in our computers

• We will work through an exam question from a few years back

File System

19

University
ofGalway.ie

20

University
ofGalway.ie

• You are asked to write the Java code for a simple file system.
• The file system should be able to handle folders and files. Each folder can contain files of different types

as well as other folders.

Simple File System

21

University
ofGalway.ie

You should be able to request the following from any folder
size(): returns the overall size (e.g. in bytes) of the files and sub-folders contained in any one folder
numFiles(): returns the number of files in any folder, including those in its sub-folders
numFolders(): returns the number of
sub-folders in any folder

Simple File System

22

University
ofGalway.ie

What information do we have?
1. “The file system should be able to handle folders and files. Each

folder can contain files of different types as well as other folders.
2. “request the following from

any folder: “size, numFolders
numFiles”

Where to start?

23

University
ofGalway.ie

Identify nouns in the description above:

• File System
• Folder
• File

Preliminary classes

24

University
ofGalway.ie

• Then identify the relationships

• File System handles Folders and Files
• A Folder can contain other Files and Folders

Preliminary Associations

25

University
ofGalway.ie

• Identify verbs - however, there is not much to go on

• “You should be able to request the following from any folder: size(), numFiles(), numFolders()”

• This suggests that Folder has the responsibility of collecting information from the objects within it

• Since Folder contains other Folders and Files, it must have an add method to receive these

Preliminary Responsibilities

26

University
ofGalway.ie

Preliminary Class Diagram

27

Folder

File
add (File)
add(Folder)
size()
numFiles()
numFolders()

size()

FileSystem

University
ofGalway.ie

The brief we have been given also includes a diagram that
illustrates the type of structure that
our code should be able to handle
Let’s use this example
to create a Test method
for this scenario
We will then code
the stub classes
suggested by the the
diagram

28

University
ofGalway.ie

• Create a class called FileSystem
• Create a main method
• Create a test method – call it fileTest

• Then add the code to fileTest that realises the given example hierarchy
• Create the required classes as you go

FileSystem

29

University
ofGalway.ie

For tomorrow, add the remaining test code.
This just means adding a few more Folders and Files to model the example hierarchy

FileSystem

30

University
ofGalway.ie

For tomorrow, use what you know from the Composite design pattern to remove the
redundant code from this class

Applying the composite design pattern

31

University
ofGalway.ie

• The key is an abstract class that represents both primitive File elements and their Folder containers.

• The abstract class should represent any common functionality or fields of its sub-classes

Composite: Solution

32

University
ofGalway.ie

• The composite pattern defines how to implement a hierarchical data structure consisting of primitive
objects and composite objects

• Composite objects and primitive objects are both treated in the same way (because they implement the
same interface)

• This makes it easy to add new types of components (e.g. new Service class, or more unlikely, a new
Canary class)

• All that is required is that these new types of components implement the required interface.

Lecture Summary: Composite pattern

33

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Solving the Folder–File problem

Using the Debugger

Lecture Topics

2

University
ofGalway.ie

You are being asked to create a data structure in which a folder contains files and other folders
This requires at the minimum two classes: a Folder (or Directory) class and a File class

Folder - File Problem

3

Folder (called “Documents”)

folder (called “Photos”)

Folder (called “The Band”)

folder (called “Music”)

folder (called “Dylan”)

University
ofGalway.ie

• Creating Music, Photos and Dylan classes
• What is wrong with this approach?

• Music, Photos and Dylan are three objects of the Folder class, with the names
“Music”, “Photos” and ”Dylan”

• This is a case in which the designer failed to see that Music, Photos and Dylan were
each an example of something much more general – a Folder

Potential Mistakes

4

University
ofGalway.ie

1. Add the remaining test code
needed to model the example
hierarchy

Yesterday’s Requirements

5

2. Use the composite design pattern to
remove the redundancy

University
ofGalway.ie

1. Adding the remaining test code

6

University
ofGalway.ie

• Almost exactly the same approach as with the Assembly-Part solution
• Instead of an interface – I am going to use an abstract class: AbstractFile
• Both File and Folder will be types of AbstractFile
• AbstractFile will define the methods that each of its subclasses should implement

2. Use the composite design pattern

7

University
ofGalway.ie

1. Create an abstract class called Abstract File
It should have 4 abstract methods

2. File and Folder should extend AbstractFile
3. File and Folder should implement all the methods above
4. For now create stub methods – i.e. they simply return default values

Create an Abstract class

8

returns int
returns int
returns int
returns AbstractFile

University
ofGalway.ie

AbstractFile

9

University
ofGalway.ie

Changes that you need to
make to the Folder class

10

University
ofGalway.ie

Changes that you need to
make to the Folder class

11

University
ofGalway.ie

Revised class diagram

12

University
ofGalway.ie

The code compiles
Now we can start to to implement the
stub methods and test them in the
fileTest method across

13

University
ofGalway.ie

However, our filetest1 method code is not really tested until we can make it pass a
test of some sort

To do that we should look at each method we are required to create and calculate
what each method should return

We should evaluate the method based on its expected output

Test

14

University
ofGalway.ie

size()
getNumFiles()
getNumFolders()
find(“weight.mp3)

Required Methods

15

Methods

What are the expected values
returned by these methods?

University
ofGalway.ie

What is the expected value if we call the size() method on the documents folder?

Place this code at the end of the fileTest method

Example test

16

?

University
ofGalway.ie

• The size of a Folder is the sum of the sizes of the Files within the folder.
• This requires adding up the the sizes of all the files within the folder and its subfolders
• Same approach to calculate cost in the Assembly class
• The size() method for Folder is going to look like:

size() method of Folder

17

University
ofGalway.ie

• In a real world file system, the size of a single file might be the number
of bytes on disk

• In our case, we will simplify greatly
• The size of a file will simply the number of characters it holds in its

contents field

• So lets modify the File class
• Add a contents field of type String
• Create the corresponding getter/setter methods

size() method of File

18

University
ofGalway.ie

19

University
ofGalway.ie

This allows us to write (in code pad)

Now create a size() method that returns the number of characters in
the file content field

Contents

20

University
ofGalway.ie

We can use the length() method of the String class to return the number of characters in any String

size()

21

University
ofGalway.ie

The size() method in Folder adds up the the sizes of all files within the
folder and its subfolders

size() method of Folder

22

University
ofGalway.ie

Now lets write a test for this method

Modify the test and run

23

University
ofGalway.ie

Using the Debugger

24

University
ofGalway.ie

• Any debugger will have the following core functionalities:

• Set breakpoints: set where you want the execution of your program to pause
• Inspect variable values : inspect the value of variables that are in scope at the breakpoint
• Step : tell your program to execute the next line of code. You can inspect the variable values at this

point
• Step into : tell the debugger to step into a method. You can inspect the values of variables in the

method. You can step through lines of code within the method
• Continue: tell the debugger to execute the program at normal speed until the next break point or until

the end of the program.

Debugger

25

University
ofGalway.ie

• This short video on YouTube is also a good tutorial on how to use the debugger

• https://www.youtube.com/watch?v=w_iy0jmMmkA

Debugger

26

https://www.youtube.com/watch?v=w_iy0jmMmkA

University
ofGalway.ie

• The composite pattern defines how to implement a hierarchical data structure
consisting of primitive objects and composite objects

• Composite objects and primitive objects are both treated in the same way (because
they implement the same interface or extend the same abstract class)

• In the example in this lecture, File and Folder are treated the same way – as types of
AbstractClass

• This greatly simplifies the code you need to write.

Summary: Composite Pattern

27

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

• Static Fields

• Exceptions

Todays Topics

2 Some of the examples in this lecture are from Allen Downey’s book: “Think Java v6”

University
ofGalway.ie

Card assignment from a previous year

3

University
ofGalway.ie

• A card game involves cards of different values
• These are normally gathered together in a Deck
• There are a number of things you might want to do with a deck

Shuffle the deck
Deal the deck
Sort the deck
Search for a card

Details

4

University
ofGalway.ie

Each Card has a suit and a rank –represented as instance variables.

The Card Class

5

suit rank

University
ofGalway.ie

Simple Card Class

6

University
ofGalway.ie

What if you want to be able to print out the value of this Card using the toString() method
E.g

Card Class

7

University
ofGalway.ie

We need to link the suit and rank int values to the String values representing the Card

Suit: 2 - > “Hearts”
Rank: 3 -> “Three”

Linking suit and rank

8

University
ofGalway.ie

Or you can declare and assign values all in one go

You can declare an array of Strings to hold all possible rank values

9

University
ofGalway.ie

Card

10

University
ofGalway.ie

• We can do something similar to hold the possible 13 values of the rank of a Card

rank

11

University
ofGalway.ie

Q: Why is null the first value in the RANKS array?

12

University
ofGalway.ie

13

University
ofGalway.ie

14

University
ofGalway.ie

• Download the Card Code from Blackboard, Week 11.
• Add it to a project in BlueJ

Blackboard

15

University
ofGalway.ie

• Suits and ranks arrays are declared in every object of type Card
• This is wasteful (in terms of memory) and redundant (bad programming practice)
• The suits and ranks values are constant. They never change. They are the same for every Card object
• In situations like this, you should declare these variables to be static

Introducing static fields

16

University
ofGalway.ie

• Up to now, the instance variables/fields you have used have scope at object level
• A static field is a variable that exists and has scope at class level
• Typically, it is used to hold constant, non-changing values
• Often, they may be declared public and final.
• This means that they can be accessed directly by other classes and objects but cannot be changed

Static fields

17

University
ofGalway.ie

• Generally, Static variables are capitalised
• Generally declared as public
• Very often declared as final

• You use them when you want to declare a value/property that is
unchanging or common to all objects of a class

Static fields

18

University
ofGalway.ie

When referring to a static field, use the form
ClassName.STATIC_VARIABLE_NAME

E.g
Card.RANKS
Card.SUITS
Math.PI

Static fields

19

University
ofGalway.ie

20

University
ofGalway.ie

21

University
ofGalway.ie

Exception Handling

22

University
ofGalway.ie

Our Card class has a significant weakness

Card Class

23

University
ofGalway.ie

• It allows us to create Card objects with invalid Card values.
• The error will only be detected later in the program

Handling invalid values

24

University
ofGalway.ie

• The error message above is from the Java Runtime Environment (JRE)
• It tells use that an Exception was generated and was not handled
• This has caused the program to crash

An Exception

25

University
ofGalway.ie

• An exception is an “exceptional event” – one that may lead to a
serious error in your program if not handled appropriately.

• An exception is generated only when the program runs – hence
it is known as a runtime error

• Very often, the error (and the exception generated) occurs
when the program is asked to do something that is impossible
for it to do

• In Java, each exception is represented by an Exception object

What is an Exception?

26

University
ofGalway.ie

• As the programmer, it your responsibility to anticipate the situations in which your program will fail

• You have to write code to manage any exceptional events that may occur within your program

• In our example, an exceptional event is when a user tries to get our program to instantiate an invalid
card

• If this card object gets into say, a poker program, it will wreak havoc, as all other objects will expect Card
objects with valid suit and rank values

Programming for Exceptions

27

University
ofGalway.ie

• The key question is how to programmatically handle the situation when invalid input is entered.
• In the case of the Card, we might write the following in the constructor:

Checking valid input for a Card

28

University
ofGalway.ie

• It prints out a warning message only
• The invalid Card object is still created

Weak approach

29

University
ofGalway.ie

• We want an approach that prevents an invalid object being created
• Java has the concept of an Exception object that can be created to stop a program going any further
• When a program generates an Exception object it is said to throw an Exception
• When an Exception is thrown, the program must have code in place to catch it
• If not, the program terminates

Detect error-> Throw an Exception

30

University
ofGalway.ie

This involves
1. Detecting an error
2. Creating an Exception object
3. Passing the Exception object to The Java Runtime Environment (JRE) Exception Handling Procedures.

This also means the execution of the method does not complete
4. The JRE then looks for part of your program to take responsibility for this error.
5. In other words, your program should also have code ready to catch the error

Throwing an Exception

31

University
ofGalway.ie

In our case, we can make the Card throw an Exception - an IllegalArgumentException

Card throws IllegalArgumentException

32

University
ofGalway.ie

When you want a method to throw an Exception you add throws and the Exception type to the method
signature

This tells any code that wants to call the constructor method that it may throw an
IllegalArgumentException

It will be up to the calling code to handle that exception if it is thrown

throws

33

University
ofGalway.ie

• The Card constructor has to define conditions which will cause it to throw an Exception.
• These are the same conditions that caused it to issue a weak warning
• Instead now, it generates and throws a new Exception object
• To throw an Exception you use the throw keyword

throws

34

University
ofGalway.ie

• When an Exception is thrown, execution of the method stops
• As this is a constructor method, this means that the (invalid) Card object is not created

Revised Card constructor

35

University
ofGalway.ie

• Now when we try to create a Card with invalid values, we will fail.
• An exception is thrown.
• The card variable below is not assigned to a Card object

Testing out code

36

University
ofGalway.ie

• If your method throws an exception

throwing and catching

37

• Then you must also have
code in place to catch
and handle the exception

University
ofGalway.ie

• If an exception is not caught, the JRE will terminate the program
• This is a drastic step
• In most cases, you will want your program to recover (gracefully)

from an exception and carry on
• This involves catching the Exception that has been generated

Graceful recovery

38

University
ofGalway.ie

• If you run the following code, the
uncaught exception will terminate the program at line 18

• Nothing after line 18 will execute

Example of program termination

39

University
ofGalway.ie

• If you want the program to recover from the Exception, you have to catch and handle it
• This means using a try/catch expression

• Try: try to execute this piece of code. If it executes without throwing an exception. Fine. There is no need
to for the catch clause to be executed

• Catch: if an exception has been thrown then execute this piece of recovery code to handle the Exception
(very often just an error message)

Try/catch

40

University
ofGalway.ie

Meaning:
1. Try to call this method (which may throw an Exception)
2. If it throws an exception object, catch it! (the exception will go no further)
3. Then handle the exception this way
4. Carry on to the next line of execution (as normal)

General format of try/catch block

41

University
ofGalway.ie

Revised Example
• Each call to the Card constructor

is wrapped in a try/catch block
• If an Exception is thrown, it will

be caught and handled
• This allows the program to

execute until the end.

42

University
ofGalway.ie

• Now when we run the program we get an
error message caused by the attempt to
create the invalid second Card

Graceful recovery

43

• The invalid second card is not
created

• The program can continue on to
create the third card (“Two of
Clubs)

• It then prints out the values of the
card1, card2 and card3 variables

• (card2 is pointing to null, because
the second invalid card was not
created)

University
ofGalway.ie

Some common unchecked Exceptions

44

University
ofGalway.ie

• A static field is a variable that exists and has scope at class level
• You use them when you want to declare a value/property that is

common to all objects of a class
• You can anticipate when errors may be generated by your program

and write exceptions throwing code to cover these events
• You also have to write code to catch and handle exceptions that

may occur within your program

Wrapping up

45

University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Using the Comparable Interface
Sorting
Testing

Today’s Lecture

2

University
ofGalway.ie

Back to the Card assignment

3

University
ofGalway.ie

A card game involves cards of different values
These are normally gathered together in a Deck
There are a number of things you might want to do with a deck

Shuffle the deck
Deal the deck
Sort the deck
Search for a card

Card Game

4

University
ofGalway.ie

5

University
ofGalway.ie

Recall that every object inherits equals method from java.lang.Object
Two cards are equal if they have the same suit and the same rank

equals()

6

University
ofGalway.ie

Quiz: equals() method for Card

7

University
ofGalway.ie

Equals is a very useful method
However, when searching or sorting, it is important to know whether one
object has a greater/less value than another
With primitive values, it is trivial to understand if one number is greater/less
than another.
E.g. 5 > 4; 0.1 > -0.1 ;
How do we decide if one Card is greater/less than other?

compareTo

8

University
ofGalway.ie

When deciding on whether one object is greater or less than another, we refer to the
natural ordering of the objects’ class

Natural ordering is the ordering imposed on an object when its class implements the
Comparable Interface

In Google look-up , “Java Comparable Interface”

Natural Ordering

9

University
ofGalway.ie

Comparable<T>

10

University
ofGalway.ie

Like most interfaces, very lightweight
Has one method: compareTo
All classes that implement Comparable, must also provide a
concrete implementation of compareTo

Comparable<T> interfaces

11

University
ofGalway.ie

compareTo(T o)

12

University
ofGalway.ie

The <T> in Comparable<T> means that we can specify in advance the type
of the object that should be compared

In other words, unlike the equals method which has a generic Object
parameter, we can specify the input type for the compareTo method

Interface Comparable<T>

13

University
ofGalway.ie

Objective: make the Card class sortable and searchable
Create a Deck of Cards that can be shuffled and searched

14

University
ofGalway.ie

Modify the Class definition of Card to implement Comparable

The <Card> tells Java that you plan to compare Card objects only
To get this to compile you have to implement the compareTo method

implements Comparable

15

University
ofGalway.ie

The suits are generally ordered in increasing value as follows
clubs, diamonds, hearts, spades

The rank goes is ordered in increasing value
Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King

These orderings are reflected by the arrays we have already defined

What is the natural ordering of a set of Cards?

16

University
ofGalway.ie

The suit value produces the primary ordering

The rank value produces the secondary ordering

What is the natural ordering of a set of Cards?

17

is always
greater than

is always
greater than

Card(3,1) Card(2,1)

Card(0,10)
Card(0,9)

University
ofGalway.ie

How should compareTo behave?

18

compareTo = 1

compareTo = 1

University
ofGalway.ie

How should compareTo behave?

19

compareTo = -1

compareTo = -1

University
ofGalway.ie

How should compareTo behave?

20

compareTo = 0

compareTo = 0

University
ofGalway.ie

The method first checks for equality
Then checks if the card is in a higher or lower suit
Then it checks it’s rank

Card.compareTo

21

University
ofGalway.ie

The method first checks for equality
Then checks if the card is in a higher or lower suit
Then it checks it’s rank

compareTo

22

University
ofGalway.ie

Use assert to declare a statement that must be true
If it is not true, your programme will throw an AssertionError Exception
You can use the Assert statement as a quick way to test for expected output

assert(2==2); // will always be true
assert(true==false) // will always be false

assert

23

University
ofGalway.ie

Quick Test

24

University
ofGalway.ie

If you run this code and it produces no Exception then the assert
statements were all true – and your code passed the test

Download the code uploaded after this lecture to test it yourself

25

University
ofGalway.ie

We will create a new class called Deck to hold the Card objects
When we create a Deck object, it should immediately populate itself
with 52 card objects
We also want methods to sort the Cards and to search for a Card

A Deck of Cards

26

University
ofGalway.ie

Function: to store cards and to perform any methods to do with shuffling and sorting and searching

What data structure will it use to store the Card objects?

Deck Class

27

University
ofGalway.ie

Function: to store cards and to perform any methods to do with sorting and searching

Deck Class

28

Instance variable is an array of
references to Card objects

University
ofGalway.ie

Constructor populates the Deck with Card objects
Outer loop enumerates the suits from 0 to 3.
Inner loop enumerates the ranks from 1 to 13.

Deck()

29

State diagram

University
ofGalway.ie

Cards Array now contains 52 Card objects

Card Array

30

University
ofGalway.ie

We are going to create an instance method called sort belonging to the Deck class
It should sort the Cards into the order in which they were created by the Deck

Sorting

31

University
ofGalway.ie

We will make use of the the sort method from the java.util.Arrays class

Look up java.util.Arrays on Google

Arrays.sort

32

University
ofGalway.ie

33

University
ofGalway.ie

34

University
ofGalway.ie

With the Arrays class, creating a sort method for the array of Cards is easy

That’s all there is to it.

Remember to put import java.util.Arrays at the top of the class

sort

35

University
ofGalway.ie

36

University
ofGalway.ie

observation: As far as the Arrays.sort method is concerned it is sorting an
Array of Comparable objects, not Card objects

The Arrays.sort method will only ever call the compareTo method of the
Card object

sort() method in the Deck class

37

University
ofGalway.ie

Define an equals method for Deck
If two Decks have the same cards, in the same order then they are equal
Test approach

Create two decks
Test if they are equal
Shuffle one Deck
Test that the Decks are no longer equal
Sort the shuffled Deck (with new sort method)
Test if both decks are equal again

How do we test the sort method?

38

University
ofGalway.ie

Define an equals method for Deck
If two Decks have the same cards, in the same order then they are equal

How do we test the sort method?

39

University
ofGalway.ie

Define a shuffle method for Deck
Many ways to do this
The code below randomly shuffles the array of cards according to the Fisher Yates algorithm

How do we test the sort method?

40

University
ofGalway.ie

Test Code

41

University
ofGalway.ie

If this test code runs without throwing an Exception then the assert methods were true
And the code passed the test

Run the code yourself and verify that no AssertionError Exception is thrown
Comment out the deck1.sort() method in the test code.
Verify that an AssertionError Exception is now thrown

Testing

42

University
ofGalway.ie

• This lecture we looked at using the Comparable interface
• We defined the compareTo method for a Card object
• We then used the java.util.Arrays.sort method to sort a Deck of Cards
• As with any method we design we devised a test to evaluate if the method works
• A handy way of evaluating whether an expected value occurs is to use the assert function
• If the assert fails, the program throws an AssertionError alerting you to the fact that your code has

not produced expected output

Lecture wrap up

43

