OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Contact Information

Lecturer: Dr Frank Glavin

Frank.Glavin@nuigalway.ie

Office : Room 404, Information Technology Building

Note:

The bulk of this course content was originally developed by
Dr Conor Hayes

QOLLSCOILNA GAILLIMUE
i UNIVERSITY oOF GALWAY

Lecture/Lab Times and Location

Lecture - Thursday 9 am — 10 am:
ACO003, D’Arcy Thompson Lecture Theatre

Lecture - Friday: 10 am — 11 am:
IT250, Information Technology Building

Lab — Tuesday 11 pm — 1 pm:
BLE2012 Comp Suite
Arts Sci Rm 105
Block E, Ground Flr, E102

Lab — Friday 3pm — 5pm
IT106 [4BSE1 and 4BSE4]

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -

:-: UNIVERSITY OF GALWAY

O T A
LW

Learning Materials

 Lecture content will be provided in advance

* Lectures themselves will be in tutorial format
* You will need to bring a laptop to each lecture
* Weekly lab sessions

\LLy
;%T_‘; OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

()

Attendance

 Attendance at each lecture/tutorial will be recorded
 Attendance will be captured using the Qwickly app
* You will have time during the lecture to enter the pin

\LLy

;%T_‘; OLLSCOILNA GAILLIMHE
- [

= UNIVERSITY oF GALWAY
L W

()

Recommended Reading

/ Objects First

Objects First with Java: .
with Java™

A Practical Introduction
using Blue)
David J. Barnes,
Michael Koélling

PEARSON

WL Ly
AT OLLSCOILNAGAILLIMHE
? Slinls -

iL'.'vli UNIVERSITY oF GALWAY
LW *

Other Reading Texts

e Think Java by Allen B. Downey
http://www.greenteapress.com/thinkapjava/

e Thinking in Java by Bruce Eckel
http://www.mindview.net/Books/TIJ/

e The Java Tutorials hosted by Oracle

http://docs.oracle.com/javase/tutorial/index.html

Java, A Beginner's Guide, 5th Edition by Herbert Schildt
Effective Java (2nd Edition) by Joshua Bloch
Head First Java by Kathy Sierra, Bert Bates

\LL 7
NV OLLSCOILNAGAILLIMHE
. Clevils -
n‘|-|i UNIVERSITY OF GALWAY

Useful Online Resources

*https://www.geeksforgeeks.org/java/
*https://www.w3schools.com/java/default.asp
*https://www.w3schools.com/java/exercise.asp?filename=exercise syntaxl
*https://www.tutorialspoint.com/java/index.htm
*https://www.tutorialspoint.com/java/java online quiz.htm

Extra Support

ComputerDISC is a Computer Programming Drop-In Support
Centre for all NUI Galway students who are taking any
programming/software development courses. The DISC is a free
service that supports all students with their self-directed
learning in computing topics at all years and levels in NUI
Galway.

Room 205 in the Information Technology Building

https://www.universityofgalway.ie/science-engineering/school-of-computer-science/currentstudents/computerdisc/
https://www.universityofgalway.ie/science-engineering/school-of-computer-science/currentstudents/computerdisc/timetable/

N .
VAT OLLSCOILNAGAILLIMHE
> Clwils
lZalr UNIVERSITY OF GALWAY

-
@\
O var A
4w

10

Module Assessment

Assessment:
* There will be between 3 and 5 lab assignments

* Computer-based programming exam at the end of semester
* Attendance/participation at the weekly lecture tutorials

* If you should have to repeat in Autumn, your overall result is capped at 40%

\LLlys
NV OLLSCOILNAGAILLIMHE

[A

. slimils -
ojl"lza UNIVERSITY OF GALWAY
L

11

Computer Based Exam

* In December, you will have a two-hour computer-based exam

* You will be required to solve two/three problems by programming in Java

* You will not be able to pass this exam without having developed programming
competence

* Like riding a bicycle, this is not something you can learn from a book.

* You should be programming for at least two hours every week

\LLy
;@Tjﬁ OLLSCOILNA GAILLIMHE
. slmils -

= UNIVERSITY oF GALWAY

(A~ £8
LW

Learning Objectives 1

Just a pass

Define the basic principles of OOP

List a subset of best programming practices

List the differences between OOP and procedural programming

Name the basic Java data types and demonstrate how to use these as
variables

Write and compile a basic OOP program based on a given set of instructions
using an IDE such as Eclipse

Quite
Satisfactory

Create and Implement a subset of stub classes and methods so that an initial
overall approach compiles

Recognise when inheritance can be used to reduce code redundancy.

Apply basic inheritance approach to solve redundancy

Implement basic software engineering best practices - such as use of methods
to reduce redundancy, appropriate use of access modifiers, encapsulation
Demonstrate appropriate use of instance vs static methods/variables
Demonstrate appropriate use of getter/setter methods

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

12

13

Learning Objectives 2

Highly
satisfactory

Distinguish when inheritance or an interface approach is most appropriate
Demonstrate the appropriate use of polymorphism in a coding solution
Distinguish between data structures (Arrays, ArrayLists, HashMaps, Stacks)
Recognise when to use key utility libraries in the Java language (e.g java.utils.
Collections) and demonstrate how to implement them

The very best
understanding

Explain the modelling rationale for using a set of classes and methods to solve
a problem description

Formulate, design and implement and test a full OO solution to a problem
description

Independently recognise and apply a design pattern to solve a coding
problem

Employ creative and original thinking in formulating the solution

Demonstrate a test-driven (unit-testing) approach to solving a coding problem
Assess and Compare one solution approach against another

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

14

Topics

* Classes, objects, methods

* Primitive and reference types

* Object interactions

* Arrays and collections and how to iterate

* Modelling decisions - what classes, relationships and methods to design
* Inheritance: using it to improve structure

* Polymorphism: how to use to implement the open-close principle
* Object interactions again: composition

* Java libraries

* Using Interfaces

* Good programming practice: unit testing and exception handling
* Using a design pattern to solve an OOP problem

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

15

o

- gjms

o Umrmly
4 S

Learning Objectives: Week 1

You should be able to:
* Describe what an Object Oriented Programming language is
* Differentiate between a class and an object
* Create a simple class in BlueJ and create several objects of that class

* Create some simple methods in Java

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

LW

16

Object-oriented Programming (OOP)

What is an Object-Oriented
Programming language?

“Hello World”

1 #include <stdio.h> public class Greeting
2 {
3~ int main() { . .
4 ~ /* my first program in C */ ?Ubhc Greetingl)
5) _— System.out.println("Hello World");
2 char hello[] = "Hello, World! \n"; }
8 printfChello); public static void main(String[] args)
9 {
10 return 0; new Greeting();
1 } }
}
C Java

What are the similarities and differences between the
two code snippets?

;K_@""; OLLSCOILNA GAILLIMUE
R UnrvERSITY or GALWAY Information on public static void main...

https://www.journaldev.com/12552/public-static-void-main-string-args-java-main-method

4w

18

© |
. wjmale -
‘lnl’.

O T A

Definitions:

* Class

* Something from which you create objects.
* Template

* Object
* A Java object is a self-contained component which consists of methods and
properties
* E.g. in an ecommerce program, we could have customer object, item object, or book
object (it will have name, ID, Price etc.)

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

4w

19

What is a class?

* Aclass is a type of blueprint or template from which you make objects

* The use of classes and objects are the principal differences between
programming in C and programming in Java.

* However, it entails a fundamentally different way of designing your code

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

20

What is an object?

* A piece of programming code that has a state and has behaviour
* Often it represent a real thing
* It is created in code by instantiating a class

Methods
(behavior)

Fields
(state)

21

Bytecode

Unlike other high-level programming languages, Java code is not compiled into machine specific code that
can be executed by a microprocessor.

Instead, Java programs are compiled into something called bytecode. The bytecode is input to a Java
Virtual Machine (JVM), which interprets and executes the code. The JVM is usually a program itself.

The bytecode is platform independent. So, the JVM is specific for each platform, but the bytecode for the
program remains the same across different platforms. This is a very nice feature of Java.

Of course there is always a trade off....

The main trade off is the effect it has on the execution speed.

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. &lils -
o iy, UNIVERSITY OF GALWAY

. LN
7w

22

Creating your first class

* Lets write a simple program in Bluel

*In the lecture, you are going to
* Create your first class
* Create several objects of this class

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
n:-: UNIVERSITY OF GALWAY

LW

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Overview

How Java Works?
Different types of languages
Compilation
Interpretation

OTWT OLLSCOILNA GAILLIMUE
B4 UNIVERSITY OF GALWAY

o v.v A

Machine Code

[—— USBORNE INTRODUCTION TO-+

MACHINECODE b2 Oc 01
b4 09

cd 21

b8 00 4c

cd 21

48 65 6¢c 6¢c 6f 2c¢
20 57 6f 72 6¢c 64
21 0d Oa 24

7
*T'E]\l QOLLSCOILNA GAILLIMUE
B UNIVERSITY OF GALWAY

© v.vw

Assembly

mov dx, 010ch
mov ah, 09
int 21h

mov ax, 4c00h
int 21h
db 'Hello, World!',

l$|

\LLy
VAT OLLSCOILNAGAILLIMHE
> Clwils

3'-'7- UNIVERSITY OF GALWAY

© v A
Lw

ASSEMBLY

LANGUAGE

BEGINNERS
Hands On Guide

Java

public class Greeting

{
public Greeting()
{
System.out.println("Hello World");
}
public static void main(String[] args)
{
new Greeting();
}
}
Assembly

mov dx, 010ch
mov ah, 09

int 21h

mov ax, 4c00h

int 21h
<Y db 'Hello, World!', 's$°
VAT OLLSCOILN
xegF UNIVERSIT

1
2

#include <stdio.h>

3~ int main() {

e

= ® Woo~NOo W

o

/* my first program in C */
char hello[] = "Hello, World! \n";
printfChello);

return 0;

Machine Code

ba
b4
cd
b8
cd
48
20
-5

Oc
09
21
00
21
65
57
od

01

4c

6c 6¢c 6f 2c
6f 72 6¢c 64
Oa 24

High-level vs Low-level

* Both Java and C are high-level languages and assembly is a low-level
language

e What does that mean?

\LLy
;%T_‘; OLLSCOILNA GAILLIMHE
. sliils -
oY=y UNIVERSITY oF GALWAY

LW

High Level Language

‘High level’ is a relative term - the level of abstraction above a low level language
A low level language has little or no abstraction over the machine code of a particular processor.

Machine Code C Java Perl Ruby
Assembly C++ Scala JavaScript

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

\LL,(I
vﬁu}/’
O_—fh_"‘
..||..
o Umrmly
© vaw
4w

High-level vs Low-level Language

Machine Code C Java Perl Ruby

| 1 | L
r r r y

Assembly C++ Scala

JavaScript

\\,L,

TP OLLSCOILNAGAILLIMHE
- [

A :* UNIVERSITY oF GALWAY

High Level vs Low level Language

Machine Code C Java perl Ruby

1 i i L
r r r x

Assembly C++ Scala

JavaScript

- Cis very fast, but not portable
O"_\K_@L\::’g OLLSCOILNAGAILLIMHE

o Ve ¥y UNIVERSITY oF GALWAY

Java is fairly fast, but is portable

10

High Level Programming Languages

* Easier to program in a high- level language
* Syntax can be understood by people

Program takes less time to write, shorter and easier to read, more likely
to be correct.

* Portable —they can be run on different kinds of computers

\LLy
;@Tjﬁ OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

()

Translating your code so that it runs

* Unless you are writing machine code (!) — your code has to be translated
into machine code to run on your computer

Code Machine code

#include <stdio.h>

+ int main() {

1
2
3
4 /* my first program in C */

5

6 char hello[] = "Hello, World! \n";
7

8 printfChello);

9

10 return 0;
T 3

Wb
18

Ly
NV OLLSCOILNAGAILLIMHE
> Clnls
j'-'f UNIVERSITY 0F GALWAY

LW

12

Two Types of Translation

Compilation

Interpretation

\LLy
VAT OLLSCOILNAGAILLIMHE
s -
lZalr UNIVERSITY OF GALWAY

. u
oV
o Vo
LW

Cis a compiled language

A compiler is a program that takes human readable source code and
translates it in one go into machine code using a Compiler

CCode Compiler (e.g. gcc) Machine code

............ 0;

............... ‘

—

With compilation translation occurs before
the programis run |

\“L/(
;%T_’; OLLSCOILNA GAILLIMHE
” slirls -
° -: UNIVERSITY OF GALWAY

LW

14

Compilation

* A compiler translates source code in one go into machine code for a
particular machine

 However, the machine code generated is not portable

* You have to compile the code again if you want it to run on a different
type of machine.

 However, the generated code typically executes very efficiently

WLLy,
P\ OLLSCOILNA GAILLIMUE
;' UNIVERSITY oF GALWAY

15

Interpretation

* The second type of translation approach

* Code is translated on-the-fly at runtime into commands that can be

executed on the machine.

Ly
@ OLLSCOILNAGAILLIMHE
;' UNIVERSITY oF GALWAY

Python
interpreter

—_

With Interpretation
translation occurs
when the program is
executed

Compilation vs Interpretation

Compilation
* A compiler translates source code in one

go into machine code before the
programme is run

* Typically, translating to native machine
code means very efficient run-time
speed

* For big projects, compile time can be
slow

WLLy,
OT_K%T_‘; OLLSCOILNA GAILLIMHE
| - -
Callf UNIVERSITY oF GALWAY

o‘lv.v—\
4w

16

Interpretation
* Code read and executed by another

program (the interpreter) when the
program is run

* This makes the code portable (as
long as there is an interpreter)

* Typically, slower to run as each
statement has to be interpreted into
machine code on-the-fly

* Greater chance of run-time errors

17

Translating Java Code
It is important to understand how and why Java does this differently

Machine code

IE\EN @I [\Which Type of Translation?

WLL ’_

VAT OLLSCOILNAGAILLIMHE

> Clwils

j'-'f UNIVERSITY OF GALWAY
LW’

C av A

18

Java’s Design Goals include:

* Portability (typically interpreted languages)
* High Performance (typically compiled languages)
 How does Java achieve both?

\LLy
;@T} OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

o

Java Translation

Java is typically both compiled and interpreted.

1. Javais compiled to Byte Code — an intermediate language which is portable
2. Then aJava interpreter reads and executes the Byte Code

Java Compiler Java Interpreter
source 18} | [ope OXNmp=
4 o A

code | _| .| code |
X.java . x.class

The compiler ... and generates A Java interpreter ... and the result
reads the Java byte code. reads the byte appears on
OLLSCOILNAGA Source code... code... the screen.

UNIVERSITY oF GALWAY

19

Java Architecture

Java Code (.java) The code you write

v

JAVAC
compiler

T

Byte.Code.(.class) The byte code that is executed by

the Java Virtual Machine

|
. v v

VM IVM VM Each JVM
translates the byte
3 : ¢ code into machine
Windows | Linux | Mac | code that can run

TP OLLscoiLm(on each type of
'ﬁ|ﬁ|" UNIVERSITY 0 For Windows For Linux For Mac hardware

C va
4w

21

Java Virtual Machine (JVM)

* JVM is a piece of software not hardware

* Avirtual computer on which Java byte code is executed

* Oracle provide a JVM abstract specification and a concrete
implementation for each operating system type (e.g. Windows, OSX,
Linux)

* There are multiple other specialised JVMs that all run

* See: https://en.wikipedia.org/wiki/List_of Java_virtual_machines#Activelava

\LLly
;%T_‘; OLLSCOILNA GAILLIMHE
- - .

el [JNIVERSITY OF GALWAY

.h‘
C o>
4w

Java Runtime Environment (JRE)

* JRE containts the JVM and all libraries required
to run the Java Program

javac, jar, debugging tools,
javap

java, javaw, libraries,

rt.jar

JVM

Just In Time
Compiler (JIT)

\bLLy
VAT OLLSCOILNAGAILLIMHE
. slmals -
3'..'? UNIVERSITY OF GALWAY
LW’

O T A

22

What happens when you compile code?

Open Blue)

* Compile an existing or new project
* Go to your Project Folder

You will see 5 files

Name Date modified Type

|| GreetingAll.class 19/09/2018 11:45 CLASS File

|| GreetingAll.ctxt 19/09/2018 11:45 CTXT File

| GreetingAlljava 13/09/2018 09:50 Java Source File
<% package.bluej 19/09/2018 11:45 Bluel Project File
= READMETXT 10/09/2018 17:04 Text Document

\LLy

;%T:; QOLLSCOILNA GAIL

” slirls -

o ViV UNIVERSITY oF GALWAY

23

Size
1KB
1KB
1KB
1KB
1KB

24

Summary of How Java Works

e Javais a high-level language.
* |ts source code is compiled to intermediate level bytecode

e Bytecode is executed on the Java Virtual Machine

WLLy,
;@T} OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY

.r“
C av
4w

25

Learning exercise

In Blue J:

Create a Bicycle class and a Car class

Each Bicycle object should its own speed and gear (.e.g. 1%, 2"4, 34 etc) state

What type of variable in Java could be used to represent speed and gear (look it up on
the Web)?

Create setSpeed and setGear method that can set the speed /gear state of a bicycle
and a car object and print out the current speed of each

Then Create 3 Bicycle and 3 Car objects

Using the methods above set and print different speed and gear values for each

\LLlys
NV OLLSCOILNAGAILLIMHE

[A

. slmxls -
ojl"lZ—‘x UNIVERSITY OF GALWAY
L

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Last Lecture - First Java Code

* In the last session, you wrote your first class and created several objects from it

* You were introduced to the notion of state
* Every object has its own state

* An object’s state is generally defined by the values it holds

* Multiple objects can be created from a single class. Each object can have its own state.

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

Topics

By the end of this lecture you will be able to implement the following in Java:

* Correct class and method structure

* Define and initialise an int variable

* Use accessor and mutator methods
* Explain the concept of encapsulation
* Print out the object state

* Use the Java conditional statement (if else)

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Today’s Learning exercise

In Blue J:

* Create a Bicycle class and a Car class

* Each Bicycle object should its own speed, gear and cadence (e.g. 1%, 29, 3™ etc) state

 What type of variable in Java could be used to represent speed, gear and cadence (look it up on the
Web)?

* Create setSpeed, setGear and setCadence method that can set the speed /gear state of a bicycle and a
car object and print out the current speed of each

 Then Create 3 Bicycle and 3 Car objects

* Using the methods above set and print different speed, gear and cadence values for each

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. &lils -
o iy, UNIVERSITY OF GALWAY

C av
4w

Class Structure:

Every class has the following structure

public class ClassName

{
Fields
Constructors
Methods

}

\LL 7
NV OLLSCOILNAGAILLIMHE
> Clnls
j'-'f UNIVERSITY 0F GALWAY

LW

Fields

* Fields store values for an object.

* They are also known as instance variables.

* Fields define the state of an object.

* Use Inspect in Bluel to view the state.
* Some values change often.

* Some change rarely (or not at all).

public class Bicycle

{
private int speed;
private int gear;
private int cadence;

Further details omitted.

o ... Ltype .
v1s1b1l1tq‘d1ﬁer l variable name

private int speed;

Data Type:

int

Java Primitive Types

Type Size Range Default
boolean 1 bit true or false false
byte 8 bits [-128, 127] 0
short 16 bits [-32,768, 32,767] 0

| int 32 bits [-2,147 483,648 to 0

2,147 483 ,647]
long 64 bits 27, 271] 0
float 32 bits 32-bit IEEE 754 floating-point 0.0
double 64 bits 64-bit IEEE 754 floating-point 00
P OLLSCOILNA GAILLIMUE

"KAXI’
o [eBiN =
. slmals -
N

UNIVERSITY oF GALWAY

Principle 1 of OOP: Encapsulation

In encapsulation, the variables of a class will be hidden from other classes
and can be accessed only through the methods of their current class,
therefore it is also known as data hiding.

e Why?

» Basic OOP philosophy: each object is responsible for its own data

* This allows an object to have much greater control

o Which data is available to be viewed externally
o How external objects may change (mutate) the object’s state

\LLly
;%T_‘; OLLSCOILNA GAILLIMHE
- - .

el [JNIVERSITY OF GALWAY

&
AL
4w

Encapsulation Type: Private

* Making the fields private encapsulates their values inside each object

* No external class or object can access them.

public class Bicycle

{
private int speed;
private int gear;
private int cadence;

Further details omitted.

\LLy
;@T} OLLSCOILNA GAILLIMHE
. sliils -

= UNIVERSITY oF GALWAY

O T A
LW

10

© |

. wjmale -
‘lnl’
4 ™

Constructors (1)

* Initialize an object.
* Have the same name as their class.

e Close association with the fields:
o Initial values stored into the fields.
o Parameter values often used for these.

public Bicycle (int spd,
{

speed = spd;

gear = gr;

< cadence = cad;
VAW OLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY }

O T A
LW

int gr,

int cad)

11

© |

. wjmale -
‘lnl’
4 ™

Constructors (2)

* If input parameter variables have the same name as your fields
* Then you must use the this keyword to distinguish between the two
* this = “belonging to this object”

public Bicycle(int speed, int gear, 1int cadence)
{

this.speed = speed;

this.gear = gear;

this.cadence = cadence;

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

O T A
LW

12

© |

. il -
‘lnl’
4 ™

Choosing Variable Names

* There is a lot of freedom over choice of names. Use it wisely!
* Choose expressive names to make code easier to understand:
o price, amount, name, age, etc.
* Avoid single-letter or cryptic names:
o W, t5, xyz123

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

O T A
LW

13

Methods

 Methods implement the behaviour of an object.
* Methods have a consistent structure comprised of a header and a body.

* Accessor methods provide information about the state of an object.
* Mutator methods alter the state of an object.

e Other sorts of methods accomplish a variety of tasks.

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
- =

Lalld UNIVERSITY oF GALWAY

el
4w

Method structure

* The header:
o publicint getSpeed ()

* The header tells us:
o the visibility to objects of other classes;
o Wwhether the method returns a result;
o the name of the method;
o Wwhether the method takes parameters.

* The body encloses the method’ s statements.

\LLy
;@T} OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY
L W

g
3 A LN
& r

15

Accessor (get) methods

return type
visibility modifier method name

\ / _— parameter list

public int getSpeed () (empty)

return speed; < return statement

\ start and end of method body (block)

\“L/(
VAW OLLSCOILNA GAILLIMHE
3~y UNIVERSITY OF GALWAY

16

Accessor methods

* An accessor method always has a return type that is not void.

* An accessor method returns a value (result) of the type given in the
header.

* The method will contain a return statement to return the value.

* NB: Returning is not printing!

WLLy,
;@Tjﬁ OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY

.r“
C av
4w

17

C vs. Java

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Headers

Global variables

function-1

function-n

A function (in C) is not well-encapsulated

Name
— / Attributes =
‘ i ame
T — Behaviors ‘
Attributes
Behawors
Behavnors
\ messages
Name | Name
Attributes Attributes
Behaviors Behaviors

An object-oriented program consists of many well-encapsulated
objects and interacting with each other by sending messages

* Unlike a C program, an OOP program will not have a pool of
global variables that each method can access

* Instead, each object has its own data — and other objects rely
upon the accessor methods of the object to access the data

18

public class Bicycle {

* The instance variables

[NN D (or fields) are declared

private int speed; -—

private int gear; private

public int getCadence() { e Cannot be accessed
return cadence; .

} directly

public void setCadence(int newValue) {
cadence = newValue;

}

ubTBe 1t geiGeary 3 e accessor/mutator methods

} return gear; used to access the data

public void setGear(int newValue) {

gear = newValue; * These are often called

}
getter/setter methods

public int getSpeed() {
return speed;

}

19

blic class Bicycle
Test: F°
= {

private speed;

public Bicycle ()

{
speed = 300
}
public int getSpeed
{
return Speed;
}

\“L/(
GBS OLLSCOILNAGAILLIMHE
- - .
) :* UNIVERSITY oF GALWAY

What is wrong here?

(there are five errors!)

20

Mutator Methods (1)

* Have a similar method structure: header and body.
 Used to mutate (i.e., change) an object’ s state.

* Achieved through changing the value of one or more fields.

They typically contain one or more assignment statements.
Often receive parameters.

\LLy
;@T} OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY
L W

g
3 A LN
& r

21

Mutator Methods (2)

visibility modifier return type method name

\ / / formal parameter

public void speedUp (int amount)

{
speed = speed + amount;

} I \

field being mutated assignment statement

/_g;\ QOLLSCOILNA GAILLIMHE
Jla UNIVERSITY 0F GALWAY

o ol
4, W

22

Mutator Methods: ‘set’

e Each field may have a dedicated set mutator method.

* These have a simple, distinctive form:
void return type
method name related to the field name

single formal parameter, with the same type as the type of the field
a single assignment statement

\LLly
B OLLSCOILNA GAILLIMHE

N EJ UNIVERSITY OF GALWAY

23

Mutator Methods: ‘set’

* Atypical ‘set’ method

public void setGear (int number)

{

gear = number;

}

 We can easily infer that gear is a field of type ‘int/,
* private int gear;

\LLy
;@T} OLLSCOILNA GAILLIMHE
- [
= UNIVERSITY oF GALWAY
L W

"N
(A~ £8
4

24

Protective Mutators

* A set method does not have to always assign unconditionally to the
field.

* The parameter may be checked for validity and rejected if inappropriate.

* Mutators thereby protect fields.

* Mutators support encapsulation.

\LLy
;@T} OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

o

25

Printing From Methods

public void printState ()

{

WLLy,
AW\ OLLSCOILNA GAILLIMUE
- [
) :* UNIVERSITY oF GALWAY

// Simulates output from a bike computer.

System.
System.
System.
System.
System.
System.

out
out
out
out
out
out

println ("HFHAFFFFFFAAAAFAFFFF") S
.println("# Speed: " + speed);
.println ("# Gear : " + gear);
.println ("# Cadence: " + cadence);
println ("H#HAFFFFFFAFFAFFAASIS") S
.println() ;

26

Printing From Methods 2

public void printState()

{

\LLly
AW\ OLLSCOILNA GAILLIMUE
- [
X :* UNIVERSITY oF GALWAY

// Simulates output from a bike computer.
System.out.println ("#########HH44HH4HE")
System.out.printf ("# Speed: %d \n ", speed);
System.out.printf ("# Gear : %d \n ”, gear);
System.out.printf ("# Cadence: %$d \n”, cadence);

System.out.println ("#####4F444HHHHHHHH");
System.out.println () ;

27

Conditional Statement

if (I have enough money left) {

I will go out for a meal;
} else {

I will stay home and watch a movie;

* |t has the same format that you have seen in C

Wb 7
VA OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY

28

Making choices in Java

. .||_a||. .

o ol

4w

‘if’ keyword

}

boolean condition to be tested

actions if condition is true

f (perform some test) { ////

Do these statements 1f the test gave a true result

else {

‘else’ keyword

Do these statements 1f the test gave a false result

N

actions if condition is false

,*/n\ OLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY

Protecting a Field (1)

public void setGear (int gearing)
{
1f (gearing <= 18) {
gear = gearing;
}
else {
System.out.println (
"Exceeds maximum gear ratio.
Gear not set”);

This conditional statement avoids an inappropriate action. It
AATe O NAG :
(g oo oot protects the gear field from too large values

© vav
LW

30

Protecting a Field (2)

public void setGear (i1nt gearing)
{
1f (gearing >= 1 && gearing <= 18) {
gear = gearing;
}
else {
System.out.println (
"gear 1nput value not 1in the
correct range”);
}
o oLLSCOILNAGAILjMHE This conditional statement avoids an inappropriate action. It
82 Universityor Gatway protects the gear field from too large AND too small values

© vav <
LW

31

Summary

You have encountered some of the fundamental ideas in OOP
A class has fields, a constructor(s) and methods

Encapsulation - each object’s data (fields) is protected by its
accessor/mutator methods

If you want to access/change an object’s state, you must use
its accessor/mutator methods

The use of the ‘private’ keyword prevents external access to an
object’s data

\LLlys
NV OLLSCOILNAGAILLIMHE

- gjms
o Umrmly
A 4v‘v LS

LW

UNIVERSITY oF GALWAY

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Summary of Last Two Lectures

A class has fields, a constructors and methods

* Encapsulation - each object’s data (fields) is protected by its accessor/mutator methods

* If you want to access/change an object’s state, you must use its accessor/mutator methods
 The use of the ‘private’ key word prevents external access to an object’s data

e Javais both compiled and Interpreted

* Java uses JVM to execute the same code on multiple platforms/machines

\LLlys
NV OLLSCOILNAGAILLIMHE

> Cirhls
5'-'7- UNIVERSITY OF GALWAY

Today’s Lecture

* How to implement a scenario?

* An object can be composed of other objects

* Objects can call each other’s methods

* Java uses Reference types as well as primitive types
 What to watch out for in Integer division

* To use double and boolean primitive values

* To use conditional statements

WLLy,
;@Tjﬁ OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY

.r“
C av
4w

An Example Problem to Solve/Implement

We wish to be able to create several Car (objects)
Each car object has an Engine

Each Engine has the following properties
kpg (kilometers per gallon)
fuel (amount of fuel in the tank)

Each Car has a totalDistance (travelled)

\LLy
;@Tjﬁ OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

o

Problem

Each Car should have a move method specifying the distance to be
travelled

You may call this method as often as you wish, and the car will print out
— Total distance travelled so far
— Remaining fuel
— Estimated distance left to travel

If you are out of fuel, the car will notify you

\LLy
;@T} OLLSCOILNA GAILLIMHE
. slmls -

= UNIVERSITY oF GALWAY

O T A
LW

How to Start

Firstly, identify the classes
Code up the basic classes

Remember each class should have
Fields
At least one constructor
Methods

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
° -: UNIVERSITY OF GALWAY

LW

Linking classes

Each Car object “has a”/ “has an” Engine

In OOP terms, this means that a Car object relies upon the service of an Engine object

\LLy
;%T:; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

Is-a vs has-a relationships

* Two fundamental relationships between classes in OOP
o has-a (or composition)
o is-a (or inheritance) : we’ll encouter this later

* A RacingBike is-a type of Bicycle (Inheritance)
* A RacingBike has-a Wheel (Composition)

\LLlys
NV OLLSCOILNAGAILLIMHE

> Cirhls
Elv-.-.lz* UNIVERSITY OF GALWAY
L W

Representing has-a relationships

* has-a relationship denotes composition

* One object is composed of another and relies upons its services for its
own functionality

* A Vehicle has-a(n) Engine; A Bicycle has a wheel

Vehicle Engine

\LLy
;@T} OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

()

10

Representing has-a relationships

* In OOP class diagrams a diamond shape like this indicates a composition
or has-a relationship

1

Vehicle Engine

* This class diagram tell us that a Vehicle object is composed of a single
Engine object

\LLy
;%T_‘; OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

()

11

Realising composition in Java

* To realise a has-a relationship you have to create a link between the
participant classes

* You do this using a new type of variable type: a reference variable type
* The reference declaration is in the owner class

* In our example, the Car class will have reference variable that points to
an Engine object

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
- =

Lalld UNIVERSITY oF GALWAY

ool
4w

public class Bicycle

{

// instance variables - replace the example beloyv
private int speed;
private int gear;
private int cadence;
rivate Wheel front; '
p ._—— Tworeference variable of

PIECSISRE, el S type Wheel are declared
/**
* Constructor for objects of class Bicycle
*/
public Bicycle(int speed, int gear, int cadence)
{
// initialise instance variables
ENES. Spaac S Spais] The variables are
this.gear = gear; e i e .
this.cadence = cadence; ,,///”’lnnuﬂmedlnthe
front = new Wheel(5); constructor

back = new Wheel (5);

13

L{)ubllc class Wheel Wheel Class

// instance varlables - replace the example below with
private int radius;

[%%
* Constructor for objects of class Wheel
%/

public Wheel(int radius)

{

// initialise instance variables
this.radius = radius;

})

14

Following this example, you can create a link between Car and Engine

\“L/(
;%T_’; OLLSCOILNA GAILLIMHE
” slirls -
n:-: UNIVERSITY OF GALWAY

LW

15

Information Required

* What information does the Car object require from Engine object?
o “Each car should have a move method specifying the distance to be
travelled”

* You may call this method as often as you wish and the Car will print out:
o Total distance travelled so far
o Remaining fuel
o Estimated distance left to travel
“If you are out of fuel, the car will notify you”

\LLly
;%T_‘; OLLSCOILNA GAILLIMHE
- - .

el [JNIVERSITY OF GALWAY

.h‘
C o>
4w

16

Objects Communicating

 What information does the Car object require from Engine object?

e We know this

o Engine object has:
¢ Fuel amount
** kpg (the amount of fuel used per distance)

e Car object has
o The distance amount
o The total distance travelled amount
o A move method

\LLlys
NV OLLSCOILNAGAILLIMHE

[A

. slmals -
ojl"lza UNIVERSITY OF GALWAY
L

17

Car to Engine

e Car has no information about
fuel levels

*|t requires Engine to give it
that

OTWT QLLSCOILNA GAILLIMHE
Al UNIVERSITY OF GALWAY

° v‘v-&
4,

Engine to Car

* Engine has no information
about distance

* It requires Car to give it this
(so that it can calculate fuel
consumption)

18

go(int distance) method in Engine class

/%%
* go method of the engine calculates the amount of fuel needed to go
* the distance required. It updates the fuel variable based on this calculation.
* It returns false if the updated fuel calculation is less than zero.
* This is a rough and ready way to determine if the fuel level can accomodate the distance required.
* Can you do better ? For example, if there was fuel for 5 km, but the distance variable was 18km
* perhaps this method should return the distance that could be travelled, rather
* than returning false.
*
* @param distance : the distance required to travel
* @return true or false based on whether it is possible or not
*/
public boolean go(int distance)
{
fuel = fuel - distance/kpg; // integer division problem here. Can you spot it?

if (fuel >=08){
return true;

return false;

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19

[
..|

setFuel(int fuel) from the Car class

public void setFuel(int fuel)({
engine.setFuel(fuel);

\LL 7

VA OLLSCOILNAGAILLIMHE
ol -

gl UNIVERSITY 0F GALWAY
L

oV
O var A
4w

20

move(int distance) from the Car class

[*%

* The move method is called whenever a Car object is required to move

*

* @param distance : the distance the car wishes to move

* @return boolean: true or false based on whethe the car moved or not
*/

public boolean move(int distance)

{

boolean moved = engine.go(distance); //checks to see if engine will allow this distan
if (moved) {
totalDistance +=distance; //updates distance travelled

return moved;

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

21

© |

. illi .

o Umrmly
S

First Assignment

* Based on this example sand will be posted later today.

* |t will be due next Friday.

WL Ly,
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

LW

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Summary of Last Two Lectures

A class has fields, a constructors and methods

* Encapsulation - each object’s data (fields) is protected by its accessor/mutator methods

* If you want to access/change an object’s state, you must use its accessor/mutator methods
 The use of the ‘private’ key word prevents external access to an object’s data

e Javais both compiled and Interpreted

* Java uses JVM to execute the same code on multiple platforms/machines

\LLlys
NV OLLSCOILNAGAILLIMHE

> Cirhls
5'-'7- UNIVERSITY OF GALWAY

Today’s Lecture

* How to implement a scenario?

* An object can be composed of other objects

* Objects can call each other’s methods

* Java uses Reference types as well as primitive types
 What to watch out for in Integer division

* To use double and boolean primitive values

* To use conditional statements

WLLy,
;@Tjﬁ OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY

.r“
C av
4w

An Example Problem to Solve/Implement

We wish to be able to create several Car (objects)
Each car object has an Engine

Each Engine has the following properties
kpg (kilometers per gallon)
fuel (amount of fuel in the tank)

Each Car has a totalDistance (travelled)

\LLy
;@Tjﬁ OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

o

Problem

Each Car should have a move method specifying the distance to be
travelled

You may call this method as often as you wish, and the car will print out
— Total distance travelled so far
— Remaining fuel
— Estimated distance left to travel

If you are out of fuel, the car will notify you

\LLy
;@T} OLLSCOILNA GAILLIMHE
. slmls -

= UNIVERSITY oF GALWAY

O T A
LW

How to Start

Firstly, identify the classes
Code up the basic classes

Remember each class should have
Fields
At least one constructor
Methods

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
° -: UNIVERSITY OF GALWAY

LW

Linking classes

Each Car object “has a”/ “has an” Engine

In OOP terms, this means that a Car object relies upon the service of an Engine object

\LLy
;%T:; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

Is-a vs has-a relationships

* Two fundamental relationships between classes in OOP
o has-a (or composition)
o is-a (or inheritance) : we’ll encouter this later

* A RacingBike is-a type of Bicycle (Inheritance)
* A RacingBike has-a Wheel (Composition)

\LLlys
NV OLLSCOILNAGAILLIMHE

> Cirhls
Elv-.-.lz* UNIVERSITY OF GALWAY
L W

Representing has-a relationships

* has-a relationship denotes composition

* One object is composed of another and relies upons its services for its
own functionality

* A Vehicle has-a(n) Engine; A Bicycle has a wheel

Vehicle Engine

\LLy
;@T} OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

()

10

Representing has-a relationships

* In OOP class diagrams a diamond shape like this indicates a composition
or has-a relationship

1

Vehicle Engine

* This class diagram tell us that a Vehicle object is composed of a single
Engine object

\LLy
;%T_‘; OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

()

11

Realising composition in Java

* To realise a has-a relationship you have to create a link between the
participant classes

* You do this using a new type of variable type: a reference variable type
* The reference declaration is in the owner class

* In our example, the Car class will have reference variable that points to
an Engine object

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
- =

Lalld UNIVERSITY oF GALWAY

ool
4w

public class Bicycle

{

// instance variables - replace the example beloyv
private int speed;
private int gear;
private int cadence;
rivate Wheel front; '
p ._—— Tworeference variable of

PIECSISRE, el S type Wheel are declared
/**
* Constructor for objects of class Bicycle
*/
public Bicycle(int speed, int gear, int cadence)
{
// initialise instance variables
ENES. Spaac S Spais] The variables are
this.gear = gear; e i e .
this.cadence = cadence; ,,///”’lnnuﬂmedlnthe
front = new Wheel(5); constructor

back = new Wheel (5);

13

L{)ubllc class Wheel Wheel Class

// instance varlables - replace the example below with
private int radius;

[%%
* Constructor for objects of class Wheel
%/

public Wheel(int radius)

{

// initialise instance variables
this.radius = radius;

})

14

Following this example, you can create a link between Car and Engine

\“L/(
;%T_’; OLLSCOILNA GAILLIMHE
” slirls -
n:-: UNIVERSITY OF GALWAY

LW

15

Information Required

* What information does the Car object require from Engine object?
o “Each car should have a move method specifying the distance to be
travelled”

* You may call this method as often as you wish and the Car will print out:
o Total distance travelled so far
o Remaining fuel
o Estimated distance left to travel
“If you are out of fuel, the car will notify you”

\LLly
;%T_‘; OLLSCOILNA GAILLIMHE
- - .

el [JNIVERSITY OF GALWAY

.h‘
C o>
4w

16

Objects Communicating

 What information does the Car object require from Engine object?

e We know this

o Engine object has:
¢ Fuel amount
** kpg (the amount of fuel used per distance)

e Car object has
o The distance amount
o The total distance travelled amount
o A move method

\LLlys
NV OLLSCOILNAGAILLIMHE

[A

. slmals -
ojl"lza UNIVERSITY OF GALWAY
L

17

Car to Engine

e Car has no information about
fuel levels

*|t requires Engine to give it
that

OTWT QLLSCOILNA GAILLIMHE
Al UNIVERSITY OF GALWAY

° v‘v-&
4,

Engine to Car

* Engine has no information
about distance

* It requires Car to give it this
(so that it can calculate fuel
consumption)

18

go(int distance) method in Engine class

/%%
* go method of the engine calculates the amount of fuel needed to go
* the distance required. It updates the fuel variable based on this calculation.
* It returns false if the updated fuel calculation is less than zero.
* This is a rough and ready way to determine if the fuel level can accomodate the distance required.
* Can you do better ? For example, if there was fuel for 5 km, but the distance variable was 18km
* perhaps this method should return the distance that could be travelled, rather
* than returning false.
*
* @param distance : the distance required to travel
* @return true or false based on whether it is possible or not
*/
public boolean go(int distance)
{
fuel = fuel - distance/kpg; // integer division problem here. Can you spot it?

if (fuel >=08){
return true;

return false;

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19

[
..|

setFuel(int fuel) from the Car class

public void setFuel(int fuel)({
engine.setFuel(fuel);

\LL 7

VA OLLSCOILNAGAILLIMHE
ol -

gl UNIVERSITY 0F GALWAY
L

oV
O var A
4w

20

move(int distance) from the Car class

[*%

* The move method is called whenever a Car object is required to move

*

* @param distance : the distance the car wishes to move

* @return boolean: true or false based on whethe the car moved or not
*/

public boolean move(int distance)

{

boolean moved = engine.go(distance); //checks to see if engine will allow this distan
if (moved) {
totalDistance +=distance; //updates distance travelled

return moved;

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

21

© |

. illi .

o Umrmly
S

First Assignment

* Based on this example sand will be posted later today.

* |t will be due next Friday.

WL Ly,
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

LW

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Variables and Types

* Avariable is a symbol used to store a value

* E.g.x=5
* In strongly typed language, you have to tell the compiler/interpreter what type the variable is

* The Compiler/Interpreter knows how much space to allocate it in memory

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Java Primitive Variables

-l
..||..
o Ummly
C vaw
LW

P _
VAT OLLSCOILNAGAILLIMUE

boolean 1 bit true or false

byte 8 bits [-128, 127]

short 16 bits \[—32,768, 32,767]

char 16 bits h'\uOOOO', "uffff] or [0, 65539]

int 32 bits /—2,147,483,648 to
2,147,483,647]

long 64 bits (2% 2]

float 32 bits 32-bit IEEE 754 floating-point

double 64 bits 64-bit IEEE 754 floating-point

UNIVERSITY oF GALWAY

Default values

Each primitive variable has a default value.

The default value is used only when the variable is used as a field (instance variable)

If the field is not explicitly assigned a value, the default value is used

For example, the default value for an int variable is 0 (zero)

Useful example and summary:

https://www.codejava.net/java-core/the-java-language/java-default-initialization-of-
instance-variables-and-initialization-blocks

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Example

public class Bicycle

{

'

private int speed;

J **
} * Constructor for objects of class Bicycle
*/
public Bicycle()
{

note how the speed variable is not initialised

ror an i1nt, zero

VET

* @return value of speed field
*/

public int getSpeed()

{

return speed;

s

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

instance variables - replace the example below with your

0

(6] o BlueJ: week3

New Class... | | [Car Engine
=&
Compile B
Z
Bicycle bike = new Bicycle();
bike.getSpeed();
int x = bike.getSpeed();
X
speed value returned 0 (int)
is the default value for
anint: 0
QOLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY

Default Values

* The Code pad in Blue J automatically initialises variables just as if they were instance variables.

* This will not happen in a true Java program!

e But it is useful for learning the default values.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Default Values

Your turn — type a variable of each type into _

Code Pad boolean 1 bit
E.g type: inty; byte 8 bits
Hit return :
then type: y short 16 bits
Hit return char 16 bits
Write dOWI’] the default int 32 bits
value returned for each
type long 64 bits
float 32 bits
double 64 bits

Ly
VAT OLLSCOILNAGAILLIMUE
> Lemile ™
o‘lv-..lﬂ UNIVERSITY OF GALWAY

4w

Starting Example

inty;
Note: Codepad variables are automatically initialized
in the same way as instance fields.

Yy
0 (int)

Ly
VAT OLLSCOILNAGAILLIMUE
* Llrvils -

c,'ilv-..li UNIVERSITY OF GALWAY

w

int y;
Note: Codepad variables are automatically initialized
in the same way as instance fields.

Y
O (int)

boolean bool;

bool
false (boolean)

byte b;
b

O (byte)
short s;

s
O (short)

char c;
c

"\uO000"' (char)
long Ig;

[e
O (long)

float f;

f
0.0 (float)

double d;
d

0.0 (double)

11

Java Primitive Variables

Default values

boolean 1 bit true or false false
byte 8 bits 128, 127] / 0 \
short 16 bits [-32,768, 32,767] 0
char 16 bits ['\u000Q', "uffff] or [0, 65535] "\u0000'
int 32 bits [-2,147,483,648 to 0

2.147.483,647]
long 64 bits 2% 2%.1] \ 0 /
float 32 bits 32-bit IEEE 754 floating-point \ 0.0 /
double 64 bits 64-bit IEEE 754 floating-point 0.0 /

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

NS

12

Reference/Object Types

* A reference type is a data type that’s based on a class rather than
on one of the primitive types that are built into the Java language.

* |In fact, there are four categories of reference type:
o Object Types
o Interface Types
o Enum Types
o Array Types

* For now, we will focus on Object types, the others will follow
easily

SV
N OLLSCOILNAGAILLIMHE

[A

. slmals -
ojl-lf* UNIVERSITY oF GALWAY
L W

13

Object Reference Type: Key points

* A variable that is a reference type is a variable that points to an
object

e A primitive variable contains the value of the primitive type.

e e.g.int x=7; x contains the int value 7

* A reference variable contains the value of the memory location
of an object

* E.g. Wheel wheel = new Wheel();

* The wheel variable contains the value of the memory location of
the new Wheel object

\LLy
AT OLLSCOILNAGAILLIMHE
s|mls -
j'-'f UNIVERSITY oF GALWAY
L W

O T A

14

Key point to Remember

* Areference variable does - contain the value of the object

e A reference variable contains the value of the memory
location of the object

* |tis a pointer

SV

AT OLLSCOILNAGAILLIMHE
=

j'-'f UNIVERSITY oF GALWAY
L W

C aw

15

Null Default value

The default value of all reference variables is null;
* null is a special value in Java
* |t means ‘No object’

When you first declare a reference variable, its value is null

Bicycle bike; /| declaring a reference variable called bike of type Bicycle
bike // what's the value of bike?

null
Bicycle bike2; /| declaring another reference variable of type Bicycle

bike2 // what's the value of bike2
null

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

16

NullPointerException

* One of the most common errors generated when running a program in Java is NullPointerException
* This error is thrown when your program encounters a reference variable that has not been initialised
* This means that the variable points to its default value = null

* Your program then tries to get the object that the variable is pointing to to do something.

* But the object doesn’t exist. Variable actually points to null.

This causes Java to generate a NullPointerException

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Example

Using your previously defined Bicycle class, type the following into Code
Pad

Bicycle bikel; //bikel points to null
Bicycle bike2; // bikel points to null;

kel = : : bike1, bike2 igned t
b}kel = new B}cycle(),/ I'ett Its gfe aTSlgEfé to' :
blkeZ = new BlcyCIEC); point to the bicycle objects Jus
initialised
b}kel - nU1l;<—-— bikel, bike2 again point to null
bike2 = null;
g o What has happened to the previously initialised

N @Y UNIVERSITY OF GALWAY B | CyCIe 0O bJ ects?

Understanding References

Bicycle bikel; //bikel points to null
Bicycle bike2; // bikel points to null;

bikel = new Bicycle();
bike2 = new Bicycle();
bikel = bikeZ2;
null
bikel = null;
bike2 = null; .
bikel

bike2

WLLy,

VAT OLLSCOILNAGAILLIMUE
= ﬁ = .
slzol UNIVERSITY oF GALWAY

Cr'v.v A
4w

Understanding References

Bicycle
Bicycle

bikel; //bikel points to null
bike2; // bikel points to null;

bikel
bike2

Il

new Bicycle();
new Bicycle(); Objects stored at

bikel

bikel
bike2 =

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19

memory locations

bike2; The actual values of bikel,
bike2 are memory A@93041f
null; locations
null; o
bikel
A@15641d A@15641d
bike2

20

Understanding References

Bicycle bikel; //bikel points to null
Bicycle bike2; // bikel points to null; Objects stored at
bikel = new Bicycle(); memory locations
bike2 = new Bicycle(); ® A@93041f
_ _ bikel now takes the w
bikel = bikeZ; |some value as bike2
bikel = null;
bike2 = null,
’ bikel A
A@15641d A@15641d

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

bike2

Understanding References

Bicycle bikel; //bikel points to null
Bicycle bike2; // bikel points to null; What happens to

this object?

bikel = new Bicycle();
bike2 = new Bicycle(); A@93041f
bikel = bike2: tnkel.novvtakegthe
same value as bike2
bikel = null;
bike2 = null;

bikel A@15641d

A@15641d A@15641d

bike2

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

22

Understanding References

Bicycle
Bicycle

bikel
bike2

bikel

bikel; //bikel points to null
bike2; // bikel points to null;

new Bicycle();
new Bicycle();

bike2;

bikel
bike2

null;
null;

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

bikel

bike2

null

What happens to
both these object?

A@93041f

A@15641d

23

Memory Leak

This is what is called a memory leak.
In this case, you have two objects
occupying memory and you have
not deallocated them from memory
In fact, there is no way to

deallocate them

in Javal

So how do you

deal with

lost objects?

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

bikel

bike2

What happens to
both these object?

A@93041f
null
.A@15641d

24

Garbage Collector

* The Garbage collector is part of the JRE’'s memory management system
* It runsin the background keeping track of the live objects in a program and marking the rest as garbage

* The data in these marked areas are subsequently deleted, freeing up memory

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Understanding References

Bicycle bikel; //bikel points to null

Bicycle bike2; // bikel points to null; Garbage Collector
bikel = new Bicycle();

bike2 = new Bicycle();

bikel = bikeZ2;

bikel = null;

bike2 = null;

null
bikel

L L
;_‘K%%fg OLLSCOIL NA GAILLIMHUE
A UNIVERSITY OF GALWAY bike2

4

Cr'v.v A
4w

Understanding References

Bicycle bikel; //bikel points to null

Bicycle bike2; // bikel points to null; Garbage collector

bikel = new Bicycle(); A@93041f live
bike2 = new Bicycle(); A@15641d live

bikel = bikeZ;

The actual values of bikel,

bikel bike2 are memory locations

bike2

null;

o
null; - A@93041f
‘;
bikel — A@93041f d i'E)

A@15641d A@15641d

bike2

[L 7
N OLLSCOILNA GAILLIMHE
> Sithls
5'-.-'7 UNIVERSITY OF GALWAY

Understanding References

Bicycle bikel; //bikel points to null Garbage collector

Bicycle bike2; // bikel points to null; 9 A@93041f

bikel = new Bicycle(); A@15641d live

bike2 = new Bicycle(); o A@93041f

Bikel now takes the | J
same value as bike2

bikel

bike2;

bikel = null;
bike2 = null;

bikel A@15641d

A@15641d A@15641d

bike2

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

27

Understanding References

Bicycle bikel; //bikel points to null Garbage collector
Bicycle bike2; // bikel points to null; A@93041f delete

bikel = new Bicycle();
bike2 = new Bicycle();
bikel = bikeZ2;
bikel = null;
bike2 = null;

[L 7
N OLLSCOILNA GAILLIMHE
> Sithls
5'-.-'7 UNIVERSITY OF GALWAY

28

A@15641d live
° A@93041f

Bikel now takes the
same value as bike2

Yum, yum

bikel

A@15641d A@15641d

bike2

Understanding References

Bicycle bikel; //bikel points to null Garbage collector
Bicycle bike2; // bikel points to null;
bikel = new Bicycle(); 9 A@15641d live
bike2 = new Bicycle();
bikel = bike2: Bikel now takes.the
same value as bike2

bikel = null;
bike2 = null;

bikel A

@1564; d
A@15641d A@15641d
bike2

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

29

Understanding References

: . . , Garbage collector
Bicycle bikel; //bikel points to null

Bicycle bike2; // bikel points to null;
_ _ A@15641d
bikel = new Bicycle();

bike2 = new Bicycle();

bikel = bikeZ2;
bikel = null;
bike2 = null;
null
A@15641d
bikel
bike2

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

31

Understanding References

Bicycle
Bicycle

bikel
bike2 =

bikel

bikel; //bikel points to null
bike2; // bikel points to null;

new Bicycle();
new Bicycle();

bike2;

bikel
bike2

null;
null;

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

null

bikel

bike2

Garbage collector

A@15641d delete

A@15641d

Understanding References

Bicycle bike2; // bikel points to null;

bikel = new Bicycle(); 9 waiting...for its next
bike2 = new Bicycle(); unreferenced object
bikel = bikeZ2;

bikel = null;

bike2 = null;

null

bikel

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY bike2

True or False?

The value of a variable in Java can be

1) A primitive
2) A reference value
3) An object

int x = 2;
Bicycle bike

new Bicycle(1,2,3);

v Ly
TP\ OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

33

False

The value of a variable /" Java can be

1) A primitive v
2) A reference value
3) An object x

int x = 2;

Bicycle bike = new Bicycle(1,2,3);

The value of a variable is never an object. However, it
o oewonnGa@n take a reference value to an object

A ;' UNIVERSITY oF GALWAY

35

Assignment Steps

Car car = new Car ("X7");

Engine engine = new Engine ("DR9", 43);

car.add (engine) ;

Wheel wheel = new Wheel ("Wichelinl5",
car.add (wheel) ;

car.setFuel (100) ;

car.run() ;

car.getDistance() ;

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

15) ;

36

Test-driven development

The code before is our test

It specifies the minimum we have to do to demonstrate the overall
program works as per the problem specification

Once the code we have written outputs what we want, we can stop
This will be version 1 of our assignment

vL,
P\ (OLLSCOILNAGAILLIMUE
UNIVERSITY oF GALWAY

37

What we know

We have three classes: Car, Engine and Wheel
We know the properties of each class

We have composition relationships between them
Car composed of Engine
Engine composed of Wheel

We know that they have to create a few methods in each class so
that objects can call each other in order for the program to
deliver the functionality we require

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

38

Approach

Test-driven development = incremental approach to solving a problem

Incrementally create Stub classes and Stub methods so that your code compiles and runs at all times
To start with, it may run — but it may do nothing interesting.

Gradually we add functionality — making sure it compiles and runs

We keep doing this until we achieve our minimum criteria for success

In this case - we want to print out the distance achieved

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

ldeas Encountered So Far

* An object is responsible for how its data is represented internally.

Constructors are special methods used to bootstrap an object into existence — and generally used to
initialise its state.

* Java has two types of variables
o Primitive types
o Reference types

The Java Garbage Collector runs in the background monitoring which objects are live (referenced). The
remainder of objects in memory are marked for deletion

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

OOP modelling

* A major part of OOP is modelling the problem. The goal is to identify:
o The principle objects in the problem domain
o We model these as a classes
* The responsibility of each of these objects
o What does it do?
 What are the collaborations between objects?
o What other object does it communicate with?

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

When attempting an OOP solution

* |dentify the main (real) concepts in the problem domain

* Our objective is to produce a simplified class diagram
» classes represent real-world entities
* associations represent collaborations between the entities
» attributes represent the data held about entities
* generalization can be used to simplify the structure of the model (we’ll look at this later)

Ly
& (OLLSCOILNA GAILLIMUE
A p. UNIVERSITY oF GALWAY

Perspective

* This should be a fairly quick process
* You can expect your model to be incomplete on your first iteration

 There may well be important conceptual objects in the domain that
you do not discover until implementation

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

|dentify the Objects/Classes

 Write down a description of what your program is required to do?
* |dentify and list the nouns in each description

* The goal is to identify
o Potential Objects
o Attributes of objects

* Some of these objects may eventually be modelled as software
classes and objects

* This is the beginning of a process of identification, refinement and
(re-)modelling

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

Example: Stage 1: Identify nouns

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer provides payment and address to process
the sale. The System validates the payment and responds by confirming the order, and provides the order

number that the customer can use to check on the order status. The System will send the customer a copy
of the order details by email

* Nouns = candidate objects

\LLy
PXA OLLSCOILNA GAILLIMUE
a ;' UNIVERSITY oF GALWAY

ldentify nouns

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer provides
payment and address to process the sale. The System validates the
payment and responds by confirming the order, and provides the order
number that the customer can use to check on the order status. The
System will send the customer a copy of the order details by email

L,
;\ﬁ@}ﬁ QOLLSCOILNA GAILLIMHE

==l

(\jlﬁlf* UNIVERSITY oF GALWAY i NOU ns = Candldate ObJeCtS

Customer Order

ltem Order Number
Shopping Cart Order Status
Payment Order Details
Address Email

Srarke— System

 |dentify duplicates (e.g sale and order)

* You may find yourself combining/splitting
some of these concepts

.g/w\ OLLSCOILNA GAILLIMHE

i |-| UNIVERSITY oF GALWAY L4 Wthh are prOpertIeS?

ol v.v A
4

————————————————————————————————

Customer Order /
ltem ~Lestes Passer
Shopping Cart ~ClgtorState—
Payment ~CHepbetadmds—
Address Email

——

' Avoid global objects such as System |
@ATR OLLSCOILN GAILLIMHE . These will tend to accumulate too much responsibility !

=| ﬁ =" |
‘lnlf- UNIVERSITYOFGALWAY om s e oo oo e

0 A A
4 LW

A simple class diagram of the conceptual objects

Customer

Shopping Cart

Item

Payment

Order

Address

WLLy,

VAT OLLS
| ﬁ ="

1'..'7‘ UNIVERSITY oF GALWAY

o

vav -
4w

11

Email

Now we want to understand
the relationships between
these objects

12

Stage 2: Identify assocications

Initially associations may be identified by the relationships in the

description oo
' A Java program for handling a customer online transaction '

EThe customer verifies the items in their shopping cart. |

' Customer provides payment and address to process the;
'sale. The System validates the payment and responds by
_confirming the order, and provides the order number that
'the customer can use to check on the order status. The |
System will send the customer a copy of the order details
by email '

SV
B\ OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

13

Potential Associations

Customer, Shopping Cart
Shopping Cart, ltem

Customer, Order

Order, Payment, Address, Email

SV
;_T%T:’, QLLSCOILNA GAILLIMHE
. |majF -
gy UNIVERSITY OF GALWAY
LW

Customer

Shopping Cart

Item

Payment

Order

Email

Address

WLLy,
VAT OLLSCOILNAGAILLIMUE
- u|mals -

1}'..'5 UNIVERSITY oF GALWAY

B~

14

May be useful to add a short

note to describe the
relationships

15

Stage 3: Identify Responsibilities

Examine the verbs and verb phrases in each Use Case

' A Java program for handling a customer online transaction

EThe customer verifies the items in their shopping cart. !
' Customer provides payment and address to process the !
'sale. The System validates the payment and responds by
. confirming the order, and provides the order number that
'the customer can use to check on the order status. The
' System will send the customer a copy of the order details
by email

\LLy
PXA OLLSCOILNA GAILLIMUE
a p. UNIVERSITY oF GALWAY

16

Stage 3: Identify Responsibilities

Examine the verbs and verb phrases in each Use Case

' A Java program for handling a customer online transaction

EThe customer verifies the items in their shopping cart. !
' Customer provides payment and address to process the !
'sale. The System validates the payment and responds by
' confirming the order, and provides the order number that
'the customer can use to check on the order status. The
' System will send the customer a copy of the order details
by email

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Stage 3: Identify Responsibilities

* Examine the verbs and verb phrases in each Use Case

- Verify ltems - Confirm order

- Provide Payment and address - Provide order number

- Process sale - Check order status

- Validate Payment - Send order details by email

However, it may not be obvious from the description where
these responsibilities should reside

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

17

18

Stage 4: Assigh Responsibilities

Determine which responsibilities belong to which class

Candidate responsibilities Candidate Classes
Verify ltems Customer
Provide Payment and address Shopping Cart
Process sale Payment
Validate Payment Order

Email
Confirm order Address

Provide order number
Check order status
Send order details by email

\LLly
A (OLLSCOILNaAGAILLIMUE
N EJ UNIVERSITY oF GALWAY

19

OO Principles

Consider the following principles when assigning responsibilities
1. An Object is responsible for its own data
An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a single responsibility
All its services should be aligned with that responsibility

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

e Consider the responsibility Check order status
* The real customer initiates this action
* However which object should be responsible for checking the order status?

Customer Shopping Cart Item
Payment Order Email
get status

An object is responsible for
communicating its own state

Address

[L,
N OLLSCOILNAGAILLIMHE
s|ml= -
3'-.-'7 UNIVERSITY OF GALWAY

C vav

Now Attach method to the classes

Customer Shopping Cart Item
Payment Order Email
getStatus
Address
* \Verify Items e Confirm order
* Provide Payment and address ¢ Provide order number
* Process sale s+ Checkorderstatus
* Validate Payment * Send order details by email
VAT OLLSCOILNAGAILLIMUE

- gjmfs -
o Umrmly
C e
4w

UNIVERSITY oF GALWAY

22

Recall OO Principles

1. An Object is responsible for its own data
An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a
single responsibility

All its services should be aligned with that responsibility

Ll
B OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

23

Assigning Responsibilities

Customer

Payment

Set payment details
Validate payment

Address

-=||m|= .
o Umrmly
C e

iz

UNIVERSITY oF GALWAY

4 LW

AT OLLSCOILNGAILLIMIE Got addrass details

Shopping Cart Item
Display totals
Order Email
Send email

Process order
Confirm order

Get order number
Get status
Create order confirmation email

Verify items

Provide payment and address
Process sale

Validate payment

Confirm order

Provide order number

Check order status

Send order details email

24

Perspective

Some objects seems to have no/few responsibilities — not a problem
The scenario we presented focused on one aspect of the overall
The diagram doesn’t show which entities initiate actions

A common mistake in OO modelling is to assign too much responsibility to the actor (the user)
Another common mistake is to assign lots of responsibility to a centralised System object

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

25

Working with ‘System’

' A Java program for handling a customer online transaction |

EThe customer verifies the items in their shopping cart. !
' Customer provides payment and address to process the !
'sale. The System validates the payment and responds byi
. confirming the order, and provides the order number that
'the customer can use to check on the order status. The !
' System will send the customer a copy of the order details
by email

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

26

Working with ‘System’

On first inspection it may seem that you need a centralised System object with many responsibilites.
Often this will be a poor design decision

“System validates payment” = “some part of the system validates payment”
Your job is to figure out which part of the System should have this responsibility

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Avoid ‘God Objects’: Objects that know and do too much

Customer ‘

‘ Payment |

‘ Email

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

27

‘ Shopping Cart Item

‘ System Order

Generate email

Create cart

Get order number
Validate payment

Add item to shopping cart
(etc)

https://en.wikipedia.org/wiki/God object

God object

From Wikipedia, the free encyclopedia

For an object worshiped as a god, see Idol.

This article includes a list of references, related reading or external links, but its sources remain
\ ? unclear because it lacks inline citations. Please help to improve this article by introducing more
— precise citations. (March 2012) (Learn how and when to remove this template message)

In object-oriented programming, a god object is an object that knows too much or does too much. The god object is an example of an anti-pattern.

A common programming technique is to separate a large problem into several smaller problems (a divide and conquer strategy) and create
solutions for each of them. Once the smaller problems are solved, the big problem as a whole has been solved. Therefore a given object for a small
problem need only know about itself. Likewise, there is only one set of problems an object needs to solve: its own problems.

In contrast, a program that employs a god object does not follow this approach. Most of such a program's overall functionality is coded into a single
"all-knowing" object, which maintains most of the information about the entire program, and also provides most of the methods for manipulating this
data. Because this object holds so much data and requires so many methods, its role in the program becomes god-like (all-knowing and all-
encompassing). Instead of program objects communicating among themselves directly, the other objects within the program rely on the single god
object for most of their information and interaction. Since this object is tightly coupled to (referenced by) so much of the other code, maintenance
becomes more difficult than it would be in a more evenly divided programming design. Changes made to the object for the benefit of one routine
can have unintended effects on other unrelated routines.

A god object is the object-oriented analogue of failing to use subroutines in procedural programming languages, or of using far too many global
variables to store state information.

Whereas creating a god object is typically considered bad programming practice, this technique is occasionally used for tight programming
environments (such as microcontrollers), where the performance increase and centralization of control are more important than maintainability and
programming elegance.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

29

Responsibilities should be distributed

Customer

‘ Payment

Set payment details
Validate payment

Address

.*/w_ OLLSCOILNAGAILLIMHE .
"L I’J UNIVERSITY oF GALWAY Set address details

Shopping Cart Item

Display totals

Order Email

Process order Send email

Confirm order
Get order number
Get status

Create order confirmation email

30

Lecture Summary

A major part of OOP is modelling the problem

* |dentifying the principle objects, their responsibilities and
collaborations between objects

 Key idea is to develop a description of how the program ought to
work

. Extract nouns -> candidate classes/objects
. Examine relationships in text - > object associations
. Examine verbs -> possible methods

. Asssign responsibilities to classes

* Consider the single responsibility principle, and object encapsulation
(in charge of its own state)

* Avoid God objects

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

OOP Modelling

* A major part of OOP is modelling the problem

* The goal is to identify:

* The principle objects in the problem domain
o We model these as a classes

* The responsibility of each these objects
o What does it do?

 What are the collaborations between objects
o What other object does it communicate with

SV

AT OLLSCOILNAGAILLIMHE
=

j'-'f UNIVERSITY oF GALWAY
L W

C aw

When attempting an OOP solution

* |Identify the main (real) concepts in the problem domain

* Our objective is to produce a simplified class diagram
o classes represent real-world entities
o associations represent collaborations between the entities
o attributes represent the data held about entities
o generalization can be used to simplify the structure of the model
(we’ll look at this later)

\LLy
PXA OLLSCOILNA GAILLIMUE
a p. UNIVERSITY oF GALWAY

ldentify the objects/Classes

Write down a description of what your program is required to do
Identify and list the nouns in each description

The goal is to identify

o Potential Objects

o Attributes of objects

Some of these objects may eventually be modelled as software
classes and objects

* This is the beginning of a process of identification, refinement and
(re-)modelling

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

Program Description

A Java program for handling a customer online transaction
The customer verifies the items in their shopping cart. Customer
provides payment and address to process the sale. The System
validates the payment and responds by confirming the order, and
provides the order number that the customer can use to check on
the order status. The System will send the customer a copy of the
order details by email

\LLy
AT OLLSCOILNAGAILLIMHE
s|mls -
j'-'f UNIVERSITY oF GALWAY
L W

O T A

- == = ===

Customer Order
ltem B = aaaias
Shopping Cart OrelorStatue—
Payment e s —
Address Email

» . Avoid global objects such as System
A (OLLSCOILNAGAILLIMHE I . ANannc
A8 NIVERSITY oF GALWAY ' These will tend to accumulate too much responsibility

A simple class diagram of the conceptual objects

Customer Shopping Cart Payment

ltem Order Email

Now we want to understand
fpcress the relationships between
these objects

WLLy,

VAT OLLSCOILNAGAILLIMUE
| ﬁ ="

1'..'7‘ UNIVERSITY oF GALWAY

o

oy
4 e

t W

Stage 2: Identify Assocications

Initially, associations may be identified by the relationships in the

description [~ e Y RN S
P . A Java program for handling a customer online transaction |

' The customer verifies the items in their shopping cart. Customer

' provides payment and address to process the sale. The System

' validates the payment and responds by confirming the order, and .
provides the order number that the customer can use to check on the
-order status. The System will send the customer a copy of the order |
' details by email

SV
B\ OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

Potential Associations

Customer, Shopping Cart
Shopping Cart, ltem

Customer, Order

Order, Payment, Address, Email

SV
;_T%T:’, QLLSCOILNA GAILLIMHE
. |majF -
gy UNIVERSITY OF GALWAY
LW

Customer Shopping Cart Item

Payment Order Email
Address May be useful to add a short
note to describe the
relationships

WLLy,

VAT OLLSCOILNAGAILLIMUE
| [a1]

szl UNIVERSITY oOF GALWAY

[

- -
2
vav -~
LW P

11

Stage 3: Identify Responsibilities

Examine the verbs and verb phrases in each Use Case

Verify Items Confirm order

Provide Payment and address Provide order number
Process sale Check order status
Validate Payment Send order details by email

However, it may not be obvious from the description
where these responsibilities should reside

\LLly
A (OLLSCOILNaAGAILLIMUE
U725 UNIVERSITY oF GALWAY

12

Stage 4: Assigh Responsibilities

Determine which responsibilities belong to which class

Candidate responsibilities

Verify ltems

Provide Payment and address
Process sale

Validate Payment

Confirm order

Provide order number
Check order status

Send order details by email

SV
B\ OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

Candidate Classes

Customer
Shopping Cart
Payment
Order

Email

Address

13

Recall OO Principles

1. An Object is responsible for its own data
o An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a single
responsibility
o Allits services should be aligned with that responsibility

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

14

Responsibilities should be distributed

‘ Customer | Shopping Cart Item ‘

Display totals

Order ‘ Email \

Send email

:

i

‘ Payment

Set payment details
Pay Process order

Validate payment

e Confirm order
Get order number
Get status

Create order confirmation email

I Address

Set address details

Iterative, Incremental Development

Done
E.g. Create program description

— what is it supposed to do;
Extract nouns, verbs

Do some
Analysis Done
Finished? :
. Debug E.g. Ider?gl?;_classes,
E.g. does your code and redo Do SDiE respor.15| lities,
pass the test i behaviours and
Testing Design associations

‘(X' Do some >/~ N
1)
. Coding P

Create a test scenario, code the

OLLSCOILNA GAILLIMHE classes and relationships
UNIVERSITY oF GALWAY

15

16

Starting to Code: Set yourself an objective

Firstly create a test class, to test how the candidate classes should work
together

You should set a measureable objective for your test class to achieve
i.e. If your classes work correctly they should calculate/output a particular

number or message

In fact, you did this for Assignment 1

Ly
MA OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

Test Scenario Code

Car car = new Car ("X7");

Engine engine = new Engine ("DR9", 43);
car.add (engine) ;

Wheel wheel = new Wheel ("Wichelinlb", 15);
car .add (wheel) ;

car.setFuel (100) ;

car.drive () ;

car.getDistance () ;

Test Output
This program should output how far a particular Car configuration can travel given a full tank of

fuel (say 100 units)

Assumption
If the Test code can output the correct distance value for the fuel value, then the code works

Ly
& (OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

18

Test Code Scenario vl

Create Customer object

Create Shopping Cart object for the Customer
Add 3 items with known cost to cart

Finalise the cart and create an order

Add a delivery address for the order

Add a payment type

Validate the payment

If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

O e U L

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

19

Turning this into code

Write a basic test class to test the scenario. The class will have a main method
Line by line, write the outline code of the scenario

As you write it, you should try to compile it.

In each step, do enough to make it compile

e

At the end of this process you will have a rough outline of v1 of the overall solution.
It may not run properly — but you will have made many of the key modelling/implementation decisions

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

20

Modeling Questions

As you implement your test scenario, you will be faced with fundamental modeling/implementation
questions.

e E.g. What is the correct relationship between Customer and Shopping Cart?
o Cart has a customer?

o Customer has a Cart?
* What is the relationship between a Cart and an Order?
* How does an order object get access to the shopping cart data?

* How do you prevent new items being added to a Cart, once an order (based on the cart) has been
initialised

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

21

1. Write a basic test class to test the scenario The

class will have a main method

iransactioniest - week4

TransactionTest

New Class... E :
—> =

Compile

v
Teamwork

Share...

Testing

Run Tests

1 TransactionTest X

Compiling... Done.

19
Modeling Questions

.

As you implement your test scenario, you will be faced
with fundamental modeling questions.

E.g. What is the correct relationship between Customer
and Shopping Cart?

— Cart has customer?

- Customer has Cart?
What is the relationship between a Cart and an Order?
What object is in charge of bringing an order object
into being?

.

Compile Undo Cut Copy Paste Find... Close Source Code
/**
* Write a description of class TransactionTest here.
* @author (conor hayes)
* @version (27 September 2817)
*/
public class TransactionTest
{
VEZS
* Constructor for objects of class TransactionTest
*/
public TransactionTest()
{
// no instance variables to initialise
}
[**
* main method - program execution starts here
*/
:1 public static void main(String[] args)
{
TransactionTest test = new TransactionTest();
}
}

22

1. Write a basic test class to test the scenario The
class will have a main method

* Create a method to hold the code for each scenario

e Alternatively, You could write the code directly into the main
method

 However, having a separate method for each scenario allows
you to test multiple scenarios at once

QLLSCOILNA GAILLIMUE
i UNIVERSITY oF GALWAY

23

[*%

* main method - program execution starts here

*/

public static void main(String[] args)

{
TransactionTest test = new TransactionTest();
test.transactioni();] can contai
test.transaction2();
test.transcation3();

}
* To get started, get transaction1 working
* Create stub code for each of these methods in
order to have your code compile
* For now, we’ll only work on transactionl
T A OLLSCOILNAGAILLIMUE

A ;' UNIVERSITY oF GALWAY

24

[%
* main method - program execution starts here
*/
public static void main(String[] args)
{
TransactionTest test = new TransactionTest();
test.transaction1(); // each method can contain a different transaction scenario
test.transaction2();
test.transaction3();

public void transactioni1(){
// the body of our first code scenario will go in here
//This will be the code that tests if our order transaction classes work

public void transaction2() {
// we can put the body of another code scenario here
// for now we'll just focuﬂ on putting code into transactionT

public void transaction3(){
// we can put the body of yet another code scenario here
// for now we'll just focus on putting code into transactioni

25

public void transaction1(){

Goal: turn the steps below into code within the transaction1 method

Create Customer object

Create Shopping Cart object for the Customer

Add 3 items with known cost to cart

Finalize the cart and create an order

Add a delivery address for the order

Add a payment type

Validate the payment

If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

09 =R B oS YL

26

Method: proceed in steps

1. Add aline of code
2. Do the minimum required to get it to compile
3. Do 1 and 2 until finished the scenario

* At this point you will have compiling stub code for all the classes you need.
* Your code will still require work to make it run correctly — but you have at least 50% of the work done.

* For every change you make, make sure to recompile your code

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

27

Create a Customer object

Just write a line of code to create a Customer object

public void transactioni(){

Customer customer = new Customer();

cannot find symbol - class Customer

|
4 LG L . \ UT DALAUC wldldl LUNP LAl L aL LU LG L 4

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

BlueJ: weekd

\ New Class... ‘ TransactionTest !
= 3
P— O BlueJ: Create New Class e
Class Name: [Customer]
v Class Language: + Java Stride
Teamwork Class Type L
Share... ® Class
) Abstract Class
Testing
Interface
Run Tests
Unit Test
recording C.
Enum
End
JavaFX Class
Cancel d
—= 3 O
Cancel l OK t
O

29

public class Customer

{

// instance variables or 'fields' go here
// What fields should a customer object have?
// It depends really on what the role is of the customer object

[*%

* Constructor for objects of class Customer
*/

public Customer()

{

// initialise the instance variables - but what are they?

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

30

A Customer class

1. Question you should ask yourself: What are the properties and
responsibilities of the Customer object in this programme.

2. List the properties that a Customer might have

These will be the fields of the Customer class

4. Create the field variables - what type will each of these have?

w

SV
AT OLLSCOILNAGAILLIMHE
UNIVERSITY oOF GALWAY

. =||= .
NV
4w

31

O Loy) ™

Shopping Cart class

Step 2 of the scenario:

“Create Shopping Cart object for the Customer”

WL L/
VAT OLLSCOILNAGAILLIMHE

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

ShoppingCart

 What is the role of the shopping Cart?

* What are its properties/responsibilities/relationships etc

e Recall our earlier analysis

Customer

Payment

Set payment details
Validate payment

Address

Ly
@ OLLSCOILNAGAILLIMUE

i Set address details
=4y UNIVERSITY OF GALWAY

32

Shopping Cart Item

Display totals

Order Email

Process order Send email
Confirm order

Get order number

Get status

Create order confirmation email

33

Shopping Cart and Customer

 What is the relationship between ShoppingCart and Customer
a) Does a Customer have a Cart?
b) Does a Cart have a Customer ?

* Justify the decision you will make

SV

AT OLLSCOILNAGAILLIMHE
ELS

j'-'f UNIVERSITY oF GALWAY
L W

C aw

34

Shopping Cart Requirements

add ltems

* remove items

print out the the Items in it

display totals

* lock it so that items cannot be added/removed from it
 We want to be able to clear it completely.

* Write the Shopping Cart code

SV
AT OLLSCOILNAGAILLIMHE
UNIVERSITY oOF GALWAY

. =||= .
NV
4w

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Yesterday’s lecture

* Create a test class to test your code

* Line by line create the stub code and methods

* Until you have the outline of your programme compiling

 Even getting to this stage will force you to make many of the key

decisions for your solution

o Object properties and methods
o Object collaboration

\LLy

T OLLSCOILNA GAILLIMHE

nj EJ UNIVERSITY oF GALWAY
W

Revision (1)

* Class
* A blueprint or template or set of instructions to build a specific type of object.
* Every object is built from a class.
e Each class should be designed and programmed to realise a single responsibility

* Method

A method is the equivalent of a function.
* Methods are the actions that perform operations on a variable (Fields)

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

Revision (2)

Encapsulation
* Binding ‘object’ state (fields) and behaviour (methods) together.

* Creating a class means you are doing encapsulation.
* The core idea is to:

o Hide the implementation details from users

o No method outside the class can access it directly.
* How?

o Private

o Protected

\LLly
A (OLLSCOILNaAGAILLIMUE
U725 UNIVERSITY oF GALWAY

Program Description

A Java program for handling a customer online transaction
The customer verifies the items in their shopping cart.
Customer provides payment and address to process the sale.
The System validates the payment and responds by confirming
the order, and provides the order number that the customer
can use to check on the order status. The System will send the
customer a copy of the order details by email

\LLy
AT OLLSCOILNAGAILLIMHE
s|mls -
j'-'f UNIVERSITY oF GALWAY
L W

O T A

Contains
Customer | Uses Shopping Cart Item
1 *
Display totals
Places
‘ Payment Paid by ‘ Order | ‘ Email \

Set payment details Send email

Process order

Validat t
alidate paymen Confirm order

Get order number

— Get status

Create order confirmation email

Set address details

\LLy
AW OLLSCOILNAGAILLIMUE

|l -

a0y [UNIVERSITY oOF GALWAY

..

o\
A
4 LW

32

Test Code Scenario vl

Create Customer object

Create Shopping Cart object for the Customer

Add 3 items with known cost to cart

Finalise the cart and create an order

Add a delivery address for the order

Add a payment type

Validate the payment

If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

0N TR WN e

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

We created a test class

public class TransactionTest

{
YEZS
* main method to execute the TransactionTest methods
*/
public static void main(String[] args)
{
TransactionTest test = new TransactionTest() ;
test.transaction1(); // calls the method with our test scenario
b
public void transaction1(){
ite you test code here
b
s

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

public void transactioni(){
Goal: turn the steps below into code (within the transaction1 method)
Create Customer object
Create Shopping Cart object for the Customer
Add 3 items with known cost to cart
Finalise the cart and create an order
Add a delivery address for the order
Add a payment type
Validate the payment

If successful, email the customer with a success email and the cost of the purchased items
Our code passes the test scenario if an email is created with a message giving the correct total;

© NV R WN e

10

Method: Proceed in steps

1. Add aline of code
2. Do the minimum required to get it to compile
3. Do 1 and 2 until finished the full scenario

\LLly
AT OLLSCOILNAGAILLIMHE
. slmls -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

11

Test Code Scenario vl

1. Create Customer object

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

12

Create a Customer object

Just write a line of code to create a Customer object

public void transactioni(){

Customer customer = new Customer();

cannot find symbol - class Customer

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

BlueJ: week4

New Class... | [T\ [TransactionTest !
|]
— @] BlueJ: Create New Class b
Class Name: [Customer]
v Class Language: v Java ’ Stride
Teamwork Class Type l
Share... ® Class “
) Abstract Class !
Testing
Interface
Run Tests
‘ Unit Test Q
recording ’
E
- num
JavaFX Class
Cancel d
— —_— O
Cancel OK t
0

13 , | D

14

public class Customer

{

// instance variables or 'fields' go here
// What fields should a customer object have?
// It depends really on what the role is of the customer object

[*%

* Constructor for objects of class Customer
*/

public Customer()

{

// initialise the instance variables - but what are they?

15

Customer

What are the properties and responsibilities of the Customer object in this
programme?

The Customer object holds the data about the Customer data
Any object can request information about the Customer from it

SV
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmals -
ojl-lf* UNIVERSITY oF GALWAY
L W

16

public class Customer {
private String firstName;
private String surName;
private String emailAddress;
private final long customerld;

public Customer(String firstName, String surName, String emailAddress) {
this.firstName = firstName;
this.surName = surName;
this.emailAddress = emailAddress;
customerId = makeCustomerId();

}

public long getId() {
return customerld;

}

public String getFirstName() {
return firstName;

}

public String getSurName() {

return surName;

17

Update your code in the TransactionTest class

public void transactioni(){

-
I
I
|
1
I

-‘"‘ reate New B J:_“L'\"'ru'
wiCdlC TCYW LUO LUINICI

:Customer customer = new Customer("Niamh", "O'Leary"”, "niamhol@zmail.com");

2 te a S ping Cart fc > tome
QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

18

Test Code Scenario vl

31— Create Customerobject
2. Create Shopping Cart object for the Customer

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19

ShoppingCart Class

* Now add the code for the Shopping Cart

__

ipublic void transactioni(){

new Customer("Niamh", "O'Leary"”, "niamhol@zmail.com");

' Customer customer

iShoppingCart cart = new ShoppingCart(customer);

* Your code won’t compile, because you haven’t yet created a Shopping
cart class
* This is your cue to create the ShoppingCart class

I
A\ (OLLSCOILNA GAILLIMHE
A ;' UNIVERSITY oF GALWAY

20

Shopping Cart fields?

* What fields might a Shopping Cart have? Briefly explain the
reason for each field.

cartld: a unigue numerical Id for the Cart

time: the date/time it was created

items: to hold the items in the cart

* total : to hold the total for the items in the cart

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

21

Shopping Cart behaviours?

* Methods belonging to a shopping cart?

* Here are some potential ones:

add Item

remove item

print out the the Items in it

display total

lock it so that items cannot be added/removed from it
clear the cart.

Ly
™A OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

22

Customer / Cart Relationship?

a) Does a Customer have a Cart?
b) Does a Cart have a Customer ?

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

23

Class exercise: Create a Shopping Cart class

Fields: The Item class is in the

cartld: numerical , next slide you can
UL . download if from

time: String ' Blackboard
items: holds a collection
total: numerical

customer: ref type Customer

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Methods:
addltem
removeltem
getTotal
getCartld
getCustomer
printltems
close

clear

24

ltem Class

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

public class Item {
private String name;
private int price;
private long itemId;

public Item(String itemName, long id) {
name = itemName;
itemId = id;

}

public void setPrice(int price){
this.price = price;

}

public int getPrice() {
return price;

}

@0verride
public String toString(){

String out = "Item Id: " + itemId + "\t" + name +"\tPrice:

return out;

' + price;

25

addltem

After you have defined the fields start with defining the add/tem method
See the tutorial on Collections for help with this
adding an object (in this case, an Item) to a collection

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

26

Assignment 2

e Based on the code we’ve written so far

e Remember:
* Code in increments

* Always set your code a measureable objective
* Such as the test scenario mentioned earlier

* Create a version 0.1 with basic functionality — this will teach you a lot
about the problem

\LLy
PXA OLLSCOILNA GAILLIMUE
a ;' UNIVERSITY oF GALWAY

27

Lecture Wrap-up (1)

* Much of OOP is about making modeling decisions
* A model is a simplified representation of reality
 Core modeling decisions: what are the objects, what data do they

contain, what are their responsibilities, what are their associations with
each other

SV
AT OLLSCOILNAGAILLIMHE
UNIVERSITY oOF GALWAY

. =||= .
NV
4w

28

Lecture Wrap-up (2)

Start by identifying the objects and relationships in the problem domain
— these are candidate objects for your code solution

It is important to set your code an objective or test before writing the
code

Create the stub code for your classes/methods

Compile and develop step by step

SV
N OLLSCOILNAGAILLIMHE

|

LW

siols -

© ‘v.v B
4

& UNIVERSITY oF GALWAY

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Last Week

* Much of OOP is about making good modeling decisions

* A modelis a simplified representation of reality

* Core modeling decisions: what are the objects, what are their responsibilities, what are their
associations with each other

« Start by identifying the objects and relationships in the problem domain — these are candidate objects

* Itisimportant to set your code an objective or test before writing the code

* Create the stub code for your classes

* Development, particularly OO development is incremental and iterative

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

This lecture

This lecture will prepare the groundwork for the next major topic we
cover in OOP:

* Inheritance

Today’s topics:
* Object equivalence

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Open Bluel

Create a new Project

Make sure Code Pad is displayed
(View-> Show Code Pad)

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Instructions 1

. Create a String variable strl to hold a String value “Java”

. Type strl into CodePad. It should return the value “Java”

. Create another String variable str2 to hold a String value “Ja”

. Create another String variable str3 to hold a String value “va”

. Create another String object str4 to hold the String value when str3 is added
to str2

6. Type strd into CodePad. It should return the value “Java”

o b WN -

SV
B\ OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

Instructions 2

You are now going to check for the equality of the values of strl and str4

1. Write an if statement to test if strl has the same value as str4

2. The if statement should print out true if strl has the same value as
str4 and false if they do not print out the same value

(Hold down the Shift and Enter keys to enter more than one line in
CodePad)

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

Hint

int x = 8;
int y = 9;

if(X==y){
System.out.println(“true”) ;
} elsef

System.out.println(“false”) ;

<D
B\ OLLSCOILNAGAILLIMHE
nj f; UNIVERSITY OF GALWAY

How many wrote something like this?

String str1 ="Java”;
String str2 ="Ja";
String str3 = "va“;
String str4 str2+str3;

if(stri==str4){
System.out.println(“true");

} else({
System.out.println("“false”);

}

[L,
N OLLSCOILNA GAILLIMHE
> Llifhile

slagl UNIVERSITY OF GALWAY

ool A
Ik’

What will the output be?

if(stri==str4){
System.out.println(“true”);

} else(
System.out.println(“false");

10

O Loy) ™

Why?

* Why is the value of strl not equal to the value of str4

 The answer is that the values of strl and str4 are memory references to
different objects

* It doesn’t t matter that the objects may contain the same data (“Java”)

* When you use == with reference variables you are simply checking if
the variables point to the same object

SV
VAT OLLSCOILNAGAILLIMHE

. slmals -
ojl-lf* UNIVERSITY oF GALWAY
L W

Variables

String stril

String str2

String str3

String str4

[L 7
P2 OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

11

Objects

I
| ”Java” |
ﬁi”;__']
 Jd |
u _n_ a _|
| Vd |
______ I
: uJavan |

rrrr

12

if(stri==str4){
System.out.println(“true”);

} else(
System.out.println(“false");

The value of strl is the memory location where its String object is stored
The value of strd is the memory location where its String object is stored
So strl is not equal (==) to str4

SV
VAT OLLSCOILNAGAILLIMHE
UNIVERSITY oOF GALWAY

n‘l-'-lr‘
AN
4w

13

v
O L]
u

oV gli :

Object Equality

* When checking for equality between objects
you must use the equals method

* The equals method is an instance method that
all objects have

* |ts specific purpose is to define equality
between objects

* |t returns a boolean value

SV
I OLLSCOILNAGAILLIMUE

:’.x UNIVERSITY OF GALWAY

14

You can download this code snippet from Blackboard

I StringEqualityDemo X

Compile

Undo Cut Copy Paste Find... Close

Source Code

-

*/

{

¥

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

public class StringEqualityDemo

VEXS

* main method used to illustrate String equality
=
*/

public static void main (String[] args)

{

String stri "Java";
String str2 ="Ja";
String str3 "va";
String str4 = str2+str3;

if(stri==str4){
System.out.println("true");

} else{
System.out.println("false");

}

Rewrite the code and run

String str1 ="Java";
String str2 ="Ja";
String str3 "va";
String str4 str2+str3;

if(strl.equals(str4)){ 77

System.out.println(“true”); true |
} elSE{ oo

System.out.println(“false"”);
}

WLl D

VAT OLLSCOILNAGAILLIMHE
| ﬁ ="

1'..'7‘ UNIVERSITY oF GALWAY

O T A

L w

16

In this case, we use the equals method of the String object

referenced by strl
It accepts the value of str4 as an input parameter and returns true

or false

if(str1.equals(str4)){
System.out.println(“true");

} else{
System.out.println(“false”);

}

<D
N OLLSCOILNA GAILLIMHE
| ﬁ ="
j'-'f UNIVERSITY oF GALWAY
L W

C aw

17

: | |

equals must be commutative

strl.equals(str4)

must return the same boolean value as...

str4 .equals(strl)

/n\ OLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

C".v—\

18

Every object has an equals method

* Every single object has an equals method

e Because evaluating the equality between objects is a very common
function
o E.gfor searching, sorting

* For the built-in classes of Java, the equals method will already be
defined

* But for any class that you define you will have to write the equals
method

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

19

Tutorial - Collections

* We will now spend a few minutes looking at the collection tutorial
* There are two separate PDFs that can be found in Week 4 on Blackboard

 We will also look at looping over items in a collection

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Grouping objects

Introduction to collections

6.0

Main concepts to be covered

e Collections
(especially ArrayList)

The requirement to group
objects

e Many applications involve collections of
objects:
- Personal organizers.
- Library catalogs.
- Student-record systems.

e The number of items to be stored varies.
- ltems added.
- ltems deleted.

Java Class libraries

Collections of useful classes.

We don’ t have to write everything from
scratch.

Java calls its libraries, packages.

Grouping objects is a recurring
requirement.

- The java.util package contains multiple
classes for doing this.

An organizer for music files

Single-track files may be added.

There is no pre-defined limit to the
number of files/tracks.

It will tell how many file names are
stored in the collection.

It will list individual file names.
It will allow you to remove a file

A

e One class : Music Organizer
 We will use Strings as Files for version 1

 Methods:
- addFile
- getNumberOfFiles
- listFile
- removeFile

Collections

e We specify:
- the type of collection: ArrayList

- the type of objects it will contain:
<String>

— private ArrayList<String> files;

 We say, “ArraylList of String”.

Generic classes

e Collections are known as parameterized or
generic types.
e ArrayList implements list functionality:
— add, get, size, elc.
 The type parameter says what we want a list

of:
— ArrayList<Person>
— ArrayList<TicketMachine>

- etc.

Creating an ArrayList object

 In versions of Java prior to version 7:
— files = new ArrayList<String>()

e Java 7 introduced ‘diamond notation’
— files = new ArrayList<>();

 The type parameter can be inferred
from the variable being assighed to.
- A convenience we will use.

Object structures with
collections

myMusic:
MusicOrganizer
: : ArrayList<String>
files
— @
/ -
: String : String
"MorningBlues.mp3" "DontGo.mp3"
— —

10

Adding a third file

"MorningBlues.mp3" "DontGo.mp3" "MatchBoxBlues.mp3"

11

Features of the collection

It increases its capacity as necessary.

It keeps a private count:
— size () accessor.

It keeps the objects in order.

Details of how all this is done are
hidden.

- Does that matter? Does not knowing how
prevent us from using it?

No - this is a key idea of encapsulation,

Generic classes

e We can use ArrayList with any class

type:
ArrayList<TicketMachine>
ArrayList<ClockDisplay>
ArrayList<Track>

ArraylList<Person>

e Each will store multiple objects of the
specific type.

13

Using the collection

public class MusicOrganizer

{
private ArrayList<String> files;

public void addFile (String filename)
{

files.add(filename) ; <« { Adding a new file J

}

public int getNumberOfFiles ()

{ . .
return files.size(); Returning the number of files
} (delegation)

14

Index humbering

"MorningBlues.mp3" "DontGo.mp3" "MatchBoxBlues.mp3"

15

Retrieving from the collection

public void listFile(int index)
{ 7[Index validity checks]

if(index >= 0 "&& index < files. size()) {
String filename = files.get (index) ;
System.out.println(filename) ;

}

else {
// This is not a wvalid index.

}

}
‘ [Retrieve and print the file name}

[Needed? (Error message?)}

16

Removal may affect
numbering

myMusic:
MusicOrganizer

: ArrayList<String>

- o
files —__> o :

N —
2 .
. f& |
: String : String
"MorningBlues.mp3" "MatchBoxBlues.mp3"
— —

17

The general utility of indices

e Using integers to index collections has a
general utility:
- ‘next’ is: index + 1
- ‘previous’ is: index - 1
- ‘last’ is: 1list.size() - 1
- ‘the first three’ is: the items at indices 0,
1, 2

 We could also think about accessing
items in sequence: 0, 1, 2, ..

18

Review

e Collections allow an arbitrary number
of objects to be stored.

e Class libraries usually contain tried-
and-tested collection classes.

e Java’ s class libraries are called
packages.

e We have used the ArrayList class
from the java.util package.

19

Review

Iltems may be added and removed.
Each item has an index.

Index values may change if items are
removed (or further items added).

The main ArrayList methods are
add, get, remove and size.

ArrayList is a parameterized or
generic type.

20

Learning task

Create a class that can organise a group
of objects

e E.g. a Library of books

e A course with students registered
A Team with players

e A league with teams

The choice is yours

21

Grouping objects

the for-each and while loops

lteration

 We often want to perform some actions an
arbitrary number of times.

- E.g., print all the file names in the organizer. How
many are there?

e Most programming languages include loop
statements to make this possible.

e Java has several sorts of loop statement.
- We will start with its for-each loop.

33

lteration fundamentals

 The process of repeating some actions
over and over.

e Loops provide us with a way to control
how many times we repeat those
actions.

 With a collection, we often want to
repeat the actions: exactly once for
every object in the collection.

34

For-each loop pseudo code

[General form of the for-each loop]

for keyword]
[or VW\k /[loop header]\
for (ElementType element : collection) ({
loop body
}
\[Action(s) to be repeated]

Pseudo-code expression of the
operation of a for-each loop

Using each element in collection in order, do the things in the
loop body with that element.

35

A Java example

/**
* List all file names in the organizer.
*/
public void listAllFiles()
{
for (String filename : files) {
System.out.println(filename) ;

}

[Using each filename in files in order, print filename]

36

Review

* Loop statements allow a block of
statements to be repeated.

 The for-each loop allows iteration over a
whole collection.

e With a for-each loop every object in the
collection is made available exactly once

to the loop’s body.

37

Selective processing

e Statements can be nested, giving
greater selectivity to the actions:

public void findFiles (String searchString)
{
for (String filename : files) {
if (filename.contains (searchString)) {
System.gut.println(filename) ;

}

contains gives a partial match of the filename;
use equals for an exact match

38

break

 What if we wanted to stop searching
immediately after we find the first
match?

e break

39

Selective processing

e Statements can be nested, giving
greater selectivity to the actions:

public void findFiles (String searchString)
{
for (String filename : files) {
if (filename.contains (searchString)) {
System.out.println (filename) ;
break;

}
}
}

breaks out of the loop;

40

Critique of for-each

Easy to write.
Termination happens naturally.

The collection cannot be changed by the
actions (e.g. can’t remove an element)

There is no index provided.
- Not all collections are index-based.

We can stop part way using the break
keyword.

It provides ‘definite iteration’ - aka
‘bounded iteration’ .

41

Grouping objects

Indefinite iteration - the while loop

Main concepts to be covered

e The difference between definite
and indefinite (unbounded)
iteration.

e Loops: the while loop

43

While loop

e A for-each loop repeats the loop body
for every object in a collection.

e You use a while loop when you want to
keep iterating until a certain
condition is met

e This is indefinite (unbounded)
iteration

e Beware - if the condition isn’t met then
you will have have an infinite loop

44

The while loop

 We use a boolean condition to decide
whether or not to keep iterating.

e This is a very flexible approach.
Termination of the loop depends on
the condition

e Not just tied to collections.

45

While loop pseudo code

[while keyword]

T~

[General form of a while loop]

boolean test]

while (loop condition) { (
loop body | Action(s) to be repeated
}

|

“while we wish to continue, do the things in the loop body”

46

Search

e What if we want to search for a
filename and we want to return the the

index of the first element that matches
our input

e Remember, the for-each loop doesn’t
have an index as part of its syntax

47

We keep searching until

e Fither there are no more items to
check:

index >= files.size ()

e Or the item has been found:

found == true

48

public int findFile (String searchString) {

int index = 0;

boolean found = false;

while (index < files.size() && !'found) {
String file = files.get (index);
if (file.contains (searchString)) {

found = true;
return index; // We don't need to keep looking.

}

else {
index++;

}

return -1; // if we get this far, the item has not been

found

}

49

for-each versus while

e for-each:

- easier to write.

- safer: it is guaranteed to stop.
e while:

- we don’t have to process the whole
collection.

- doesn’t even have to be used with a
collection.

- take care: could create an infinite loop.

50

Learning exercise

e Write the previous method using a
while loop and a conventional for loop

so that it prints out the first 3 matches
of the searchString

e Once it encounters 3 matches it can
exit the loop

51

OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Key idea in a class hierarchy

* The top of the hierarchy represents the most generic attributes and
behaviours

* The bottom (the leaves) represent the most specific attributes and
behaviours

 Each level inherits and customises the attributes and behaviours from
the level above it

<
AT OLLSCOILNAGAILLIMUE
. wjlnle

<l UNIVERSITY oF GALWAY

C waw A
4w

OOP Inheritance

The means by which objects automatically receive features (fields) and
behaviours (methods) from their super classes

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

Java class hierarchy

* At the top of the Java class hierarchy is a class called java.lang.Object

* All classes inherit implicitly from java.lang.Object

* This means that a class doesn’t have to specify explicitly that
java.lang.Object is its superclass

<
AT OLLSCOILNAGAILLIMUE
AL
<l UNIVERSITY oF GALWAY

C“
4

vav -
Lwh

Revision

We are used to reference type declarations like this

Bicycle bike = new Bicycle (2,14);
String strngl = “Hello”;
String strngl new String (“Hello”);

i.e. the variable type matches the object type;

\L Ly
AT OLLSCOILNAGAILLIMUE

-] ﬁ -
Lt UNIVERSITY oF GALWAY

| 14
4

vav -
Lwh

(<]

Rules of class Hierarchy

* In Java, the variable type can be the superclass of the object

Object obj = new Bicycle(2,14);
Object objectl = "Hello”;
Object object2 = new String(“Hello”);

* The variable type can be any superclass of the object, not just
java.lang.Object

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

Explicit Inheritance

* All classes inherit methods implicitly from java.lang.Object
* In other words you don’t have to tell Java that a class inherits from
java.lang.Object

* Two common methods inherited from java.lang.Object ?
o equals()
o toString()

* In every other case, you have to tell Java which classes are in a
superclass relationship

\ b L,
AT OLLSCOILNAGAILLIMUE
UNIVERSITY oF GALWAY

- Sl -
C A

4w

Assignment 3: Implement this hierarchy
Has Skin

3 H“ hm.gn fh Pi.rlk.
Cana ry Ostrich f'(‘Thm legs Shark “ « 15 Edible
,x a1 tall . ~ Swimns
§ I C-I.I'I H.I'IE_ .‘EH.'I.'I EI:III IE' m UP: to
\L*L, = OLLSCOILN ‘h !dh.‘* hr EIEH

N ZJ UNIVERSITY OF GALWAY

What class is missingf.ns.object @

Animal

Has long, : Is Pink
Ostrich f')'TIun legs Shark ;,,d:u e xf“,:[ﬁ Edible
\"u, &]s tall "% Is dangerous = Swims
\ Can sing Can't Fly Upstream to

10

Inheritance

 The Canary Type inherits features from the Bird Type and the Bird Type
inherits features from the Animal Type. The Animal Type inherits from
java.lang.Object

* The Canary adds its own features (yellow, sings) to the features
inherited from the Bird type

 The Bird Type adds its own features (feathers, wings) and adapts a
feature from the Animal type (move - > fly)

<

AT OLLSCOILNAGAILLIMUE
AL

<l UNIVERSITY oF GALWAY

C“
4

A
Lwh

Fields or Methods

java.lang.Object

Animal

2 Has h“E- i .rlS Pink
Canary Ostrich r'"Thm legs Shark __.-"rcﬂ bite w15 Edible
W . v s tall "'-...h e Swims
' Can sing “Can’t Fly dangerous Uit

S 8;?3 .“E yellow Lay Eggs

12

Fields or Methods?

Some properties are definitely fields (hasSkin, hasFeathers)
Which are methods ?

The decision will be helped by the context of the application

Let’s say that these classes are part of a game, where animal avatars have

certain behaviours
Move
Eating
Making noise

Now the decision is easy

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Steps

Create the classes - lets start with the left hand side of the tree
Insert the inheritance relationships

Insert the fields

Insert the methods

Override necessary fields

Override necessary methods

Test by putting objects in an array and calling their behaviours

SR L

<

AT OLLSCOILNAGAILLIMUE
. slifils -
OEIvL':WleA UNIVERSITY oF GALWAY

14

IET
* Write a description of class Animal here.
*

* @author (conor hayes)

* @verision (October 5th 2817)

* [

public class Animal

bo&lean hasSkin;
bodlean breathes;
. Stfing colour;
‘nuﬂiﬁ

Don’t make the fields
private if you want them to
be inherited

/~Thstance variables - replace the example below with your own

* Constructor for objects of class Animal

*/

public Animal()
breathes = true; //all the subclasses of Animal inherit this property
hasSkin = true; // all the subclasses of Animal inherit this property
colour = "grey”; //all the subclasses of Animal inherit this property

/%%

* move method

* param int distance - the distance the Animal should move

* All subclasses inherit this method
*/
public void move(int distance)({

System.out.printf("“I move %d metres \n", distance);

}

value
value
value

15

Ot
UNI

ET:
* Write a description of class Bird here.

*

* @author (conor hayes)

* @version (October 5th 2817)

*/ T
public class Bird{extends Animal |

{
//instance variables (fields)
boolean hasFeathers;
boolean hasWings;
boolean flies;

[/ **
*# Constructor for objects of class Bird
*/
public Bird()
(e,
k\super(};,ﬁfcalla the constructor of its superclass - Animal.
EEIEU?_;-”black“; //overrides the value of colour inherited from Animal

hasFeathers = true; //all the subclasses of Bird inherit this property and value
hasWings = true; //all the subclasses of Bird inherit this property and value
flies = true; //all the subclasses of Bird inherit this property and value

16

extends indicates the subclass to be extended (inherited from)

You must call the constructor of the superclass using the method call
super()

If the superclass constructor takes a parameter then the call to super must
include a value of the parameter. E.g. super(“joey”)

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

17

OLL
UNI

{

.............
............
......
. .
. e
. .
. o,

03

public class Canafy extends Bird

..

// instance variabley="¥éplace the example below with your own
String name; // the name of this Canary

[**

* Constructor for objects of class Canary
*/

public Canary(String name)

.. super();.’// call the constructor of the superclass Bird

this.name = name;
colour = "yellow"; // this overrides the value inherited from Bird

T
* Sing method overrides the sing method
* that was inherited from superclass Bird

it
o
o+

‘. .
.
LY st

publig vVoid sing(){
System.out.println("tweet tweet tweet");

18

Code pad

Bird bird = new Bird();
bird.sing();

System.out.printin(bird.getColour());

O & BlueJ: Terminal Window - Weel-r; B
tra la la
black
N
OLLSCOILNA GAI
UNIVERSITYOFG

19

Code pad

Canary john = new Canary("John");
john.sing();
System.out.printin(john.getColour());

O © BlueJ: Terminal Window - Week 6
tweet tweet tweet
yellow

OLLSCOILNAGA
UNIVERSITY OF C

Ll

1

20

* Sing method in Canary overrides the Sing method inherited from Bird
* Canary overrides the value of the colour field inherited from Bird. Bird
objects are black. Canary objects are yellow

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

21

Abstract

* |t may not make sense to have an object of type superclass
* E.g. have you ever seen an an Animal or Bird object walking about

* Java allows you to specify which classes can be made into objects
* And which are used just for inheritance purposes

public abstract class Animal

{

public abstract blass Bird extends Animal
QOLLSCOILNA GAILLIMUE {

UNIVERSITY oF GALWAY

22

Adding the word abstract to the class definition tells Java that it can’t make objects from this class

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

wabstracts
Animal

/\

wabstracts

Bird

/\

Canary

Animal animal = new Animal();
Error: Animal is abstract; cannot be instantiated

Bird bird = new Bird();
Error: Bird is abstract; cannot be instantiated

23

Code pad example

 However an abstract class can still can be used as the type of a
reference variable

Bird bird = new Canary(“John”);
Animal animal = new Canary(“Mary”)

Animal animal = new Animal();

Error: Animal is abstract; cannot be instantiated
Bird bird = new Bird();

Error: Bird is abstract; cannot be instantiated
Bird bird = new Canary("John");

- H —_— i iy .
R Animal animal = new Canary("Mary");

UNIVERSITYOFGAL.....

24

Key points to remember

AL

You must explicitly invoke the constructor method of the superclass using
super() or super(params);

Private fields or methods are not inheritable

A subclass inherits the fields and field values of the superclass

A subclass can override any fields or methods inherited from the superclass
The abstract keyword can be used to designate classes that can only be
extended

An abstract class can still be used to as the type of a reference variable

v
A\ (OLLSCOILNAGAILLIMHE

N EJ UNIVERSITY oF GALWAY

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Lecture Topics

 Abstract classes and methods
e Polymorphism

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

Abstract

* It may not make sense to have an object of type superclass. E.g. Animal
or Bird

* E.g. have you ever seen an Animal or Bird object walking/flying about?

* You've seen specific types of Animals and specific types of Birds

* Animal and Birds are abstractions

SV
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmals -
ojl-lf& UNIVERSITY oF GALWAY
L W

Abstraction

1. variable noun

An abstraction is a general idea rather than one relating to a particular

Epglsn icyon
Og tio en

https: |tct nary.com ql@iﬁ abstraction

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Abstract Keyword

* You can declare a class to be abstract

public abstract class Animal

{

public abstract (class Bird extends Animal

{

* Java allows you to specify which classes can be made into objects
 ..and which are abstract and used just for inheritance purposes

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

@) O Bird - Animals(1) (1)

COde I Animal X | Bird X _

New Class... : :
. Compile Undo Cut Copy Paste Find... Close
—D . e A

1
. : [**
Compile «abstract»

In Bluel Animal ‘% Write a description of class Bird here.

Make the J°

* @author (Ihsan Ullah)

Animal and : * @version (17 October 2018)

i «abstract» ;)
Blrd classes t!’?'itrdt .,/ public abstract |class Bird extends Animal
abstract of 1

//instance variables (fields)
boolean hasFeathers;

R 12 boolean ha§W1ngs;

13 boolean flies;

L

ULy,
VAT OLLSCOILNAGAILLIMUE
> Lemle ™
o‘lv-..li UNIVERSITY OF GALWAY

4w

abstract Keyword

Adding the word abstract to the class definition tells Java that it can’t make objects from this class
Now, as you did before, try to create an Animal and Bird object

«abstract» — . -)
Animal Animal animal = new Animal();
Error: Animal is abstract; cannot be instantiated
Bird bird = new Bird();

Error: Bird is abstract; cannot be instantiated

«abstract»

Bird
;%ﬁ%fg OLLSCOILNA GAILLIMHE CAISEY

[Al

IIII .
‘|“|'<

P Z S

C vav

UNIVERSITY oF GALWAY

abstract

* First effect is that you no longer can create objects from the abstract class
* However, all the existing rules of inheritance still apply

public abstract class Bird extends Animal

(- » Sub-classes of Bird inherit its
boolean hasFeathers; non_prlvate f|e|ds

boolean hasWings;
boolean flies;

/%%
* Constructor for objects of class Bird
*/
public Bird()
{
super(); |
colour = "black";
hasFeathers = true;
hasWings = true;
flies = true;

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

abstract

Even though Bird is declared as an abstract class a subclass (e.g. Canary)
still has to invoke super()

«abstract»
Bird (=
* Constructor for objects of class Canary
&/
public Canary(String name)
{
super(); 111 the
this.name = name;
Canary I colour = "yellow";
}

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

Why use an abstract class?

* |n situations where you want to use inheritance but do not want
another developer to create an object from the superclass.

* E.g a banking app has two bank account types :

* Current Account and Deposit Account

CurrentAccount DepositAccount

Ll
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

Why use abstract

e Both account types share many of the same fields and methods
* So the developer creates a superclass, Account, to hold all the shared
fields and methods

Account

AN

| CurrentAccount DepositAccount

| A

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

11

12

Why use abstract

 However a trainee developer then writes the following line of code

Account account = new Account();

* This is a problem as there is no such thing in the Banking app as an
Account.
e An account must either be a Current Account or a Deposit Account

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

13

To prevent this happening, the senior developer declares the Account
class abstract

public abstract class Account

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

Why use abstract

As before, CurrentAccount and DepositAccount still inherit fields and
methods from the abstract Account class
But Account itself cannot be instantiated (an object cannot be made of it)

«abstract»
Account
Account account = new Account();
Error: Account is abstract; cannot be instantiated
CurrentAccount DepositAccount

Ly
@ OLLSCOILNAGAILLIMHUE
A ;' UNIVERSITY oF GALWAY

14

15

Methods in an abstract class

As you’ve seen, an abstract class can have standard methods
These methods are inherited automatically by the subclass

[%%
* move method
* param int distance - the distance the Animal should move
* All subclasses inherit this method
*/
public void move(int distance){
System.out.printf("I move %d metres \n", distance);

}

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

16

Methods in an abstract class

As we’ve seen, a subclass can override (provide their own specific
implementation) of the inherited methods

[%%
* the move method in Bird overrides the move method
* inherited from superclass Animal

*/
@override] Te _ ra
public void move(int distance)
if(flies)({
System.out.printf("“I fly %d metres \n", distance);
}else{
System.out.printf(“I am a bird but cannot fly. I walk %d metres \n", distance);
}
JTBR OLLSCOILNAGAILLIMHE e.g. this is the overriden move method in the Bird class

A ;' UNIVERSITY oF GALWAY

17

O Loy) ™

Abstract methods

Abstract classes can also have abstract methods
e Abstract methods are methods with no body

E.g. public abstract void sing();

* |n other words, they do nothing
e So what are abstract methods used for?

Ll
VAT OLLSCOILNAGAILLIMHE

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

18

Demonstration

Open up the Animal class in Bluel
Go to the move method

public void move(int distance)
System.out.printf("I move %d metres \n", distance);

}

Make it an abstract method
This involves removing its body and simply keeping the method signature followed by a ‘;’

Now compile the full project

public abstract void move(int distance);

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19

Demonstration

* Your code still compiles

* In code pad, type the the following (hit return after each line)
l

Canary canary = new Canary("John");

canary.move(5):
y ()' @) O BlueJ: Terminal

I fly 5 metres

* Where is the move functionality coming from?
* From Bird’s move method

7
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

20

Demonstration

Canary’s move functionality comes from Bird
Now delete (or comment out) the move method from Animal

[* %
* move method

* param int distance - the distance the Anii
* All subclasses inherit this method
*/

Recompile your project

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Now Bird won’t compile
Check what the error is
So what is the role of move in Animal ?

]
«abstract»

i As an abstract method, it provides the
T definition of a method that at least
one of its subclasses must implement

«abstract»

Bird

We%e%%%

|

Canary

SV
AT E OLLSCOILNA GAILLIMHE 7
&y UNIVERSITY OF GALWAY //

21

22

The meaning of the the abstract method move in the Animal class:

“All animals must move, but it is up to each specific animal to decide how
it moves”

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

23

Concrete

The adjective concrete is often used in OOP to denote a class or method
that is not abstract

i.e. The class or method is fully implemented

* |In our example, Canary is a concrete class

* The move method in Bird is a concrete method

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Reference Type

An abstract class is often used as the type of a reference variable
Try this in code pad

Bird bird = new Canary("John"); |
Animal animal = new Canary("Mary");

Here we have two concrete objects referenced by variables whose type is an abstract class
Very common approach in OOP

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

25

abstract class and method summary

e The abstract keyword allows you to represent a class that should not be instantiated (made an
object of)

* Inheritance from the abstract class happens the same as before

* An abstract class may have concrete and abstract methods

* An an abstract method does not have a method body

e It is there to provide a definition of a method that at least one of its subclasses must
implement (make concrete)

* In our case — having an abstract method move is like saying “All animals must move, but it is up
to each animal to decide how it moves”

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

26

Polymorphism

sLL,
VAT OLLSCOILNAGAILLIMUE

-l
..||..
o Ummly
C vaw
4w

UNIVERSITY oF GALWAY

“QI.IaCk”

Speak!”

27

O Loy) ™

. slmals -
ojl-lf& UNIVERSITY oF GALWAY
L W

Polymorphism

* Polymorphism (from Greek polys, "many, much" and morphe, "form,
shape")

e Polymorphism refers to how an object can be treated as belonging to
several types as long as those types are higher than the object’s type in
the class hierarchy

* Thus, In the code snippet below, a Canary can be treated as a Bird type
and as an Animal type

Bird bird = new Canary("John");
Animal animal = new Canary("Mary");

SV
VAT OLLSCOILNAGAILLIMHE

28

Example

Open a new Project in Blue J, create an abstract class called Animal with

one abstract method move
Write the code for three subclasses: Fish, Frog and Bird

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

Animal
move()
T
Fish Frog Bird
_moveQ) ___| move() move()
II !
II : \‘
I ! ‘\
|
. L~] I~ I~
swims 3 jumps 0.5 flies 10 metres
metres metre

Example

* Open a new Project in Blue J, create an abstract class called Animal with one abstract method move
* Create three sub-classes of Animal: Fish, Frog, Bird

e Each inherits and overrides the

Animal
el move () method
= A Fish swims, a Frog jump, a Bird
Flies
Fove) vl move)

I
[}
|
N : T
swims 3 jumps 0.5 flies 10 met
metres metre ies 10 metres

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

30

Animal Code

public abstract class Animal

{

public abstract void move(int y);‘h“-.___........
}

public class Bird extends Animal
{

@0verride

public void move(int y)

{

System.out.printf ("I fly %d metres”, y);
}

public class Frog extends Animal

{
public class Fish extends Animal @0verride
{ public void move(int y)
@verride { _ . . ‘
public void move(int y) ; System.out.printf("I hop %d metres”, y);
{)
System.out.printf("“I swim f%d metres", y);
}
}
QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

Polymorphism Key point
* In general, a variable of type X can point to any object that has an ‘is-a’ relationship to type X

Animal birdl = new Bird();
Animal bird2 = new Bird();
Animal frogl = new Frog();
Animal frogZ = new Frog();
Animal fishl = new Fish();

e Avariable of type Animal can point to a Bird, Frog or Fish object
e Bird, Frog or Fish objects have an ‘is-a’ relationship to the Animal class

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

‘Is-a’ relationship

E.g. a variable (
Animal can poi
objects of any

type directly ;
below it / »Can swim

Animal

in the -:“-Cm Fly Fish /~» Has Gills
class \ X Has feathers
hierarchy

Has long, Is Pink
Canary Ostrich/Thin legs Shark ,_/.:ls Edible
"\, : = Is tall - -~ Swims
“Can sing \Can't Fly Is dangerous Dokt
\Is yellow Lay Eggs

<Ll
N OLLSCOILNA GAILLIMHE
> Clitnls
5'.-.-.'7 UNIVERSITY OF GALWAY

A,
4w

33

Codepad

Create an array of Animal references of size 6

Animal[] animal = new Animal[6];

Even though Animal is an abstract class we can still create an array of
Animal references

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

34

Write the code

Now write the code to add a reference to a different animal in each array location

E.g. a bird in the first location
A bird in the second location
A Frog in the third location
And so on

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Array of Animal
References

0

{ Bird object
P 28

Bird object

1
2
3
4
5

35

For tomorrow, write the code requested in the previous slide in a new
Class with a main method.

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Lecture Topic

Polymorphism

For examples, see: https://www.javatpoint.com/runtime-polymorphism-in-java

<D

N OLLSCOILNAGAILLIMHE
| ﬁ ="

3'-.-'7 UNIVERSITY OF GALWAY

C vav

Animal Code

public abstract class Animal

{ public class Bird extends Animal
{
public abstract void move(int y); @0verride
public void move(int y)
} {
System.out.printf ("I fly %d metres”, y);
}
}
public class Frog extends Animal
{
@0verride
public void move(int y)
{

. . g System.out.printf("I hop %d metres”, .
public class Fish extends Animal } Y P (P Y)
{ }

@0verride
public void move(int y)
{
System.out.printf ("I swim ﬁd metres", y);
}
}
QOLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY

Write the code

Write the code to add a reference to a different animal in each array location
E.g. a bird in the first location , ,
. . Bird object
a bird in the second location
A Frog in the third location U

And so on Array of Animal
References

Bird object

nnipkrlwWIN|[F|O

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY \

public class AnimalTest

{
”{k Bird object
public static void main(String[] args) i
{ b
Animal[] animals = new Animal[6];
animals[@] = new Bird(); 0
animals[1] = new Bird();
animals[2] = new Frog(); 1
animals[3] = new Frog(); 2
animals[4] = new Frog();
animals[4] = new Fish(); 3
animals[5] = new Fish(); 1
5
}
} -
;\/:ﬁﬁ’g OLLSCOILNA GAILLIMUE Fish object

-l
..||..
o Ummly
C vaw
LW

UNIVERSITY oF GALWAY

Example

Now write the code

to call the move() method
from each

reference in the array
Use a for loop

for(Animal animal: animals) {
animal.move(5);
}

Run the code from the main
method

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Bird object

Bird object

Example

* Note how you haven’t explicitly called the move methods
of Bird, Frog or Fish
 Just the move method of Animal (which is abstract)

for(Animal animal: animals) {
animal.move(5);

}

[L 7

N OLLSCOILNA GAILLIMHE
> Clifhils

Jlnli UNIVERSITY oF GALWAY

Output

Examine the output produced in the terminal
The specific move method of each of the referenced animal
objects(Bird, Frog, Fish) has been called

O @) BlueJ: Ter
Bird: I fly 5 metres
Bird: I fly 5 metres
Frog I hop 5 metres

Frog I hop 5 metres

Fish: I swim 5 metres
Fish: I swim 5 metres

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Output

Bird object
142; Bird: I fly 5 metres
move (5)
|74 g

Array of Animal Bird object

Bird: I fly 5 metres
References

Frog object

Frog I hop 5 metres

move (5)

move (0) Frog object
i gmovje (5) Frog I hop 5 metres

Fish object

ikl WIN|[FL]|O

Fish: I swim 5 metres

;lfwT OLLSCOILNA GAILLIMHE
- ulo
4

Fish: I swim 5 metres

Explanation

* Each element in the array contains a
reference variable of type Animal
* Each reference points
toa Bird, Frogor
Fish object
* So when the move ()
method is called
from the Animal
references in the array it
is the move () method of
the respective Bird, Frog,
Fish objects thatis invoked

<D
N OLLSCOILNA GAILLIMHE
| ﬁ ="
3'-.-'7 UNIVERSITY OF GALWAY

C vav

Bird object

%4

Array of Bird object
Animal :
Reference
0 Frog object
5 E f""i
3 %jFrog object
4 Fish object
5

11

Dynamic Dispatch/Late binding

* This an example of what is called dynamic dispatch or late binding

 The decision as to which method to invoke is decided at program
runtime, not compilation time

e If at run time, animals[0] points to a Bird object, then
animals [0] .move () invokes the move () method of the Bird
object

* fanimals [0] pointsto a Fish object, then animals [0] .move ()
invokes the move () method of the Fish object

\LLy
AT OLLSCOILNAGAILLIMHE
s|mls -
j'-'f UNIVERSITY oF GALWAY
L W

O T A

12

Polymorphism

= We can add new Animal types with new move () behaviours to
the array of Animal references

" As long as these are subclasses of Animal, their move ()
method will always be called

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

13

Animal

T — Example : new Deer class
movel

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

jumps 0.5

flies 10 metres
metre

public class Deer extends Animal {

€0verride

public wvoid mowve(){
// TODO code for flying 10 metres
System.out.println(“Deer: I run 15 metres");

Frog Bird Deer
move() move() move()
e i

runs 15 metres

Create a deer object

* Place a reference to a Deer object in the array and run the program again.

Animal[] animals = new Animal[6];
animals[@] = new Bird();
animals[1] = new Bird();
animals([2] new Frog();
animals[3] = new Frog();
animals[4] = new Frog();

animals[4] = new Fish();
animals[5] = new Fish();
animals[5] = new Deer(); // this replaces the previous value

for(Animal animal: animals){
animal.move(5);

}

(R L,
VAT OLLSCOILNAGAILLIMUE
> Clitnls
5'.-.-.'7 UNIVERSITY OF GALWAY

A,
4w

15

Output

* Key message we can change the behaviour of a program without changing its code

* E.g.this piece of S — v
. O @ BlueJ: Terminal Window - Polymorphism
code remains the same

Bird: I fly 5 metres
Bird: I fly 5 metres
Frog I hop 5 metres
Frog I hop 5 metres
Fish: I swim 5 metres
Deer: I run 5 metres

for(Animal animal: animals) {
<™ animal.move(5);
VAT OLLSCOILNAGAILLIMHE
: =|%|= J UNIVERSITY OF GALWAY }

C wav -

16

Implications

 With polymorphism, we can design and implement systems that are
easily extensible

* New classes with new behaviours can be added with little or no
modification to the general portions of the program

SV
AT OLLSCOILNAGAILLIMHE
. slimils -
j'-'f UNIVERSITY oF GALWAY
L W

C aw

17

Let’s look at applying these ideas

Open the code we first looked at yesterday

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

«abstract»
Animal

Food

«abstract»

Bird

Canary

18

Instructions

Food:

Make Food an abstract class
Give it two abstract methods getCalories and getFat with a return type int

Animal: make eat method abstract

Create an abstract subclass of Food called Vegetable

Create a concrete subclass of Vegetable called Seed

Seed has two fields calories and fat

Canary must implement a concrete version of the eat method

Canary’s eat method checks if Food object is an instanceof Seed; if it is, the Canary calls Food’s
getCalories method and moves the distance returns. She also calls the sing method.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19

. slmals -
ool
4 e

Lecture wrap up

 We looked at polymorphism — the facility by which an object can be
referenced by a variable of its Superclass

* This allows us to create code that is easily extensible
* We saw that we can create variables of abstract types (classes)

SV
N OLLSCOILNAGAILLIMHE

|

UNIVERSITY oF GALWAY

OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Instructions from last week

Food:

Make Food an abstract class
Give it two abstract methods getCalories and getFat with a return type int

Animal: make eat method abstract

Create an abstract subclass of Food called Vegetable

Create a concrete subclass of Vegetable called Seed

Seed has two fields calories and fat

Canary must implement a concrete version of the eat method

Canary’s eat method checks if Food object is an instanceof Seed; if it is, the Canary calls Food’s
getCalories method and moves the distance returns. She also calls the sing method.

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Slight revision to these instructions

*We’'ll drop the getFat method from Food — as | don’t plan to use it

*Canary’s eat method should do the following:
o Check if the Food object is null
o Checks if Food object is an instanceof Seed;
oif it is a Seed, the canary calls Food’s extractEnergy method and-meves-the-distance
returns and adds the value returned to its own energy level
olt also calls the sing method (because it is now well fed)

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

This lecture

* We'll look at some modelling issues
 We'll introduce the background for the next topic: interfaces

* To introduce this topic we’ll model a food chain

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

Food Chain

Download the zip file provided in the Week 8 folder
Create a new Project in Blue)

In the Workbench menu, select
Project -> Open Zip/Jar
Then compile the Project

WLLy
T OLLSCOILNAGAILLIMHE

u - -

) v'f UNIVERSITY oF GALWAY

Blue J workbench

Rearrange the class icons to give you something like

j «abstracts

Eood :_;_ _________ «absiracts

Animal
«abstracts |"|
Vegetable wabstracts
Bird
Seed Canary

A

QOLLSCOILNA GAILLIMUE
;J UNIVERSITY oF GALWAY

CONSUMmer

Food Chain
{ O;rgen
B D

rban dioxide

— SUGAT

vL,

AN
J_ﬂ%ﬁ; OLLSCOILNA GAILLIMHE
'le-.-.li' UNIVERSITY OF GALWAY

4w

Our Food Chain

Seeds Canaries Cats

e (Canaries eat Seed
* (Cats eat Canaries
* Energy passes from Seeds to the Canary to the Cat

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Canaries eat Seed

e Animal class has an abstract eat method

* Canary has to override the eat method it has
inherited from Animal

 We now have to write the specific code to allow
Canaries eat Seed

@0verride

Note how the eat
public void eat(Food food){

method takes as
| input a Food
} reference

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

10

Canary’s eat method

* Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;

3. Ifitis aSeed, the canary calls the extractEnergy method and adds the value
returned to its own energy level

4. It also calls the sing method (because it is now well fed)

| would also suggest that this method is modified to return a boolean
depending on whether the Food is edible (e.g it is a Seed or not)

\ b L,

T OLLSCOILNAGAILLIMHE
L | [
) v'f UNIVERSITY oF GALWAY

11

First: Animal energy

As an Animal object gets energy from the Food objects it can consume, it
needs a numeric field energy to hold this value

This field can then be inherited by all Animal objects, including Canary

public abstract class Animal

{

boolean hasSkin;
boolean breathes;
String colour;
int energy;

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

12

getEnergy

You will also need an accessor (getter) method for the new energy field in
Animal

IEL:

* getter method for energﬂ field
* All subclasses inherit this method
*/
public int getEnergy() {
return enerqgy;

}

Please remember Getter/Setter methods are not optional.
You must use them to access the fields of an object

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

13

extractEnergy

An abstract method defined in the Food class
It must be implemented in one of the subclasses of Food
We implement it in the Seed Class. Implement this method, as described

YETS
* returns the current wvalue for Calories
* and then sets the calory wvalue to zero

* i.e. the energy has been extracted from Seed
* [/

@0verride

public int extractEnergy(){

return 8;

}

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

14

All Food has calories

| originally declared the calories field in the Seed class

But all Food has calories
Therefore, we should remove the calories declaration in Seed and move it

to the Food class

public abstract class Food

{

int calories;

It can be then inherited by all sub-classes of Food, including Seed

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

15

Implement Canary’s eat method

Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;
3. Ifitis aSeed, the canary calls the extractEnergy method and adds the value
returned to its own energy level
4. It also calls the sing method (because it is now well fed)

| would also suggest that this method is modified to return a boolean depending on
whether the Food is edible (e.g it is a Seed or not)

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

16

Test first part of the food chain

Seeds Canaries

* Each seed has 10 calories
* If a Canary eats 3 seeds, its energy level should be 30

L,
A\ (OLLSCOILNAGAILLIMHE
= V¥ UNIVERSITY oF GALWAY

17

In Code Pad

Or in a main method, type the following

Seed millet = new Seed|();

Seed sunflower = new Seed();
Seed hayseed = new Seed();
Canary bluey = new Canary (“Bluey”);

bluey.eat (millet);
bluey.eat (sunflower) ;
bluey.eat (hayseed) ;
System.out.println (bluey.getEnergy())
This should print out the value 30

7
A\ (OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

18

Part 2 of our food chain

Seeds Canaries

* (Cats eat Canaries
* Energy passes from the canary to the Cat

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Cats

19

Part 2

Currently the class structure looks like this
You are now going to add two more classes

Feline (abstract)
Cat (concrete)

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

«absiracts

Food 'f;—————““—" !
«abstracts
Animal
«absiracts wabsiracts
Vegetable Bird
Seed Canary

20

Feline class (abstract)
Extends Animal
Fields

hasFur
Overrides
move() method

Cat class (concrete)
Extends Feline
Fields
name
Overrides
colour field (colour=black)
eat (Food) method

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

aabstracts
Animal

aabstracts
Feline

Cat

21

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

aabstracts

Food

o

£\

aabstracts

Vegetable

N

Seed

LA TAAT A

Animal

aabstracts

agabstracts

Bird

Canary

agbstracts
Feline

Cat

OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Our Food Chain

Seeds Canaries Cats

* Canaries eat Seed
* C(Cats eat Canaries
Ouisconmohrlumit e Energy passes from Seeds to the Canary to the Cat

UNIVERSITY oF GALWAY

Implement Canary’s eat method

Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;
3. Ifitis aSeed, the canary calls the extractEnergy method and adds the value
returned to its own energy level
4. It also calls the sing method (because it is now well fed)

| would also suggest that this method is modified to return a boolean depending on
whether the Food is edible (e.g it is a Seed or not)

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Eat method

public abstract boolean eat(Food food);

“The eat method in Animal should be changed to return a boolean value. ”

“In Canary's case, the eat method should return true if the food variable is an instance of Seed.
Otherwise, the method should return false.”

@0verride
public boolean eat(Food food){
if(food ==null){
return false;

}

if(food instanceof Seed){
Seed seed = (Seed) food;
energy+=seed.extractEnergy();
sing();
return true;

telse{

System.out.println("I cannot eat this type of food");
}

OLLSCOILNAGAILLIMHE return 'Fa lse .
UNIVERSITY oF GALWAY

Adding Feline and Cat classes

Feline class (abstract) |
Extends Animal «abstract»
. Animal
Fields
hasFur
Overrides
move() method

Cat class (concrete) «abstracts
Extends Feline Feline
Fields
name

Overrides
colour field (colour=black)
eat (Food) method

Cat

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Feline class

public abstract class Feline extends Animal

{

boolean hasFur = true;

@0verride
public void move(int distance)

{
}

System.out.printf("I am a Feline and I leap %d metres, \n", distance);

public boolean hasFur(){
return hasFur;

}

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Cat class

public class Cat extends Feline

{
String name;
FE LS
*# Constructor for objects of class Cat
*f
public Cat(String name)
{
super() ;
colour = "black"; // override default colour from Animal
this.name = name;
}
FE L
* eat method
* @param Food food : Cats eat Canaries
*# so the method has to make sure that food points to
a Canary object
*f
@0verride
public boolean eat(Food food)
{
return false; // default return value
OLLSCOILNA GAILLIMHE }

UNIVERSITY oF GALWAY }

agbstracts

== —_

Food -[—_:_— ————————— -]

e !

wabstracts
:i\ Animal
agbstracts agbstracts agbstracts
Vegetable Bird Feline
Seed Canary

| Cat |

AY

AT OLLSCOILNAGA

> Lirnls

ojlv'.-.ﬂ UNIVERSITY oF GALWAY

eat method of Cat

For this to work, a Canary must be a subclass of Food, just as Seed is
However, this is not the case.

Canary is a subclass of Animal

Kz
* eat method for a Cat

* In this programme Cats eat Canary objects only
* @param Food

* [
@0verride

public void eat(Food food)
{

}

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

10

A Canary is not a Food type

Furthermore, there is no way to cast a Canary object to Food
E.g. Try the following in code pad

Food food = new Cat("Felix"}):
Error: incompatible types: Cat cannot be converted to Food

Cat cat = new Cat("Felix");

Food food = (Food)cat;
Error: incompatible types: Cat cannot be converted to Food

For polymorphism to occur, Cat would have to be a subclass of Food

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Arrange your classes to look like this

Animal

«abstracts , 5:] R
Food = 7

P S—— \

5] f] aabstracts

wabstracts :
t Feline

Vegetable “EDS-.F:]E‘I::I:-

= Bird

/:1 Canary Cat
Seed S .
-
i

FoodChainTest

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

12

Now open the eat method of Cat

Copy and paste the body of the eat method in Canary into this method. Modify
Remember a Cat can only eat a Canary

A Cat doesn’t sing
/%%
* eat method for a Cat

* In this programme Cats eat Canary objects only
* @param Food
* [

@0verride

public void eat(Food food)
{

}

7
A\ (OLLSCOILNAGAILLIMHE

= ¥y UNIVERSITY OF GALWAY

13

What problems did you experience?

[*%
* eat method
* @param Food food : Cats eat Canaries

* so the method has to make sure that food points to
* a Canary object
*/
public boolean eat(Food food)
{
if(food ==null){
return false;

}

return true;

}else{
System.out.println("I cannot eat this type of food");
}
return false;
}
QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

14

Incompatible Types

[k%
* eat method
* @param Food food : Cats eat Canaries

* so the method has to make sure that food points to
* a Canary object

*/

public boolean eat(Food food)

{
if(food ==null){
return false;

}

lncompatible typeé:

Food cannot be converted to Canary |

return true;
}else{
System.out.println("“I cannot eat this type of food");
}
return false;
OLLSCOILNA GAILLIMHE }
UNIVERSITY oF GALWAY

15

eat method of Cat

Big Problem! Food cannot be converted to Canary
However, the eat method only takes a Food reference as an input

In order to convert the Food reference to a Canary reference, Canary must be a subclass of Food, just as
Seed was
But Canary is a subclass of Animal

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

A Canary is not a Food Type

Animal
wabstracts | _ ﬂ l:i
Food = Vi
I —
(] /:] wabstracts
agbstracts L
Vegetable «abstracts Feline
Bird
Canary Cat
Seed e o
-
i

FoodChainTeast

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

17

Multiple Inheritance

This problem could be solved using multiple inheritance — where a class

can have multiple simultaneous superclasses

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

aabstract»
Food

wabstract»
Bird

Canary

-

Multiple Inheritance

However, in OOP multiple inheritance has led to major problems due to conflicting field and method
implementations inherited from superclasses

wapsiracts
SomeClass

[/ _

aabstract» «abstract»

Food . Bird

S

Canary

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

18

19

Multiple Inheritance

Java does not support multiple inheritance

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

20

Interface

Java uses a structure called an interface to achieve a form of multiple
inheritance

An interface is like a class — but it is really more like an outline of what
methods a class should have

Just like a class an interface can be used as a type

Interface names often end in — able - simply by convention

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

21

Interface example

Compare and Contrast with a class definition

public interface Eatable

{

public int getCalories();

public int extractEnergy[}ﬂ

QOLLSCOILNA GAILLIMUE
;J UNIVERSITY oF GALWAY

22

Interface example

Note interface not class

public interface Eatable

{

public int getCalories();

public int extractEnergy[}ﬂ

}

L,
A\ (OLLSCOILNAGAILLIMHE
= ¥y UNIVERSITY OF GALWAY

Note method
definitions
have no body

23

Eatable interface

What does it mean?

1. Any class that implements Eatable can be treated as an Eatable type
(Polymorphism)

2. Any class that implements Eatable must provide concrete
implementations of its method

WLLy
AT OLLSCOILNAGAILLIMUE

-] ﬁ -
Lt UNIVERSITY oF GALWAY

| 14
4

vav -
Lwh

(<]

24

Implementing an interface

While a class can only extend one superclass (direct inheritance)
It can implement multiple interfaces

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

25

Food as an interface

What does it mean?

1. Any class that implements Food can be treated as a Food type (Polymorphism)
2. Any class that implements Food must provide concrete implementations of its method

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

26

Implementing an interface

A class can only extend one superclass (direct inheritance)
A class can implement multiple interfaces
the following class declaration is valid:

public class Canary extends Bird implements Food, Comparable{

“A Canary is a subclass of Bird and implements the interfaces Food and Comparable”

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

27

Solving the Cat’s eating problem

We are going to make the Food class into an interface

Any object that is edible (in our domain) will be required to implement the
Food interface.

<
AT OLLSCOILNAGAILLIMUE
AL
<l UNIVERSITY oF GALWAY

C“
4

vav -
Lwh

28

Step 1:

* Change Food to be an interface

public interface Food

{

public int getCalories();

public int extractEnergy();

* This also will require Vegetable to implement the Food interface
* Seed will need to have its own version of the calories field

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

29

Step 2

We want Canary to be considered a type of Food
Therefore, Canary should implement the Food Interface

..

{

Canary will be required to implement the Food interface’s two methods

getCalories
extractFood

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

30

Step 2

Canary should implement Food

public ¢lass.Canary.extends. Bird implements. Food

{

Canary will also be required to implement Foods two methods

public int getCalories()({
return getEnergy();

}

public int extractEnergy(){
int cal = energy;

energy = B; //should this Canary hav
return cal;

QOLLSCOILNA GAILLIMUE

UNIVERSITY oF GALWAY

31

If you’ve followed these instructions, you should find that the eat method of Cat now compiles

A Canary is now a Food type as it implements the Food interface

«interfaces

Food

«abstracts
Animal

ATR

LATHTN

wabstract=
Vegetable

Seed

«abstracts

Bird

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

N

FoodChainTest

«abstracts
Feline

\

Cat

32

Cat’s eating problem solved

@0verride
public boolean eat(Food food)
{
if(food ==null){ // if the reference points to null
return false; // immediately return. Method execution goes no further

if(food instanceof Canary){ // is food pointing to a Canary object?
Canary canary = (Canary) food; // cast reference to a Canary type
energy+=canary.extractEnergy(); // extract the Canary's energy
[/sing(); // cats don't sing
return true; // return. Method execution goes no further

}else{

System.out.println("I cannot eat this type of food");
}

return false:

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

33

Test your code

* Write a new test method in the
FoodChainTest class

* Call it testv2

* Write Code to execute the code
instructions in the comments
below (Reuse some of the code
in the testvl method)

* Execute the method
in the main method

* Check that the output
is as expected

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

public void testv2()({

34

Interface vs Abstract class: Similarities

Similarities:

* Both can be used to provide ‘templates’ for what subclasses can
implement

* An abstract method plays the same role as an interface method —
Both must be implemented in concrete form by a subclass

* An abstract class and an Interface can be used as the type for a

reference variable.
E.g. Food tasty = new Canary (“tasty”);

 This code works if Food is an abstract class or Interface

Ly
A\ (OLLSCOILNAGAILLIMHE
L1 - -
) v'f UNIVERSITY oF GALWAY

35

Interface vs Abstract class: Differences

Differences:

* An abstract class is used for classic inheritance purposes — providing an abstract structure that subclasses
inherit. The subclasses have a lot in common.

* E.g. the abstract class Bird provides common functionality for all feathered, winged animals
Bird canary = new Canary (“mary”);
Bird ossie = new Ostrich (“ossie”);

 However, an interface is often used to impose common functionality on classes that have nothing in
common.

e E.g. The interface Food imposes common (Food) functionality on two quite different classes : Seed and

Canary
Food tasty = new Canary(“tasty”);
Food sunflower = new Seed();

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

36

On the next slide, we compare the similarities and differences between
the abstract class and interface versions of Food

QOLLSCOILNA GAILLIMUE
v'f. UNIVERSITY oF GALWAY

public abstract class Food

{
int calories; // abstract classes have fields
YE L
* Abstract classes can have constructor
*/
public Food()
{
calories = 9;
}
public abstract int getCalories();
public abstract int extractEnergy();
}

VS
public interface Food

// interfaces don't have fields
//interfaces don't have constructors

public int getCalories();//like an abstract method - but no abstract keyword

public int extractEnergy();//like an abstract method - but no abstract keyword

37

Differences/Similarities: Syntax

* An abstract class has the term abstract class in its class declaration
* An interface has the term interface in its declaration

* An abstract class may have fields; an interface usually will not™

* An abstract class may have a constructor; an interface will not

* A class will use the keyword extends in its class declaration when inheriting from an abstract class

* A class will use the keyword implements in its class declaration to indicate that it will implement an interface
* A class can only extend one superclass (abstract or concrete). However, it can implement multiple interfaces
* An abstract class may have a concrete method; an interface will not

* An abstract method has the abstract keyword in its method declaration; an interface method does not

* Aninterface method and an abstract method do not have a method body

*When fields are declared in an Interface, they are public, static and, final by default
We will not be covering examples with fields declared in Interfaces

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

38

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

OQOP topics covered to date

Class structure - fields, constructor Collections/ArrayLists/Arrays
Encapsulation Inheritance

Instance methods Overriding methods

Object communication Class hierarchies
Composition Polymorphism

OO design Dynamic Dispatch

Abstract classes and methods
Interfaces

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w

Topics not yet covered

Static methods
Private methods
Exception handling

UTJL\' OLLSCOILNA GAILLIMUE
o UNIVERSITY oF GALWAY

[« v‘v

Remaining weeks

Over the next few weeks, | am going to focus on getting you to apply the
techniques you’ve already learned to solve different programming
problems

This week we are going to look at creating a hierarchical data structure
In semester I, you’ll be looking at more of these types of structures

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w

Assembly

: Assembly
We want to design a data structure to keep track of . :
. Contains Contains
the parts in a warehouse
Each part has a serial number, name and cost
) : Part : Assembly
Parts can be grouped to together into an Assembly —
An Assembly can hold other Assemblies as well as . .
Contains Contains

Parts

: Pant : Pant

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Basic Classes

1. Part
2. Assembly

What is the relationship between a Assembly object and a Part object?

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w

Basic Classes

1. Part
2. Assembly

What is the relationship between a Assembly object and a Part object?

Any Assembly object is composed of multiple Part Objects
In other words, Assembly object has a has-a relationship with Part

1.*

‘ Assembly |<> Part

yLLy
T OLLSCOILNAGAILLIMHE

u - -

) :* UNIVERSITY oF GALWAY

Is-a vs has-a relationships

Recall that there are two fundamental relationships between classes in
00

is-a (or inheritance)
has-a (or composition)

A RacingBike is-a type of Bicycle (inheritance)
A RacingBike has-a Wheel (Composition)

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w

Part

* A Part object has the following properties

Name
ID number
Cost

 We can represent these as follows in a class diagram

1.*

Part

‘ Assembly |<>

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

cost

:1 name

number

package

e Java organises groups of related classes into what is know as packages
 We are going to put all our Part-Assembly code into a package called
warehouse

* In Bluel create a new Project wafﬂhﬂ;&
* In the BlueJ menu, Choose Edit->New Package i

* Enter the name warehouse
* Click on the package icon created

Vs
A\ (OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

11

We will create our classes in the warehouse package

New Class...

—>

Compile

Teamwaork

Testing

Run Tesis

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

BM}V@U sev] [warehouse]

R Use the Edit menu to create or add a class

12

packages

* When a class is part of a package it has a fully qualified name : its name and address
 When you create a Part class in the package warehouse its fully qualified name will
be warehouse.Part

* You've already encountered this: \ java.lang.ﬂbject |
| I
package Class name

| Java.util.ArraylList |

| |

package Class name

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

13

Part

Part

name
number
cost

Now Write the Code for the Part class
Observe the guidelines on encapsulation
Decide what type your field variables should be
The constructor should initialise the fields with its input parameter values

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

14

Test Code

1. Now create a test class with a main method

In the main method, create an array of Part references, size 1000

3. Create aloop to place a reference to a new Part object in each location of the
array.
E.g. each Part can have the following values:
name = “screw”, number=28834, cost=0.02

public static wvoid main(String[] args) {

A

//TODO

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

15

* Our program is required to hold multiple objects, say, of type Part
 Many Parts will have the same value

* Can you identify any problems with our implementation of Part?

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

16

QOLLS(
UNI1VI

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834

cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part -

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

av®

name = "screw"
number = 28834 5
cost =0.02 :

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part |

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834

cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part | &

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834 |3
cost =0.02

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

Sy
myScrew : Part | h*_' i

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834 "
cost = 0.02

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part e

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw" |
number = 28834
cost =0.02 [T

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part ol

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw" &l -
[!-r"'-'

number = 28834 |3
cost =0.02 ¥

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

myScrew : Part

.

myScrew : Part

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834
cost =0.02

name = "screw"
number = 28834

cost =0.02 cost = 0.02 hl e ¥

%

name = "screw"
number = 28834 .

Programing Principle: Avoid Data Replication

e All part objects of the same kind have the
same attribute values (name, number,

cost)

— Wasteful of memory resources

— Hard to maintain e.g. if the cost changes we
have to change the cost in every object

L,
A\ (OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

17

myScrew : Part

name = "screw'’
ndmber = 28834
cost = 002

myScrew : Part

name = "screw"
number = 28834
cost = 002

myScrew : Part

name = "screw"
number = 28834
cost = 0.02

myScrew : Part

name = "screw"
nuMmber = 28834
cost = 002

18

Avoiding Data Replication

e Create a new class to store shared information about a particular Part
— Call this a ‘catalogue entry’
— Represents a catalogue entry that describes a type of part
— Multiple parts of the same type are then described by one entry

Ly,
A (OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY

19

All parts of the same type are linked to a single

CatalogueEntry

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Screws
Ldescribed by

: CatalogueEntry

name = "screw"
number = 28834
cost = 0.02

Bolts

described by

: CatalogueEntry

name = "bolt"
number= 10117
cost =0.03

20

Current model

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Part

.1

CatalogueEntry
- name : 3tring
— number : long
— cost : double

The class diagram tells us all we need to know to
convert it into code

In Bluel

Create a new Class called CatalogueEntry

CatalogueEntry
- name : String
— number : long
— ¢ost : double

It has the three fields as shown above
Observe the usual guidelines on encapsulation
The constructor should initialise these fields

Vs
& OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Linking Part to CatalogueEntry

Each Part object should have a

link to its corresponding
CatalogueEntry object

Part

.1

CatalogueEntry
- name : 3tring
— number : long
— c0st @ double

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w

23

Part class

Revise (refactor) your Part code

1.
2.
3.

Remove the instance fields

Create a new field to hold a reference to a CatalogueEntry object
Refactor the Constructor so that it takes a CatalogueEntry object as a
parameter

Revise your getter methods so that they call the relevant method from
CatalogueEntry

Ly,
A (OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY

24

Example Code

* Now revise your test code

* In the main method
o Create a CatalogueEntry object of type “screw”, id number 28834, cost
0.02
o Then use the CatalogueEntry object to create a 1000 Part objects

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

25

Revised Code?

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

26

Review

 We've introduced a CatalogueEntry Class that holds the information about
Part types

* When we create a Part of a certain type we use its corresponding
CatalogueEntry object

* So multiple Part objects (of type ‘nail’), all have links to a single
CatalogueEntry object describing a nail

* The link between any nail Part andits CatalogueEntry object is implemented
as an instance variable

a
A (OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

27

© —
o [0
‘I“IV

Composition

* Linking Part and CatalogueEntry is an example of Object Composition
* Object Composition refer to constructing the functionality of an object
by composing it from other objects.

yLLy
WA TS OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

C aw A
4w

Stock Control Data Structure

—Assemblies should have a hierarchical structure
—i.e. An Assembly should hold other Assembly objects as well as Part objects

: Assembly
Contay \jtains
: Part : Assembly
-------------- ﬂnnfr_a;;/
Par

. | .5 ’ . d

L i A i

AT OLLSCOILNAGAI : CatalogueEntry fi | : CatalogueEntry / We've im ple mente
v‘vv:k UNIVERSITY OF“\\\G name = ||Screwu I/,’ ‘\\\\ Name = "Strut" /,,' \ t h e Se b itS

-
~~~~~

~. g



Implementing an Assembly

An Assembly needs to hold references to multiple Part objects

This is another example of composition — an object that is composed of
other objects

We don’t know in advance how many Part objects needed
How will we solve that?

Contalns *
Assembly = Part

parts

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vA
4w




OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie



: Assembly

We want to design a data structure to keep track of the

parts in a warehouse Contains \?tains
Each part has a serial number, name and cost
Parts can be grouped to together into an Assembly : Part : Assembly
An Assembly can hold other Assemblies as well as Parts
Bontay Contains
: Part : Part

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




Yesterday, we left off here:

-l N e
| Assembly |<> Part
1

CatalogueEntry

- name : String
— number : long
— cost : double

~

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




public void partTest(){
CatalogueEntry entry = new CatalogueEntry("nail", 2333445, 8.82):

Part|] parts = new Part[1668]:
for(int i=8; i< parts.length; i++){
parts[i] = new Part(entry);

}

Ly,
&\ OLLSCOILNAGAILLIMHE
-..Q' UNIVERSITY of GALWAY




* You can continue using your own code from yesterday or you can
download and add the zip file | posted in Week 9

e As usual, in Bluel
Project -> Add Zip/Jar

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




Back to implementing an Assembly

An Assembly is composed of multiple Parts
We don’t know in advance how many Parts it should hold

1 l‘*

| Assembly |<> = Part

This suggests that we should use a dynamically resizable container
like an ArrayList

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w




Assembly

In the warehouse package

1. Create an Assembly class

2. It should have a private field name of type String

3. It should have a private field parts of type ArraylList. The Arraylist is meant to contain Part references.
(Remember that you will need to use the import java.util.ArrayList statement)

4.  Assembly should have an add method that allows a Part to be added to the Assembly

5. Assembly should have a getCost method that returns a double value — leave the implementation blank

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




Assembly class

import java.util.ArraylList;

public class Assembly

. {
The Assembly class has a private
. . . . private ArraylList<Part> parts = new ArraylList();
instance variable pointing to an private String name;
ArraylList of Part references =
* Constructor for objects of class Assembly
*/
The add method adds a Part object to g o1 Assenbly(String nane)
H this.name = name;
the ArrayList g
/%%
getCOSt returns the Overa” cost Of the * add method - replace this comment with your own
* @param part : a reference to a Part to add
Parts in the Assembly * @return true if part was added successfully
*/
public boolean add(Part part)
{
return parts.add(part);
}
public double getCost(){
return 8;
OLLSCOILNAGAILLIMHUE } ;

UNIVERSITY oF GALWAY




Status

We’ve created 3 classes: 1.*
| Assembly |<> Part

Part

CatalogueEntry

Assembly '

CatalogueEntry

- name : String
— number : long
— ¢ost : double

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




10

Reuse the Test Class from yesterday

package warehouse;
/**

* PartTest is used to write test code
* for the Assembly Part classes.

% @author (Ihsan Ullah)

* @version (Nov 8th)

*/

public class AssemblyTest

{

public void partTest()({
CatalogueEntry entry = new CatalogueEntry("nail", 2333445, 0.02);
Part[] parts = new Part[1000];
for(int i=@; i< parts.length; i++){
parts[i] = new Part(entry);

}
}
public int costTest(){
return 9;
}
public static void main(String[] args)
{
AssemblyTest assmblTest = new AssemblyTest();
assmblTest.partTest();
OLLSCOIL NA GAILLIMHE int value = assmblTest.costTest();
UNIVERSITY oF GALWAY }
}




11

Reuse the Test Class from yesterday

In the costTest method write code to implement the
structure in the figure

1.
2.
3.
4.
5.

Create an Assembly

Create two CatalogueEntry objects

Create 3 Parts of known cost

Add them to Assembly

Call the cost method of the

Assembly to return the overall

cost

If the Assembly returns the

right answer, then our classes are working

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

: Assembly

Contalns Contalns Wns
sl: Part s2 :Part s3: Part

: CatalogueEntry

hame = "screw"

: CatalogueEntry

hame = "strut"




Your code should look like this

public void costTest(){
Assembly assembly = new Assembly("My First Assembly”);
CatalogueEntry catEntryScrew = new CatalogueEntry('screw”, 12344455, 8.02);
CatalogueEntry catEntryStrut = new CatalogueEntry("strut”, 3455522, 8.85);

Part s1 = new Part(catEntryScrew);
Part s2 = new Part(catEntryScrew);
Part s3 = new Part(catEntryStrut);

assembly.add(s1);

assembly.add(s2);

assembly.add(s3);

double total= assembly.getCost();
System.out.printf("total cost: %f", total);

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




13

Overall cost of an Assembly ?

The overall cost of an assembly is a sum of the cost of its Part objects.
Thus the getCost () method for assembly needs a way of iterating over
the ArrayList and calling the getCost () method of each Part

public double getCost(){

return 6;

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w




14

Implement the getCost() method

You may use the comments below to guide you

public double getCost(){

return 8;

Ly,
A (OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY




15

getCost () method

[ x*

* getCost method

* returns the total cost of all items in the Assembly

*/

public double getCost(){
double totalCost = 8;
for(Part part: parts){

totalCost+=part.ge

}
return totalCost;
}
' We used the reduced loop
syntax to iterate over the
ArrayList
OLLSCOILNAGAILLIMHUE |
UNIVERSITY oF GALWAY




16

Subassemblies

An Assembly object should
be able to contain

Parts AND other
Assembly objects

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

: Assembly

Cuntay N‘Itains

: Patt : Assembly
Contains Nmins
: Pant : Part
: CatalogueEntry : CatalogueEntty
name = "screw’ name = "strut”




An Initial Solution

Any Assembly would be composed of other Assemblies and Parts

Suggestion of an approach? L

Assembly Part

!

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

17



18

Initial Solution?

An arraylist that contains other Assembly objects

public class Assembly

{

private ArraylList<Part> parts = new ArraylList();

private ArrayList<Assembly> assemblies
private String name;

f ke ol

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

new ArraylList();




19

 We’'d need to create a new add method for Assembly objects
* In other words, we create another version of add
 We overload the add method

public boolean add(Part part)

{

return parts.add(part);
}
public boolean add(Assembly assembly)
{

return assemblies.add(assembly);
}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




We'll need also to create a new cost method for Assembly objects
public double getCost()({
double totalCost = 8;

for(Part part: parts){
totalCost+=part.getCost();
}

for(Assembly assembly: assemblies)({

totalCost+=assembly.getCost(); // this is

}

return totalCost:

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

20

Note : this is a
recursive call




21

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Any objections to this approach?




22

From an OOP perspective - this is an awful solution

Large amount of code repetition and redundancy

private ArraylList<Part> parts = new ArraylList();
private ArraylList<Assembly> assemblies = new ArraylList();

public boolean add(Part part)

{
return parts.add(part);
}
public boolean add(Assembly assembly)
{
return assemblies.add(assembly);
}
OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

public double getCost()({
double totalCost = 8;

for(Part part: parts)({
totalCost+=part.getCost();

}

for(Assembly assembly: assemblies){
totalCost+=assembly.getCost();

}

return totalCost;




23

Problems?

* It is not extensible — for example, let’s say | wanted to add a new type of
object to an Assembly

e Let’s call it Service — representing ‘After Sales Service’

* | would have to completely rewrite and recompile the Assembly class
New ArrayList to hold Service objects
New add method for Service objects
Another loop required in the getCost() method

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




24

Implications of Bad Design

Too many ArrayLists — one for each type

public class Assembly {

private ArrayList<Part> parts;
private ArrayList<Assembly> assemblies;
private ArrayList<Service> services;

public Assembly(){
parts = new ArrayList<Part>();
assemblies = new ArrayList<Assembly>();
services = new ArrayList<Service>();

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




25

Implications of Bad Design

Code bloat : 3 overloaded add methods

public void add(Service service){
services.add(service);

}

public wvoid add(Part part){
parts.add(part);

}

publie wvoid add(Assembly assembly){
assemblies.add(assembly);

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




Implications of Bad Design

Unnecessary complexity

f// would this work?

public double cost(){
double cost = 0.0;
for(Part part : parts){

cost+=part.cost();
}

for (Service srv: services){
cost+=srv.cost();

} i
for(Assembly assmbl : assemblies){
costt+=assmbl.cost();

}

return cost;

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




Solution v2

) ] . ) : Assembly
We can achieve an elegant, extensible and concise solution

using two features of OO programming Contains \?mins

1. Abstract classes/ Interfaces : Part - Assembly
2. Polymorphism
Contay wtains
: Part : Part
: CatalogueEntty : CatalogueEntty
name = "screw" name = "strut"

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

27




Solution

The key is to make an abstract class or interface called Component
(the name is not important)
Part and Assembly should extend/implement Component

Component

?

| |
Part Assembly

* Create an interface called Component with a single method
getCost ()
Part and Assembly should implement Component

Vs
& OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




29

Component

* An abstract class or interface with a single method getCost ()
* It can never be instantiated as an object
e But it can be used to make (polymorphic) references to its subclasses

public interface Component public abstract class Component

{ {

or

public houble getCost(); public abstract double getCost();

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




30

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

{

¥

public class Part implements Component

[/every Part has a reference to a CatalogueEntry object
private CatalogueEntry entry;

public Part(CatalogueEntry e)
{

}

entry = e;

public String getName() {
return entry.getName();

}

public long getNumber(){
return entry.getNumber();

}

@0verride
public double getCost(){
return entry.getCost();

}




31

Assembly

* Each Assembly object should be able to hold multiple

Component objects
Some of these will be Part objects
Some will be Assembly objects

e But as far as each Assembly object is concerned, it is holding a collection
of Component objects

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




32

Refactoring Assembly

Four minor changes required

1.
2.
3.

Add ‘implements Component’to class definition

Change ArrayList declaration so that it holds <Component> types
Remove the add (Part) and add (Assembly) methods and replace with a
single add (Component) method

Modify the getCost () method so that it calls the getCost () method of
the Component type

yLLy

T  OLLSCOILNAGAILLIMHE
- - -
) :* UNIVERSITY oF GALWAY




33

package warehouse;
import java.util.ArraylList;

public class Assembly implements Component pmames

{

1. Implements Component

private ArraylList<Component> components = new ArraylList();
private String name;

public Assembly(String name)
{

}

this.name = name;

2. Type declaration changed to
<Component>

public boolean add(Component component) ¢
{

}

return components.add(component);

@0verride
public double getCost(){ e

3.existing add() methods
replaced with a single
add(Component) method

double totalCost = 8;

for(Component comp: components){
totalCost+=comp.getCost();
¥

return totalCost;

}

public String getName() {
return name;

}

4. getCost() method of
Component invoked




34

Rearrange your class diagram

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

winterface»

b

~ R
/

Component  |e————

AssemblyTest

Assembly

CatalogueEntry

Assembly has an ‘is-a’ relationship to Component
Component has ‘has-a’ relationship to Assembly




35

Compare the solutions

Compare this version of Assembly to the bloated version we created earlier
50% Less Code

Easier to understand

Extensible

* |f I want to create a new Service class, | can create it simply by implementing Component

* Assembly will accept any object that is of type Component
* Thus, | can extend the range of data types that Assembly can handle without touching its code

e Just as long as each class implements Component

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




Creating a test method

* Create a new costTest Method — call it costTestv2
* Now, reuse the code you wrote for costTest vl to represent the data structure on the left

. costTestv2 | rTTTT T i
i |  costTestvl
S : Assembly
Assembly - -
Conta Contai
° ‘V \i‘ Ihs Contalns a0 taine Contalns
: Part Assembly
s1: Part s2: Part s3: Part

Contay \?tams

: Part Part

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

36

: CatalogueEntry

name = "screw"

: CatalogueEntry

name = "strut"

: CatalogueEntry

: CatalogueEntry

name = "screw"

name = "strut"




What happens when we call the top Assembly object’s getCost () method

: : public double getCost(){
I | 2 : double totalCost = @;
1 1

i
: 1 'assembly'] getcost() . . for(Component comp: components){
| : ’ ' totalCost+=comp.getCost();

}

return totalCost;

costTestv2 Assembly |

rT T

| 1

| 5 ]

I _ _ipublic double getCost(){
double totalCost = 9;

for(Component comp: components){

- Part A.EEEI'I'Ihl]F ! totalCost+=comp.getCost();

ir =~ 7 Tipublic double getCost(){ return totalCost:

: 3 : return entry.getCost(); }
Lo |
[
I I
I 8 I
. . L
: Part : Part public double getCost(){
return entry.getCost();
: : public double getCost(){ r
1 6 1 return entry.getCost();
P | Pl
: CatalogueEntry : CatalogueEntry |
i
I
| __: public double getCost(){ 1&/ME = SCrEW name = "strut | _
4 return cost; - ---public double getCost(){ o' s R
1 I ! : return cost;
-————} 1 1 return cost; '
1 |} }
I I
OLLSCOILNAGAILLIMHUE T

UNIVERSITY oF GALWAY




38

Recursion

* Every reference to a Component object may be a reference to a Part or another

Assembly object, whereby getCost () will be called again
* For each Component thatis an Assembly object, its own getCost () is called
* This means thathe getCost () method in the Assembly class is recursive

* The termination point is when all the Part objects within a particular Assembly
have been encountered and the costs returned.

* The recursive nature of getCost () is enabled by polymorphism

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




39

Recursion

* | will attach a few extra slides on recursion for you to look at.

 While the idea is easy, it is sometimes hard to grasp how a method
executes a recursive call.

* While not an OOP concept per se, recursion is commonly used in
algorithm and data structure design, so it is worth acquainting
yourself with the idea

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




40

Composite

This data structure is based on a design pattern called composite

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Component

Contains
<

getCost() : double

components

AF

Part

getCost() : double

\ i

CatalogueEntry

—name : String
— number : long
— cost : double

getCost() : double

Assembly

getCost() : double




41

Lecture Wrap Up

 We've looked at creating a solution to the Assembly-Part problem

e Version 1 used the most obvious solution — storing Assembly references in another ArrayList

* This solution was inelegant, used more code than necessary — but more importantly, it could not be
extended.

e Using an interface to link Part and Assembly into one type, Component, we were able to create a much
simpler and extensible approach.

* The solution is an implemetation of common OOP design pattern called “Composite”

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie



Lecture Topics

Object-Oriented Design Patterns

Composite Design Pattern

Solving a problem with the Composite design pattern

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘V‘vk
4w




Using Bluel to quickly test code

Download and add the jar file provided in the Week 10 folder

\LLy
AATSA OLLSCOILNAGAILLIMHE
. m] H
<ol UNIVERSITY OF GALWAY

C vav -~
4w




Reminder you can use Bluel to quickly check your code.

Not a formal test by any means — just a sanity check

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




Mew Class...

—>

Compile

v
Teamwork

Share...

Testing
Run Tests
recording

End

Cancel

BluedJ: lecturel [warehouse]

«interfaces»
Component |e -

A:.-;sembly

AssemblyTest

CatalogueEntry

o =

Open Editor
Compile
Inspect

Delete

catalogui:

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

assembly1:
Assembly

catalogu2:
Cataloguek...

Convert to Stride

Create Test Class

S| new warehouse.CatalogueEntry{String name, long number, double cos




QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

[ NON ] BlueJ: lecturel [warehouse]

AssemblyTest

Mew Class... = )
: m
o «interface»
Compile Component |e————
/ AN
/ Y
A
i,
/ \
Part Assembly
€_ ___________
w
Teamwork
Share...
Testing CatalogueEntry
————— —
Run Tests
recording
End
Cancel

partl: assembly1: catalogu2:
Part _
inherited from Object »

boclean add{Component)

double getCost()

part3:
Part

String getName()

Inspect

Remove

assembly1 : Assembly




Sb L/
"Kﬁm’i OLLSCOILNAGAILLIMHUE

© N
. slifil= -
5'.-.-.'74 UNIVERSITY OF GALWAY

BluedJ: lecturel [warehouse]

) @
Mew Class...
—>
B winterface»
Compile Component fe —_
; / N\, AssemblyTest
/ ™,
ri RS
; Y
4
/ \\
Part Assembly
] -
w
doubliggtggslg____- e ————
Teamwork - ~_~~~
N~\
Share... ! ~
,/ assemblyl.getCost() returned: nspect \\
\ )
Testing ‘\ double 0.08 et ,l
I
Run Tesis ~ -
~~-~~- ———“
I'ECC"d."ll_f] -—-____________________———
End
| Close ‘
Cancel

catalogui:

catalogu2:

assembly1:
Cataloguek...

Assembly

azeamhlvl « Accamhlv




This is the getCost method belonging to Assembly. Explain why this
method does not have to distinguish between Part and Assembly
objects to return its overall cost.

1.

2.

The method contains Component objects, not Part and Assembly objects.
Therefore, it doesn't call their methods.

Each Component reference is actually a polymorphic reference to a Part or
Assembly object. Polymorphism ensures that when getCost is called on a
component reference, the relevant getCost() method will be called on the
referenced Part or Assembly object.

Each Component object is composed of a Part or Assembly object. When
getCost() is called on a Component object it then calls the getCost() method
of the Part or Assembly object it contains.

Each Component is enapsulated by a Part or Assembly Interface. This

means that Component will implement the correct getCost method of Part
or Assembly.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

@0verride
public double getCost(){

double totalCost = 0;
for (Component comp: components){

totalCost+=comp.getCost();
}

return totalCost;




ldentify where Recursion occurs in this method?

When the method loops through each component object adding up the total cost.

When the Part method getCost method calls the CatalogueEntry object.

Each time a Component reference is used to call the getCost() method on an Assembly Object.
When the method returns O.

Tl

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




10

For some reason, you are asked to write code to allow a
Canary object to be added an Assembly object. The Canary
code is as follows. What changes do you make to allow a
Canary object to be added to an Assembly.

public class Canary<Component> extends Bird

public class Canary extends Component

public class Canary extends Bird implements Component

Add a concrete implementation of the getCost() method as defined by the component interface
Option number 3 AND option number 4

SRR L

public class Canary extends Bird
{

private String name;

private double cost;

[ *x

* Constructor for objects of class Canary
*/

public Canary(String name)

{
Ly
= OLLSCOIL NA (GAILLIMUE this.name = name;

-.vﬁ' UNIVERSITY of GALWAY cost = 5;
}




11

OOP Design Principle: Open-Close Design Principle

“Software entities like classes, modules and functions should be open for
extension but closed for modifications.”

This may seem counter-intuitive at first reading

Design your code so that it can be extended, and any extensions require
the minimum of modification to your existing code

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




Adding a new Component class
Even though the Assembly class is closed for modification, | can still extend its functionality

public class Canary extends Bird implements Component
{
private String name;
private double cost;
[ **
* Constructor for objects of class Canary
*/
public Canary(String name)
{
this.name = name;
cost = 5;

@0Override
public double getCost(){
return cost;

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




13

Canary as a Component

The key idea is that the Assembly object doesn’t view the Canary object as
a Type of Canary

It is just another Component with its own getCost method

Canary someCanary = new Canary("Trumper");
assembly.add(someCanary) ;

o I/_gl\l OLLSCOILNA GAILLIMHE
o\

[« v‘v

UNIVERSITY oF GALWAY




14

Composite Design Pattern

* This data structure is in fact a well known object oriented design pattern
- the Composite design pattern

e Used to implement hierarchical data structures

* For example, directory/file structures

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w




15

OLLSCOILNA GAILLIMUE

COMPOSITE Object Structural

Client |——p Component I....

Clparation!}

AddfCompanant)

AemovaiComponent)

GatChilaying)

| | children
Leaf Composite o ———————
o hies

Opetation() Operation() S------F-=-------- ’”ﬁfb%};};ﬂ',-‘.';ﬁ{ﬁ“

Add{Componant)
Femove(Component)
GetChild{int

Purpose
Facilitates the creation of object hierarchies where each object

can be treated independently or as a set of nested objects
through the same interface.
Use When

= Hierarchical representations of objects are needed.,
= Objects and compositions of objects should be treated uniformly.

UNIVERSITY oF GALWAY




Design Pattern

A solution to a particular recurring design issue in a particular
context:

>

Design Patterns

Elements of Reusable
Object-Oriented.Software
Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

“Each pattern describes a problem that
occurs over and over again in our
environment, and then describes the
core of the solution to this problem in
such a way that you can use this
solution a million times over, without
ever doing it the same way twice”

Erich Gamma et al., Design Patterns, 1995

Z=
=)
=)
o
o
.
=
m
o
r~-
m
-
=y
P
o
i
m
o
o
o
=z
=
r
(@)
@]
=
=
=)
ez
=
rd
(]
w
m
=
m
w

16




17

Uﬁ
"I I

[« v‘v

Design Patterns

In general, a design pattern consists of:
a name, for easy reference
a motivation of the problem being solved
a description of the solution proposed

a discussion of the consequences of adopting the pattern

/uu\ QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY




Rationale for Design Patterns

e Capture the knowledge of experienced developers

* Provide a publicly available “repository” of patterns

* Newcomers can learn these and apply them to their design

* Yields a better structure of the software (modularity, extensibility)

* Facilitates a common pattern language for discussions between
programmers

* Facilitate discussions between programmers and managers

\L Ly

AT OLLSCOILNAGAILLIMHE
(A=

EI'-IZA UNIVERSITY oF GALWAY
LW

C av




19

File System

* As mentioned before in lectures, the composite approach can be used to model the
directory/file structure we have in our computers

* We will work through an exam question from a few years back

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




2.  Read the scenario below and answer the questions that follow.

As a developer you are asked to write the Java code for a simple file system. The file
svstem should be able to handle folders and files. Each folder can contain files of
different types as well as other folders. Figure 2.1 illustrates an example of a folder
structure vour code has to be able to handle.

There are a number of operations that need to be implemented on the file system:

* size: returns the size in bytes of the files and folders contained in any one folder
* numFolders: returns the number of sub-folders in any folder

* numbFiles: returns the number of files in any folder, including its subfolders
* search: searches the folder and its subfolders for a particular file using its name

Documents

CONaINg containg contains

Pl v PRt

Music Photos assigni.doc
. _ A\
contains confains COnkains
=i |
Dylan The Band family.jpg
-~
coniaing conlaine Contamg
= s -1
OLLSCOILNA GAILLIMHE tambouring.mp3 dixie.mp3 weight.mp3
UNIVERSITY oF GALWAY

Figure 2.1: an example of a nested folder structure

20




Simple File System

* You are asked to write the Java code for a simple file system.
* The file system should be able to handle folders and files. Each folder can contain files of different types
as well as other folders.

Documents

confains containg  contains

yrax] v ™~

Music Photos assigni.doc
containg contains contains
= W |
Dylan The Band family.jpg
~ Ry
contains contains Contains
o e ~3
OLLSCOILNA GAILLIMHE tambourine.mp3 dixie.mp3 weight.mp3
UNIVERSITY oF GALWAY

Figure 2.1: an example of a nested folder structure

21



Simple File System

You should be able to request the following from any folder
size(): returns the overall size (e.g. in bytes) of the files and sub-folders contained in any one folder

numFiles(): returns the number of files in any folder, including those in its sub-folders

numFolders(): returns the number of
sub-folders in any folder

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

22

Documents

\

containg containg  contains

™~

Music

Photos

assigni.doc

containg contains

R

\
N

Dylan

The Band

contains

~

contains
il

N

family.jpg

containg contains

e

~=

tambourine.mp3

dixie.mp3

weight.mp3

Figure 2.1: an example of a nested folder structure




Where to start?

What information do we have?

1. “The file system should be able to handle folders and files. Each
. . . Documents
folder can contain files of different types as well as other folders. )
2.  “request the following from _ _ _
“ - contains contains conlains
any folder: “size, numFolders e Ny
. 124
num FI l €s Music Photos assigni.doc
| | \
comains  contains contains
=3 |
Dylan The Band family.jpg
contains containg contains
y o == ~3
tambourine.mp3 dixie.mp3 weight.mp3
Figure 2.1: an example of a nested folder structure
OLLSCOILNAGAILLIMHUE
UNIVERSITY oF GALWAY

23




Preliminary classes

Identify nouns in the description above:

* File System
* Folder
* File

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

24



25

Preliminary Associations

* Then identify the relationships

* File System handles Folders and Files
A Folder can contain other Files and Folders

\LLy
AATSA OLLSCOILNAGAILLIMHE
AL
<ol UNIVERSITY OF GALWAY

O‘v‘vk
4w




26

Preliminary Responsibilities

Identify verbs - however, there is not much to go on

“You should be able to request the following from any folder: size(), numFiles(), numFolders()”

This suggests that Folder has the responsibility of collecting information from the objects within it

Since Folder contains other Folders and Files, it must have an add method to receive these

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




27

Preliminary Class Diagram

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

FileSystem

Folder

add (File)
add(Folder)
size()
numpFiles()
numFolders()

File

size()




The brief we have been given also includes a diagram that

illustrates the type of structure that
our code should be able to handle
Let’s use this example

to create a Test method

for this scenario

We will then code

the stub classes

suggested by the the

diagram

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

28

Documents
contains contains contains
Music Photos assigni.doc
confaing contains contains
=3 R |
Dylan The Band family.jpg
contains containg contains
e o Y
tambourine.mp3 dixie.mp3 weight.mp3

Figure 2.1: an example of a nested folder structure




29

FileSystem

Create a class called FileSystem
Create a main method

Create a test method — call it fileTest

Then add the code to fileTest that realises the given example hierarchy
Create the required classes as you go

s
A\ (OLLSCOILNAGAILLIMHUE

UNIVERSITY oF GALWAY




30

FileSystem

For tomorrow, add the remaining test code.

This just means adding a few more Folders and Files to model the example hierarchy

[ x*

* Filesystem has a main method and is used to
* simulate different Folder/File scenarios.

* @author (Conor Hayes)

* @version (November 9th, 2-17)

*/

public class FileSystem

{

public static void main(String[] args)

{

}

FileSystem fileSystem = new FileSystem();
fileSystem.fileTest1();

public void fileTest1(){

Folder documents = new Folder("Documents");
Folder music = new Folder("Music");

Folder photos = new Folder("Photos");
documents.add(music) ;
documents.add(photos);

File file = new File("assignl.doc");
documents.add(file) ;

Documents
contains contains contains
Music Photos assigni.doc
containg contains contains
A T
Dylan The Band family.jpg
contains conlaing contains
e P Y
tambourine.mp3 dixie.mp3 weight.mp3

Figure 2.1: an example of a nested folder structure




Applying the composite design pattern

For tomorrow, use what you know from the Composite design pattern to remove the
redundant code from this class

import java.util.ArraylList;

public class Folder

{

private String name;

private ArrayList<Folder> folders = new ArraylList();
private ArrayList<File> files = new ArrayList();

JEZ:

* Constructor for objects of class Folder
*/

public Folder(String name)

{

this.name = name;

}

public boolean add(Folder folder)
{

}

return folders.add(folder);

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

public boolean add(File file)
{

}

return files.add(file);




32

Composite: Solution

* The key is an abstract class that represents both primitive File elements and their Folder containers.

* The abstract class should represent any common functionality or fields of its sub-classes

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




33

Lecture Summary: Composite pattern

* The composite pattern defines how to implement a hierarchical data structure consisting of primitive
objects and composite objects

 Composite objects and primitive objects are both treated in the same way (because they implement the
same interface)

* This makes it easy to add new types of components (e.g. new Service class, or more unlikely, a new
Canary class)

* All thatis required is that these new types of components implement the required interface.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY




OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie



Lecture Topics

Solving the Folder—File problem

Using the Debugger

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




Folder - File Problem

You are being asked to create a data structure in which a folder contains files and other folders
This requires at the minimum two classes: a Folder (or Directory) class and a File class

Folder (called “Documents”) —>

Documents

_ | / folder (called “Photos”)
el v N

folder (caIIed ”MUSiC") — Music Photos assigni.doc
\

confaing containg contains
=3 A

folder (called “Dylan”) ———3| Dyian The Band family.jpg

contains contains contains
-~

- - Folder (called “The Band”)

tambourine.mp3 dixie.mp3 weight.mp3

Figure 2.1: an example of a nested folder structure
OLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY




Potential Mistakes

* Creating Music, Photos and Dylan classes
* What is wrong with this approach?

* Music, Photos and Dylan are three objects of the Folder class, with the names
“Music”, “Photos” and ”Dylan”

* This is a case in which the designer failed to see that Music, Photos and Dylan were
each an example of something much more general —a Folder

Ly,
A (OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY




Yesterday’'s Requirements

1. Add the remaining test code
needed to model the example
hierarchy

[xk
* Filesystem has a main method and is used to

* simulate different Folder/File scenarios.
*

% @author (Ihsan Ullah)
* @version (Nov 15)

*/
public class FileSystem
{
public static void main(String[] args)
{
FileSystem fileSystem = new FileSystem();
fileSystem.fileTest1();
}

public void fileTest1(){
Folder documents = new Folder("Documents");
Folder music = new Folder('Music");
Folder photos = new Folder("Photos");
documents. add (music);
documents.add(photos) ;
File file = new File('assign.doc");
documents.add(file);

2. Use the composite design pattern to
remove the redundancy

import java.util.Arraylist;

public class Folder

{

private String name;
private ArraylList<Folder> folders = new ArraylList();
private ArraylList<File> files = new ArrayList();
[ *%
* Constructor for objects of class Folder
*/
public Folder(String name)
{

this.name = name;

}

public boolean add(Folder folder)
{

}

return folders.add(folder);

public boolean add(File file)
{

}

return files.add(file);




1. Adding the remaining test code

public void fileTest1(){
Documents
Folder documents = new Folder("Documents");
Folder music = new Folder("Music");

conisine | " containg . ocniaing Folder photos = new Folder("Photos");

/ \|/ \ documents.add(music);
documents.add(photos);

. File file = new File('"assignil.doc");
Music Photos assigni.doc documents.add(file);
Folder dylan = new Folder("Dylan");
. _ \ : .
contains contains contains music.add(dylan);
= N Folder band = new Folder("The Band");
I familv.i music.add(band);
Dylan The Band amily.Jog File family = new File("family.jpg");
va photos.add(family);
contains contains contains File tambourine = new File("tambourine.mp3");
i P -

dylan.add(tambourine);

tambouring.mp3 dixie.mp3 weight.mp3 pand.adi(dixiers e
band.add(dixie);

File weight = new File("weight.mp3");

Figure 2.1: an example of a nested folder structure band.add(weight);
t
L L I
T2 OLLSCOILNAGAILLIMHE
|”“|' :
o -.. UNIVERSITY oF GALWAY




2. Use the composite design pattern

Almost exactly the same approach as with the Assembly-Part solution

Instead of an interface — | am going to use an abstract class: AbstractFile

Both File and Folder will be types of AbstractFile

AbstractFile will define the methods that each of its subclasses should implement

yLLy
T  OLLSCOILNAGAILLIMHE

- - -

) :* UNIVERSITY oF GALWAY




Create an Abstract class

1. Create an abstract class called Abstract File
It should have 4 abstract methods

size(); returns int
getNumFiles(); returns int
getNumFolders();  returnsint

find(String name); returns AbstractFile

2. File and Folder should extend AbstractFile
3. File and Folder should implement all the methods above
4. For now create stub methods —i.e. they simply return default values

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY




AbstractFile

public abstract class AbstractFile

{

String name;

public abstract int size();

public abstract int getNumFiles();

public abstract int getNumFolders();

public abstract AbstractFile find(String name);

public String getName(){
return name;

}




//Replace previous ArraylLists with a single

rayList of AbstractFile references = Tl

i private ArrayList<AbstractFile> files = new ArraylList(); 3

~~~~~~~~

i

Changes that you need to
make to the Folder class

* Constructor for objects of class Folder
*/

public Folder(String name)

{ ey S,

N
\
]

/

Q\super();,/

trhismame = name; S oo oo m o —— oo ——-—--—--

replace previous add methods

Ll with-a-singie-add(AbstractFiTe FiTedbjert)method

g public boolean add(AbstractFile fileObject) v

e

~,

return files.add(fileObject);

L —

@0verride 1
public int size() :
{ i
//TODO I
return 8; :

} 1
@0verride :
public int getNumFiles(){ :
//TODO 1
return 8; :

} 1
@0verride :
public int getNumFolders(){ :
//TODO 1
return 8; :

} |
@0verride :
public AbstractFile find(String name){ :
//TODO 1
return null; :

I

10 ’ :

(s e TS
private String contents;
KT
* Constructor for objects of class File
*/ e
public File(String name) Changes that you need to

L ' make to the Folder class

¢ super();

~~.

S,

lpublic int size()
i
1
- //TODO
! return 8;

1

1

1

1

1

1

1

i

1 1
i) i
l@0verride :
Ipublic int getNumFiles() :
| //TODO i
1 e e 1
- return 8; :
3 :
l@0verride :
lpublic int getNumFolders(){ :
1 _.—:...\ —~“-ﬁ| 1
1 7 T I
- return 9; :
1 !
l@0verride :
lpublic AbstractFile find(String name){ !
- / /TODO H
1

1

1

1

1

- return null;

12

Revised class diagram

wabstracts
AbstractFile

File

Folder

FileSystem

13

public class FileSystem

{

public static void main(String[] args)

{
FileSystem fileSystem = new FileSystem();
fileSystem.fileTest1();

}

public void fileTest1(){
Folder documents = new Folder('Documents");
Folder music = new Folder("Music");
Folder photos = new Folder("Photos");
documents.add(music);
documents.add(photos);
File file = new File("assignl.doc");
documents.add(file) ;
Folder dylan = new Folder("Dylan"”);
music.add(dylan);
Folder band = new Folder("The Band");
music.add(band);
File family = new File("family.jpg");
photos.add(family) ;
File tambourine = new File("tambourine.mp3");
dylan.add(tambourine) ;
File dixie = new File("dixie.mp3");
band.add(dixie) ;
File weight = new File("weight.mp3");
band.add(weight) ;

}

}

The code compiles

Now we can start to to implement the
stub methods and test them in the
fileTest method across

14

Test

However, our filetestl method code is not really tested until we can make it pass a
test of some sort

To do that we should look at each method we are required to create and calculate
what each method should return

We should evaluate the method based on its expected output

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Required Methods

Methods

size()
getNumPFiles()
getNumFolders()
find(“weight.mp3)

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

15

confains

/

Documents

\

contains contains

™~

Music Photos assigni.doc
confaing contains contains
Y N
Dylan The Band family.jpg
contains containg contains
= ="
tambourine.mp3 dixie.mp3 weight.mp3

Figure 2.1: an example of a nested folder structure

What are the expected values
returned by these methods?

16

Example test

What is the expected value if we call the size() method on the documents folder?

int expected = ?
int result = documents.size();

if(result==expected) {
System.out.println(“size() works");

telse{
System.out.println("size() doesn't work");

}

Place this code at the end of the fileTest method

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

17

size() method of Folder

The size of a Folder is the sum of the sizes of the Files within the folder.

This requires adding up the the sizes of all the files within the folder and its subfolders
Same approach to calculate cost in the Assembly class

The size() method for Folder is going to look like:

@0verride
public int size()

{
int size =8;
for (AbstractFile file : files){
size+=file.size();
}
return size;
}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

18

size() method of File

* |n a real world file system, the size of a single file might be the number
of bytes on disk
* |n our case, we will simplify greatly

* The size of a file will simply the number of characters it holds in its
contents field

* So lets modify the File class

* Add a contents field of type String
* Create the corresponding getter/setter methods

Ly,
A (OLLSCOILNAGAILLIMHE
- - -
) :« UNIVERSITY oF GALWAY

19

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

public class File

{

// instance variables
private String name;
private String contents;

IET"
* Constructor for objects of class File
*/
public File(String name)
{/ initialise instance variables
this.name = name;

}

public String getContents(){
return contents;

}

public void setContents(String contents){
this.contents = contents;

}

Contents

This allows us to write (in code pad)

File poem = new File("about a cow");
poem.setContents("How Now, Brown Cow");

]

Now create a size() method that returns the number of characters in
the file content field

a
A (OLLSCOILNAGAILLIMHE
- -
) :* UNIVERSITY oF GALWAY

20

21

size()

We can use the length() method of the String class to return the number of characters in any String

@0verride
public int size()
{
if(contents==null){
return 8;

}

return contents.length();

File poem = new File("about a cow");
poem.setContents("How Now, Brown Cow");
int size = poem.size();

OLLSCOILNA GAILLIMHUE size
UNIVERSITY oF GALWAY 18 {iﬂt]

22

size() method of Folder

The size() method in Folder adds up the the sizes of all files within the
folder and its subfolders

@0verride
public int size()
{
int size =8;
for (AbstractFile file : files){
size+=file.size();

}

return size:

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

23

Modify the test and run
Now lets write a test for this method

String contents1l = "Hey, mister, can you tell me";

String contents?2 "Hey Mr Tambourine Man" ;

String contents3 "The night they drove old dixie down" ;
String contents4 = "fee i fo fTum”;

weight.setContents(contents1) ;
tambourine.setContents(contents2) ;
dixie.setContents(contents3) ;
assignl.setContents(contents4) ;

int expected = contentsl1.length() + contents2.length() +
bontentss.length() + contents4.length() ;
int result = documents.size() ;

if(result==expected) {
System.out.println(“"size() works");

- Yelse{
System.out.println(“"size() doesn't work");

}

24

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Using the Debugger

25

Debugger

* Any debugger will have the following core functionalities:

» Set breakpoints: set where you want the execution of your program to pause

* Inspect variable values : inspect the value of variables that are in scope at the breakpoint

 Step : tell your program to execute the next line of code. You can inspect the variable values at this
point

 Step into : tell the debugger to step into a method. You can inspect the values of variables in the
method. You can step through lines of code within the method

* Continue: tell the debugger to execute the program at normal speed until the next break point or until
the end of the program.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

26

Debugger

* This short video on YouTube is also a good tutorial on how to use the debugger

* https://www.youtube.com/watch?v=w iyOimMmkA

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

https://www.youtube.com/watch?v=w_iy0jmMmkA

27

Summary: Composite Pattern

* The composite pattern defines how to implement a hierarchical data structure
consisting of primitive objects and composite objects

 Composite objects and primitive objects are both treated in the same way (because
they implement the same interface or extend the same abstract class)

* In the example in this lecture, File and Folder are treated the same way — as types of
AbstractClass

* This greatly simplifies the code you need to write.

a
A (OLLSCOILNAGAILLIMHE
- [
) :« UNIVERSITY oF GALWAY

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Todays Topics

e Static Fields

* Exceptions

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Some of the examples in this lecture are from Allen Downey’s book: “Think Java v6”

Card assignment from a previous year

You will find a package called casino containing four classes: ’ N e "’” * : :9: T a el [l 3 ’@ ’g
[EJE R 6‘6 %
. . . R R IR I I R I R R E R IER HE 2 ¥ ¢ %
+ Card - representing a playing card object O B IR) R () A (R F) (3 E R
0 a v
» Deck - representing a deck of playing cards v v R ERI R DO D DI B B o
* Hand - representing a hand of cards (e.g. 5 cards) G L L L L) K L D) L S T
« Dealer - a dealer that can shuffle and deal out hands of cards U L Ll (il el il ksl el e L L
* * Ll Rl Rl R R +¢r‘£ o X
)) b I B I I I 2 0 AR R R
The Dealer class contains the main method. O O O T R R EXI R C R C R 1 N P
. e N R N R A B R B A N
The programme is called like this: o ool ool e aef e el o wsf e asf e 0r] e e 0tes] T T T
Jjava casino.Dealer 5 4
This asks the program to deal and print out 4 hands containing 5 playing cards each
It should return output like the following:
—Hl . =]_ |
E Conscle &8 | .3 Call Hierarchy b R | e b @ 'JR'EI

<terminated= Dealer [Java Application] /System/Library/Java/davavirtualMachines/1 6.0 jdk/Contents/Home/bindava (Cct 6, 2015, 10:21:43 AM)
Hand: Sewven of Clubs; Three of Clubs; 5ix of Diomonds; Seven of Dlomonds; Queen of Diaomonds;

Hand: Four of Clubs; Nine of Diaomonds; Three of Hearts; Nine of Clubs; Seven of Hearts;

Hand: Jack of Hearts; Ten of Spades; Two of Diomonds; Six of Spodes; Two of Spodes;

Hand: Nine of Hearts; Seven of Spades; Jock of Spodes; Two of Clubs; Ace of Spodes;

Details

e A card game involves cards of different values
* These are normally gathered together in a Deck

* There are a number of things you might want to do with a deck
Shuffle the deck
Deal the deck
Sort the deck
Search for a card

yLLy
T OLLSCOILNAGAILLIMHE

- [

) :* UNIVERSITY oF GALWAY

The Card Class

Each Card has a suit and a rank —represented as instance variables.

suit rank
Spades =3 Jack — 11
Hearts = 2 Queen — 12
Diamonds — 1 King — 13
Clubs — 0

Ly,
A (OLLSCOILNAGAILLIMHE
L1 [
) :* UNIVERSITY oF GALWAY

Simple Card Class

public class Card {
private int suit, rank;

public Card (int s, int r) {
this.sulit = s; this.rank = r;

}

public int getSuit(){
return suit;

}

public int getRank() {
return rank;

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Card Class

What if you want to be able to print out the value of this Card using the toString() method
E.g

Card card = new Card(2,3);
System.out.printin(card);

- @ Bluel: Terrﬁinal windo...
Three of Hearts

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Linking suit and rank

We need to link the suit and rank int values to the String values representing the Card

Suit: 2 -> “Hearts”
Rank: 3 -> “Three”

a
A (OLLSCOILNAGAILLIMHE
- -
UNIVERSITY oF GALWAY

You can declare an array of Strings to hold all possible rank values

String[] suits = new Stringl4];
And then assign values to the elements:

suits [0] = "Clubs";

suits[1] = "Diamonds”;
suits [2]
suits[3] = "Spades";

"Hearts";

Or you can declare and assign values all in one go

String[] suits = {"Clubs", "Diamonds", "Hearts", "Spades"};

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Card

public class Card {

private int suit, rank;

| private String[] suits {"Clubs”, "Diamonds", "Hearts", "Spades"};

public Card (int s, int r) {
this.suit = s; this.rank = r;

}

public int getSuit(){
return suit:

}

public int getRank(){
return rank:

I__} _______________ |

. @0verride |

, public String toString(){ I

: return suits[suit]; // this keturns the suit value but not the rank
} |

S |

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

11

rank

* We can do something similar to hold the possible 13 values of the rank of a Card

HREE”, HEH’ HSH’ H4H’ H5ﬂ’ HEH
H?H’ HEH’ Hgﬂ’ ”10“’ IIJa{:kIIJ ”QUEED", HKingH

Etring[] ranks _— {nu11: "ﬂEE", HEH’ HSH’ II4II’l II5II’l HEH’
H?H’ HEH: ng’ ”10”’ ”Jaﬂk“’ ”DUEED”, HKingH};

Ly,
&\ OLLSCOILNAGAILLIMHE
...;' UNIVERSITY of GALWAY

12

Q: Why is null the first value in the RANKS array?

yLLy
T OLLSCOILNAGAILLIMHE

u - -

) :* UNIVERSITY oF GALWAY

public class Card {

private int suit, rank;

private String[] suits = {'Clubs’, ‘Diamonds’, 'Hearts’, —'Spades’}; _ _
Iprivate String[] ranks = {null, "Ace", "Two", "Three"”, "Four", "Five",

I
: "Six", "Seven”, "Eight", "Nine", "Ten", :
I ”JEII:I(”’ HQLI'E'E”“J. “Kil"‘lg“}: I
public Card (int s, int r) ({

this.suit = s; this.rank = r;

}

public int getSuit()({
return suit:

}

public int getRank(){
return rank;

return ranks[rank] + " of " + suits[suit]:!//returns rank of suit

}
. l
| @0verride l
OiLs: | public String toString(){ I
UNIV. | |
I |
I |

14

OLLscC
UNIVER

Mew Class... Card
_I:}
Compile
Card card = new Card(1,4);
System.out.printin(card);
0] @ BlueJ: Terminal Window - Casinov
Four of Diamonds

card1 : Card

(!

15

Blackboard

 Download the Card Code from Blackboard, Week 11.
 Add it to a project in Bluel

Ly,
A (OLLSCOILNAGAILLIMHE
L1 [
) :* UNIVERSITY oF GALWAY

16

Introducing static fields

private String[] suits
private String[] ranks

{"Clubs”, "Diamonds", "Hearts", "Spades"};

{null, "Ace", "Two", "Three", "Four", "Five",
"Six", "Seven", "Eight", "Nine", "Ten",
“Jack"”, "Queen”, "King"}:

Suits and ranks arrays are declared in every object of type Card

This is wasteful (in terms of memory) and redundant (bad programming practice)

The suits and ranks values are constant. They never change. They are the same for every Card object
In situations like this, you should declare these variables to be static

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

17

Static fields

* Up to now, the instance variables/fields you have used have scope at object level

» A static field is a variable that exists and has scope at class level

e Typically, it is used to hold constant, non-changing values

e Often, they may be declared public and final.

* This means that they can be accessed directly by other classes and objects but cannot be changed

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

18

Static fields

Generally, Static variables are capitalised
Generally declared as public
Very often declared as final

You use them when you want to declare a value/property that is
unchanging or common to all objects of a class

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

19

Static fields

When referring to a static field, use the form
ClassName.STATIC_VARIABLE_NAME

E.g
Card.RANKS

Card.SUITS
Math.PlI

\LLy
AATSA OLLSCOILNAGAILLIMHE
. m] H
<&l UNIVERSITY OF GALWAY

C waw A
4w

public class Card {

ST T T T T T T T T T T T Teix", “Seven", "Eight", “Nine", "Ten",
"Jack", "Queen”, "King"};

public Card (int s, int r) {
this.suit = s; this.rank = r;

}

public int getSuit(){
return suit:

}

public int getRank(){
return rank:

}

@0verride
public String toString(){

_-— s - = e o o

return,;Card.RANKS[rank] + " of " 4 Card.SUIT9[suit]; //returns rank of suit

}

sl e i & el L

355 Card {

New Class...

te int suit, rank:

ic final String[] RANKS £ {nul

Compile card1:Card = e SIX~,” "Seven”,
“Jack®, “Queen”

(int 5, int r)
t = 8; this.rank = r;

private int suit

private int rank etSuit(){

Class Card

7 public String[] SUITS |

e A
public String[] RANKS | e x|
card1: Card Get

| Inspect

o emas e
o

e

| Close |

22

Exception Handling

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Card Class

Our Card class has a significant weakness

public class Card {
private int suit, rank;

public static final String[] SUITS = {"Clubs”, "Diamonds", "Hearts", "Spades"};
public static final String[] RANKS = {null, "Ace", "Two", "Three", "Four", "Five",
"Six", "Seven", "Eight", "Nine", "Ten",
"Jack", "Queen", "King"}:

public Card (int s, int r) {
this.suit = s; this.rank = r;

}

public int getSuit(){
return suit;

}

public int getRank(){
return rank;

}

@0verride
public String toString() {
return Card.RANKS[rank] + " of " + Card.SUITS[suit]; //returns rank of suit
OLLSCOILNAGAILLIMHUE }

UNIVERSITY of GALWAY }

24

Handling invalid values

Card card = new Card(24,17);
Card card2 = new Card(99,104);

System.out.printin(card);
Exception: java.lang.ArraylndexOutOfBoundsException (17)

java.lang.ArrayIndexOutOfBoundsException: 17
at Card.toString(Card.java:26)

* It allows us to create Card objects with invalid Card values.
* The error will only be detected later in the program

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

25

An Exception

java.lang.ArrayIndexOutOfBoundsException: 17
at Card.toStrina(Card.iava:26)

* The error message above is from the Java Runtime Environment (JRE)
* It tells use that an Exception was generated and was not handled
* This has caused the program to crash

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

26

What is an Exception?

* An exception is an “exceptional event” — one that may lead to a
serious error in your program if not handled appropriately.

* An exception is generated only when the program runs — hence
it is known as a runtime error

 Very often, the error (and the exception generated) occurs
when the program is asked to do something that is impossible
forit todo

* In Java, each exception is represented by an Exception object

a
A (OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

27

Programming for Exceptions

As the programmer, it your responsibility to anticipate the situations in which your program will fail
You have to write code to manage any exceptional events that may occur within your program

In our example, an exceptional event is when a user tries to get our program to instantiate an invalid
card

Card cardl = new Card(Z23,21):

If this card object gets into say, a poker program, it will wreak havoc, as all other objects will expect Card
objects with valid suit and rank values

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Checking valid input for a Card

* The key question is how to programmatically handle the situation when invalid input is entered.
* In the case of the Card, we might write the following in the constructor:

public Card (int suit, int rank) {

if(suit<® || suit> Card.SUITS.length-1){
System.out.printf("Incorrect suit value %d ", suit);

¥

if(rank<1 || rank> Card.RANKS.length-1){
System.out.printf("Incorrect rank value %d ", rank);

s

this.suit = suit; this.rank

rank;

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

29

Weak approach

* It prints out a warning message only
* Theinvalid Card object is still created

Card card = new Card(-9, 47);

card
& <object reference> (Card)

0] & BlueJ: Terminal Window - Casinovl
Incorrect suit value -9 Incorrect rank value 47

L

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

30

Detect error-> Throw an Exception

« We want an approach that prevents an invalid object being created
* Java has the concept of an Exception object that can be created to stop a program going any further
* When a program generates an Exception object it is said to throw an Exception

* When an Exception is thrown, the program must have code in place to catch it
* If not, the program terminates

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

31

Throwing an Exception

This involves
1.
2.
3.

Detecting an error

Creating an Exception object

Passing the Exception object to The Java Runtime Environment (JRE) Exception Handling Procedures.
This also means the execution of the method does not complete

The JRE then looks for part of your program to take responsibility for this error.

In other words, your program should also have code ready to catch the error

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

32

Card throws lllegalArgumentException

In our case, we can make the Card throw an Exception - an lllegalArgumentException

public class IllegalArgumentException
extends RuntimeException

Thrown to indicate that a method has been passed an illegal or inappropriate argument.

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

33

throws

When you want a method to throw an Exception you add throws and the Exception type to the method
signature

public Card (int suit, int rank) throws IllegalArgumentException {

This tells any code that wants to call the constructor method that it may throw an
lllegalArgumentException

It will be up to the calling code to handle that exception if it is thrown

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

34

throws

The Card constructor has to define conditions which will cause it to throw an Exception.
These are the same conditions that caused it to issue a weak warning

Instead now, it generates and throws a new Exception object

To throw an Exception you use the throw keyword

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

35

Revised Card constructor

 When an Exception is thrown, execution of the method stops
* Asthisis a constructor method, this means that the (invalid) Card object is not created

}

this.suit = suit; this.rank = rank;

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

36

Testing out code

* Now when we try to create a Card with invalid values, we will fail.
* An exception is thrown.
* The card variable below is not assigned to a Card object

Card card = new Card(-34, 78);
Exception: java.lang.lllegalArgumentException (Incorrect suit value -34)

card
Error: cannot find symbol - wvariable card

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

37

JLL /3
AW OLLSCOILNAGAILLI

throwing and catching

* If your method throws an exception

N
~-|lﬂ'.l|-~
o umrmly
0 e
i ;e

UNIVERSITY oF GALY

- Then you must also have
code in place to catch
and handle the exception

38

Graceful recovery

* |f an exception is not caught, the JRE will terminate the program

This is a drastic step

In most cases, you will want your program to recover (gracefully)
from an exception and carry on

This involves catching the Exception that has been generated

L L,
A (OLLSCOILNAGAILLIMUE
- - -
) :* UNIVERSITY oF GALWAY

Example of program termination

* If you run the following code, the
uncaught exceptign will terminate the program at line 18

/ 14 public static void main (String[] args)
/ 15 -[
/ 16 Card cardl = new Card(©,1); //valid card
I r w = _—e——————————————————— 1
Iy 2oLl Card card2 =lnew Card(®,-1); //invalid card)
| 19 \
I 28 Card card3 = new Card(9,2); alid card \\
' 21
\
| 22 System.out.println(cardl); \
I 23 System.out.println(card2); \
' 24 System.out.println(card3) ; \
* Nothing after line 18 will execute ;
\\ 26 } /'
\ e
\ /
N K
java.lang.IllegalArgumentException: Incorrect rank value -1
OLLSCOILNA GAILLIMHE at Card.<init>(Card.java:19)
UNIVERSITY OF GALWAY at CardTest .main(CardTest.java:18)

40

Try/catch

If you want the program to recover from the Exception, you have to catch and handle it
* This means using a try/catch expression

* Try: try to execute this piece of code. If it executes without throwing an exception. Fine. There is no need
to for the catch clause to be executed

e Catch: if an exception has been thrown then execute this piece of recovery code to handle the Exception
(very often just an error message)

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

41

General format of try/catch block

Meaning:
Try to call this method (which may throw an Exception)

If it throws an exception object, catch it! (the exception will go no further)
Then handle the exception this way

Carry on to the next line of execution (as normal)

1.

2.
3.
4

try{

// call the code that may throw an Exception

}catch(//TheExceptionClass thevariable){

}

s
A\ (OLLSCOILNAGAILLIMHUE

-..Q' UNIVERSITY of GALWAY

// How you want to handle the error

public static void main (String[] args)

{
Card cardl = null;
Card card2 = null;
Card card3 = null;
try{

Revised Example cardl = new Card(@,1);

. }catch(IllegalArgumentException e){
!Each call to .the Card constructor System.out.println(e.getMessage()):
is wrapped in a try/catch block }

* If an Exception is thrown, it will
be caught and handled try{

card1l = new Card(@,-11);
}catch(IllegalArgumentException e)({
System.out.println(e.getMessage());

}

e This allows the program to
execute until the end.

try{
card3 = new Card(9,2);

}catch(IllegalArgumentException e)({
System.out.println(e.getMessage());

}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

System.out.println(cardl);
System.out.println(card2);
System.out.println(card3);

43

Graceful recovery

* Now when we run the program we get an
error message caused by the attempt to
create the invalid second Card

Card CardTest

-

- ® EI.Iue.J.: Ter.minal Window - Casinovl
Incorrect rank value -11
Ace of Clubs
null

~Two of Clubs

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

The invalid second card is not
created

The program can continue on to
create the third card (“Two of
Clubs)

It then prints out the values of the
cardl, card2 and card3 variables

(card2 is pointing to null, because
the second invalid card was not
created)

Some common unchecked Exceptions

Name
MNullPointerException

ArraylndexQutQfBound

lllegalArgumentException.

lllegalStateException

NumberFormatException

ArithmaticException

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

44

Description

Thrown when attempting to access an object with a reference variable whose current value is null

Thrown when attempting to access an array with an invalid index value (either negative or beyond
the length of the array)

Thrown when a method receives an argument formatted differently than the method expects.

Thrown when the state of the environment doesn't match the operation being attempted,e.q., using
a Scanner that's been closed.

Thrown when a method that converts a String to a number receives a Sfring that it cannot convert.

Arithmetic error, such as divide-by-zero.

45

Wrapping up

A static field is a variable that exists and has scope at class level

* You use them when you want to declare a value/property that is
common to all objects of a class

* You can anticipate when errors may be generated by your program
and write exceptions throwing code to cover these events

* You also have to write code to catch and handle exceptions that

may occur within your program

Vs
& OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Today’s Lecture

Using the Comparable Interface
Sorting
Testing

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Back to the Card assighment

You will find a package called casino containing four classes:

- EO T PO) ;44390304;4,0 30014’4 TQ,Qo . .
. . " LI B AL N N
» Card - representing a playing card object ’ ¢ R R AR R AR J |6 K
c c Pl e e et e e eF @ ¥t e e e er WV H $ ¢
» Deck - representing a deck of playing cards T st s s s
* Hand - representing a hand of cards (e.g. & cards) " " v lvwlow|®v|*"v| " Jlm| =
« Dealer - a dealer that can shuffle and deal out hands of cards o ael aelaaslaaraaaadaoadaasatn] T T
)) I O R O R R R e o e
The Dealer class contains the main method. + * AL AL AL 2 g @K
R R R R R R R o I I
The programme is called like this: 4 N O A R R A R R A R A $ §
+ . . ol e e LR 3R K 3K AL ﬂ' @ K
* 4|0 0’0 L
java casino.Dealer 5 4 Yo e e ecje] e erje erfeejeerje ey | ¢
This asks the program to deal and print out 4 hands containing 5 playing cards each
It should return output like the following:
-+) 3 = I. F
E Conscle &8 _7® Call Higrarchy F e X Sk b E @

<terminated= Dealer [Java Application] /System/Library/JavasdavavirtualMachines/1.6.0. jdk/'ContentasHeme/bindava (Oct 6, 20153, 10:21:43 AM)
Hand: Sewen of Clubs; Three of Clubs; Six of Diamonds; Seven of Diamonds; Queen of Diamonds;

Hand: Four of Clubs; Mine of Diomonds; Three of Hearts; Wine of Clubs; Seven of Hearts;

Hand: Jack of Hearts; Ten of Spades; Two of Diamonds; Six of Spaodes; Two of Spades;

Hand: Wine of Hearts; Seven of Spades; Jack of Spodes; Two of Clubs; Ace of Spaodes;

OLl -
UNIVERSITY oF GALWAY

Card Game

A card game involves cards of different values
These are normally gathered together in a Deck

There are a number of things you might want to do with a deck
Shuffle the deck
Deal the deck
Sort the deck
Search for a card

\L Ly
AT OLLSCOILNAGAILLIMHE
. slmils -
ojlr-lfk UNIVERSITY oF GALWAY

LW

C av

public class Card {
private int suit, rank;

public static final String[] SUITS = {"Clubs", "Diamonds", "Hearts", "Spades"};
public static final String[] RANKS = {null, "Ace", "Two", "Three", "Four", "Five",
"Six", "Seven”, "Eight", "Nine", "Ten",
"Jack", "Queen", "King"};

public Card (int suit, int rank) throws IllegalArgumentException {

if(suit<® || suit> Card.SUITS.length-1){
throw new IllegalArgumentException("Incorrect suit value " +suit);

}

if(rank<1 || rank> Card.RANKS.length-1)({
throw new IllegalArgumentException("Incorrect rank value " + rank);

}

this.suit = suit; this.rank = rank;

public int getSuit(){
return suit;

}

public int getRank(){
return rank;

}
OLLSCOILNA GAILLI @0verride
UNIVERSITY OF GAL' public String toString(){
return Card.RANKS[rank] + " of " + Card.SUITS[suit]: //returns rank of suit
}

equals ()

Recall that every object inherits equals method from java.lang.Object
Two cards are equal if they have the same suit and the same rank

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Quiz: equals() method for Card

@0verride

public boolean equals(|EEW object){
if(object==null){

return N
}

if (object [N Card){

Card card = (Card) object;

if(suit==card.getSuit() fijjrank==card.getRank()){
return true;
}
}
return I ;
}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

compareTlo

Equals is a very useful method
However, when searching or sorting, it is important to know whether one
object has a greater/less value than another

With primitive values, it is trivial to understand if one number is greater/less
than another.

Eg.5>4; 0.1>-0.1;
How do we decide if one Card is greater/less than other?

a
A (OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

Natural Ordering

When deciding on whether one object is greater or less than another, we refer to the
natural ordering of the objects’ class

Natural ordering is the ordering imposed on an object when its class implements the
Comparable Interface

In Google look-up , “Java Comparable Interface”

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

10

Comparable<T>

public interface Comparable<T>

This interface imposes a total ordering on the objects of each class that implements
it. This ordering is referred to as the class's natural ordering, and the class's
compareTo method is referred to as its natural comparison method.

Lists (and arrays) of objects that implement this interface can be sorted automatically
by Collections.sort (and Arrays.sort). Objects that implement this interface can
be used as keys in a sorted map or as elements in a sorted set, without the need to

specify a comparator.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

11

Comparable<T> interfaces

Like most interfaces, very lightweight

Has one method: compareTo

All classes that implement Comparable, must also provide a
concrete implementation of compareTo

L L,
A (OLLSCOILNAGAILLIMHE
- - -
) :* UNIVERSITY oF GALWAY

12

compareTo(T o)

int compareTo(T o)

Parameters:

o - the object to be compared.

Returns:

a negative integer, zero, or a positive integer as this object 1is
less than, equal to, or greater than the specified object.

Throws:

NullPointerException - if the specified object is null

ClassCastException - if the specified object's type prevents it from
being compared to this object.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

13

Interface Comparable<T>

The <T> in Comparable<T> means that we can specify in advance the type
of the object that should be compared

In other words, unlike the equals method which has a generic Object
parameter, we can specify the input type for the compareTo method

N
f = OLLSCOILNAGAILLIMHUE

o ZJ UNIVERSITY oF GALWAY
W

14

Objective: make the Card class sortable and searchable
Create a Deck of Cards that can be shuffled and searched

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

15

implements Comparable

Modify the Class definition of Card to implement Comparable

public class Card implements Comparable<Card={

The <Card> tells Java that you plan to compare Card objects only
To get this to compile you have to implement the compareTo method

@0verride
public int compareTo(Card card){

return 8;

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

16

What is the natural ordering of a set of Cards?

The suits are generally ordered in increasing value as follows
clubs, diamonds, hearts, spades

The rank goes is ordered in increasing value
Ace, 2,3,4,5,6,7,8,9, 10, Jack, Queen, King

These orderings are reflected by the arrays we have already defined

SUITS = {"Clubs”, "Diamonds", "Hearts", "Spades"};
RANKS = {null, "Ace", "Two", "Three", "Four", "Five",
"Six", "Seven", "Eight", "Nine", "Ten",

"Jack", "Queen”, "King"};

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

17

What is the natural ordering of a set of Cards?

The suit value produces the primary ordering

Card(3,1)

A
-

-, &

is always
greater than

The rank value produces the secondary ordering

Card(0,10)

Ly
= OLLSCOIL NA (GAILLIMUE

-.vﬁ' UNIVERSITY of GALWAY

10

sefo oo
s,

i o

e

is always
greater than

& |
' '
s

\4

O&Ot;':!'-!'
of: of 30 3o

Ot

Card(2,1)

Card(0,9)

How should compareTo behave?

’ @
compareTlo =1
PY P '
‘* - ¢
10 g
&*** ** *
o ok compareTo .Y.*.!. =1
ey, M
0 % ¥
NAT OLLSCOILNAGAILLIMHE

| N
. -||m|- .
e
45 W g

UNIVERSITY oF GALWAY

How should compareTo behave?

‘A

v
' compareTo o =-1
e
\ A4

=

=T &

i% & e &
z*z compareTlo .y."'.y. =-1
L * *'i' :***
;;TT%T;@ OLLSCOILNA GAILLIMH] b 0

UNIVERSITY oF GALWAY

C aw A
4w

How should compareTo behave?

& |
' '
s

\4

ot -&.‘_-a- 3o
o of- 30 3o

@Dl 5

o/_lll\ OLLSCOILNAGAILLIMI
Sl UNIVERSITY OF GALWA

[« v‘v

20

comparelo

comparelo

2: S
&
oo
o %

*
6

Card.compareTo

The method first checks for equality
Then checks if the card is in a higher or lower suit
Then it checks it’s rank

@0verride
public int compareTo(Card card){

L .y - - o 4
f -1 -] : ~= - : ~
.y | T ot = LA Sl L o 11 .-'H.'H.Ir | |
L = b= = - . =) - 1 = = =~ 4+ = |‘_“‘_-"__i = = J e 1 o 1 ot I_ =
e b - e L4 L = o e b | [_ Al e B | 3 i | I " 1
- . - i =
i = = = § - = = = PR —— = b= o= = i - = | == - _|
1 LINT1lS & alue 15 less Tha ~al U SUll adlUE 2 LU
T T » e | ,{_ 9 ©= T E' 3T r [= =N als = =aal raT W 7
A | B | i1 i | y | o LS| C | 3 | 1 M = LAl |
-~ 2= 3= 11 F
LTS Wiho = LU T

43

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

22

compareTlo

The method first checks for equality
Then checks if the card is in a higher or lower suit

Then it checks it’s rank

@0verride
public int compareTo(Card card){
if(this.equals(card)) return 8;

if(this.suit > card.getSuit()) return 1;
if(this.suit < card.getSuit()) return -1;

if(this.rank > card.getRank()) return 1;

return -1;

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

23

assert

Use assert to declare a statement that must be true
If it is not true, your programme will throw an AssertionError Exception
You can use the Assert statement as a quick way to test for expected output

assert(2==2); // will always be true
assert(true==false) // will always be false

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Quick Test

public void testCompareTo(){
Card cardl = new Card(1,2):
Card card2 = new Card(1,2):

int result = cardl.compareTo(card2);
assert(result==0); // assert = this must be true

Card card3 = new Card(2,3):
Card card4 new Card(1,2):

result = card3.compareTo(card4);
assert(result==1); // assert = this must be true

result = card4.compareTo(card3);
assert(result==-1); // assert = this must be true

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY }

25

If you run this code and it produces no Exception then the assert
statements were all true —and your code passed the test

Download the code uploaded after this lecture to test it yourself

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

26

A Deck of Cards

We will create a new class called Deck to hold the Card objects
When we create a Deck object, it should immediately populate itself
with 52 card objects

We also want methods to sort the Cards and to search for a Card

Ly,
A (OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY

27

Deck Class

Function: to store cards and to perform any methods to do with shuffling and sorting and searching

What data structure will it use to store the Card objects?

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

28

Deck Class

Function: to store cards and to perform any methods to do with sorting and searching

Instance variable is an array of
references to Card objects

public class Deck

1LNsitance vdrlable

private Card[] cards = new Card|[52];

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Deck()

Constructor populates the Deck with Card objects
Outer loop enumerates the suits from 0 to 3.
Inner loop enumerates the ranks from 1 to 13.

IET"
* Constructor for objects of class Deck
*/
public Deck()
{

int index = 8;
for(int i =8 ; i< Card.SUITS.length; i++)({
for(int j =1 ; j< Card.RANKS.length; j++)({
cards[index] = new Card(i,j);
index++;

29 }

30

Card Array

Cards Array now contains 52 Card objects

0123

cards [——= [JLJ IO LY

Ly,
&\ OLLSCOILNAGAILLIMHE
-..Q' UNIVERSITY of GALWAY

o1

[\

HiEIE .

suit

rank

suit| 0

rank | 2

31

Sorting

We are going to create an instance method called sort belonging to the Deck class
It should sort the Cards into the order in which they were created by the Deck

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

32

Arrays.sort

We will make use of the the sort method from the java.util.Arrays class

Look up java.util.Arrays on Google

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

33

public class Arrays
extends Object

This class contains various methods for manipulating arrays (such as sorting and
searching). This class also contains a static factory that allows arrays to be viewed as

lists.

The methods in this class all throw a NullPointerException, if the specified array
reference is null, except where noted.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

34

sort

public static void sort(0Object[] a)

Sorts the specified array of objects into ascending order, according to the natural
ordering of its elements. All elements in the array must implement the Comparable
interface. Furthermore, all elements in the array must be mutually comparable (that is,
el.compareTo(e2) must not throw a ClassCastException for any elements el and e2 in

the array).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of
the sort.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

35

sort

With the Arrays class, creating a sort method for the array of Cards is easy

public void sort()
{

Arrays.sort(cards);

That’s all there is to it.

Remember to put import java.util.Arrays at the top of the class

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

__

public class Deck

{

)

// instance variables
private Card[] cards = new Card[52]:

IET"

* Constructor for objects of class Deck
*/

public Deck()

{

i

// this code creates 52 unique Cards

int index = 8;

for(int i =@ ; i< Card.SUITS.length; i++){ // for each suit value
for(int j =1 ; j< Card.RANKS.length; j++){ // for each rank value
cards[index] = new Card(i,j); // add a new Ca
index++; // increase the index by 1

}
}
}
‘public void sort()
o
| Arrays.sort(cards);
1}

37

sort() method in the Deck class

observation: As far as the Arrays.sort method is concerned it is sorting an
Array of Comparalble objects, not Card objects

The Arrays.sort method will only ever call the compareTo method of the

Card object
public void sort()

{
}

Arrays.sort(cards);

a
A (OLLSCOILNAGAILLIMHE
- -
) :* UNIVERSITY oF GALWAY

38

How do we test the sort method?

Define an equals method for Deck
If two Decks have the same cards, in the same order then they are equal

Test approach
Create two decks
Test if they are equal
Shuffle one Deck
Test that the Decks are no longer equal
Sort the shuffled Deck (with new sort method)
Test if both decks are equal again

Vs
& OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

39

How do we test the sort method?

Define an equals method for Deck

If two Decks have the same cards, in the same order then they are equal

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

@0verride
public boolean equals(Object object){
if (object == null){
return false;
}

if(object instanceof Deck) {
Deck deck = (Deck) object;
for(int i = @; i< cards.length; i++){

if(!getCard(i) .equals(deck.getCard(i))){
return false;
}

}
}

return true;

40

How do we test the sort method?

Define a shuffle method for Deck
Many ways to do this
The code below randomly shuffles the array of cards according to the Fisher Yates algorithm

public void shuffle()({
for(int i = cards.length-1; i=B; i--){
int j = (int)(Math.random() * i+1);
Card temp = cards[i];
cards[i] cards[]j];
cards|j] temp;

}

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

41

Test Code

public static void main(String| | args)

{

Deck deckl = new Deck();
Deck deck2 = new Deck();

assert(deckl.equals(deck2)); // should be equal
deck1.shuffle();// randomly shuffles the deck
assert(!deck1.equals(deck2)); // both decks should not be equal
deck1.sort(); // should sort the deck back to its orginal order

assert(deckl.equals(deck2)); // should be equal again

42

Testing

If this test code runs without throwing an Exception then the assert methods were true
And the code passed the test

Run the code yourself and verify that no AssertionError Exception is thrown
Comment out the deckl.sort() method in the test code.
Verify that an AssertionError Exception is now thrown

Ly,
A (OLLSCOILNAGAILLIMHE
- - -
) :* UNIVERSITY oF GALWAY

43

Lecture wrap up

e This lecture we looked at using the Comparable interface

 We defined the compareTo method for a Card object

 We then used the java.util.Arrays.sort method to sort a Deck of Cards

* As with any method we design we devised a test to evaluate if the method works

* A handy way of evaluating whether an expected value occurs is to use the assert function

* |f the assert fails, the program throws an AssertionError alerting you to the fact that your code has
not produced expected output

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

