
CT5191

CRYPTOGRAPHY AND NETWORK SECURITY

HASH FUNCTIONS AND MESSAGE AUTHENTICATION

CODES

Dr. Michael Schukat

Lecture Overview
2

 In the previous lectures we have covered block and

stream ciphers that provide data confidentiality

 In this slide deck we focus on data integrity, i.e.,

“Guarding against improper information modification or

destruction, and includes ensuring information non-

repudiation and authenticity”

 Such integrity protection can be provided via

 Message authentication codes

 Hash functions

Recap: Types of Security Attacks on

Information in Transit

 Integrity checks are particularly
important for data in transit

 Here we need to consider the
following active and passive attacks:

 Interception - of info-traffic flow,
attacks confidentiality

 Interruption - of service,
attacks availability

 Modification - of info, attacks integrity

 Fabrication - of info, attacks
authentication

 In all these scenarios the attacker is a
“Man-in-the-Middle” (MitM)

Recap: Passive Attacks

 Passive attacks are in the nature of eavesdropping

or the monitoring of transmissions:

 Release of plaintext message content

 Traffic analysis of encrypted data communication

◼ Allows to analyse patterns of message exchange (sender,

receiver, timing) rather than content

 Tools like Wireshark allow for passive attacks

Recap: Active Attacks

 Active attacks involve the modification or the creation
of data in a stream:
 Masquerade

◼ Attacker pretends to be a legitimate sender or receiver of
data

 Replay
◼ Attacker retransmits (encrypted) data which has been previously

captured via eavesdropping

 Modification of message content
◼ Attacker intercepts a message in transit, modifies it and

forwards it to the receiver

 Denial of Service (DoS)
◼ Attacker Inhibits the normal use of communication services

Attack Scenario

 Your company sends the software patch as email attachment to all
the clients

 The patch is encrypted using a secret key, which is pairwise shared
with your clients

 However, an attacker can

 intercept these emails in transit, changes randomly a few bytes of the
encrypted executable and forwards them to their destination, or

 forge a similar looking email with some random file attached that claims
to be a bug fix

 Your clients replace the executable on their local machines, which
of course won’t work and bring the entire factory floor to a halt

 → financial losses for your clients, huge reputational loss for your
company!

 Therefore, your clients need some mechanism to validate the
origin of the email, as well as the integrity of its content

Case Study 2: Weakness of Mode

Block Cipher Modes

 In CBC, the IV is tagged to an encrypted message as plaintext (thereby allowing
the receiver to decrypt the message), a MitM attacker can do changes in transit.
Here:

 Flipping the ith IV-bit (1) flips also the ith plaintext bit (2)

 Flipping a ciphertext bit (3) will change the entire plaintext block (5), and the
corresponding bit of the next plaintext block (4)

 Other modes show similar weaknesses, i.e. changing one bit in a single block of an
encrypted message (in transit) will corrupt the correct decoding of a following
blocks

 The receiver needs the ability to validate the integrity of the received message
(blocks) !

Message Authentication Code (MAC)

 Message authentication = message integrity [+ source
authentication]

 A MAC (also called authentication tag, fingerprint, or
cryptographic checksum), is a short piece of information used
for authenticating and integrity-checking a message

 A MAC condenses a variable-length message M using a secret
key K and some algorithm C to a fixed-sized authenticator:
MAC = CK(M)

 After its calculation, the MAC is appended to the message
before it is sent

 Note that the message:

 can have any length

 is not automatically encrypted!

Typical Use of a MAC (Wikipedia)

 If both MACs are identical, the receiver knows, that

 the message was not altered in transit,

 the message was sent by the alleged sender, and

 if the message includes a sequence number, that the sequence
was not altered

 The term CMAC is used for
a MAC that is calculated
using a (block) cipher

 This contrasts to a HMAC,
where a hash function (later)
and a secret key is used

Typical CMAC Implementation

 Generally:

 Any modern block cipher may be used (i.e., it’s only DES in the example above)

 Message padding shall apply as seen before

 MAC = CK(M), where K is secret key and C is a symmetric block cipher (DES above)

 MAC guarantees message integrity AND source authentication

 This construction is also called Encrypt-then-MAC

Message Authentication Benefits

 In summary there are four types of attacks on data in transit, which
are addressed by message authentication:

 Masquerade: insertion of messages into the network from a fraudulent source

 Content modification

 Sequence modification: change the order of messages as they arrive

 Timing modification: delete or repeat messages

 Note that the above may require a unique (i.e. incremented) sequence
number in every message

 Therefore, message authentication is concerned with:

 Protecting the integrity of a message

 Validating identity of originator

 Validating sequencing and timeliness

 Non-repudiation of origin (dispute resolution)

Example: Authentication of TCP/IP

Packets
12

 In TCP/IP data communication, a MAC cannot only

cover the payload (i.e., the TCP Data field), but also

the TCP header, as well as the non-modifiable fields of

the IP header

Basic Use Cases of CMACs

 M: Message

 K: Secret key

 C: Block cipher

 ¦¦:Concatenat
ion operation

Case Study CMAC

 Assume you operate a distributed weather station with

battery-operated sensors located across Ireland

 You use “public” networks (i.e. Wi-Fi, Internet) to collect

data and send it for processing to a central hub in

Galway

 Which basic uses of a CMAC as shown in the previous

slide would be most appropriate?

 In your suggestion consider data privacy concerns and

energy budget

The AES-CBC-HMAC Mode
15

 An example on how to combine
authentication with a block
cipher mode

 Based on CBC mode (top), but
with additional authentication
(bottom)

 Here the HMAC takes a single
variable length input, i.e. the
concatenation of IV + ciphertext
+ HMAC key, and creates a fix
length authentication key

 The diagram is misleading as it shows two
separate inputs

 How many secret keys would this
scheme require?

Block Cipher Mode of Operation: The

Galois / Counter Mode
16

 What are weaknesses of the mode below and the AES-
CBC-HMAC Mode (previous slide), i.e.

 Can it be parallelised?

 Is a 16- to 64-bit DAC sufficient?

Block Cipher Mode of Operation: The

Galois / Counter Mode
17

 Extension of

counter mode

 Recall advantages

of this mode?

Block Cipher Mode of Operation: The

Galois / Counter Mode
18

 GCM provides both data authenticity (integrity) and confidentiality

 It belongs to the class of authenticated encryption with associated data
(AEAD) methods, i.e. it takes as an input

 an initialisation vector IV

 a single secret key K,

 the plaintext P, and

 some associated data AD

 It encrypts the plaintext (similar to counter mode) using the key to produce
ciphertext C, and computes an authentication tag T from the ciphertext
and the associated data (which remain unencrypted)

 A recipient with knowledge of K, upon reception of AD, C and T, can
decrypt the ciphertext to recover the plaintext P and can check the tag T
to ensure that neither ciphertext nor associated data were tampered with

 GCM uses a block cipher with block size 128 bits (i.e., AES-128), and uses
arithmetic in the Galois field GF(2128) to compute the authentication tag

 That’s modular arithmetic with a modulus of 2128

Features of AEAD
19

Block Cipher Mode of Operation: The

Galois / Counter Mode
20

 A 96-bit IV is concatenated with a
32-bit counter (initialised with 0),
i.e. (IV << 32) || C

 EK is AES with a 128 – 256 bit key
(AES-128, AES-192 or AES-256)

 multH is a hash-function (later) that
produces a 128-bit (hash) output

 Auth_Data_1 has a variable
length (but its hash is 128-bit
wide)

 len(A) and and len(C) are 64-bit
values that are the lengths (in
bytes) of Auth_Data_1 and all
ciphertext blocks respectively

 is the bitwise XOR function

Hash Functions and HMAC

 A hash function produces a fixed size hash code (i.e. hash
or fingerprint) based on a variable size input message

 A hash function

◼ does not need a key

◼ guarantees the integrity of the message

 However, since a hash function is public and is not keyed,
a hash value may have to be protected (i.e., encrypted)

 A HMAC (hash-based message authentication code) is a
specific type of MAC involving a cryptographic hash function
and a secret cryptographic key

 A HMAC verifies both message integrity and its authenticity

 Modern hash functions calculate 256 - 512-bit hashes

Basic Uses of HMACs

 M: Message

 H: Hash Function

 E: Block Cipher Encryption

 D: Block Cipher Decryption

 ¦¦: Concatenation operation

Note:

 Scenario (a) (and (f) provide confidentiality

and message authentication

 Scenario (b) (and (c)) provide message

authentication only

Basic Uses of HMACs

 In scenarios (e) and (f) a symmetric secret seed S is used, which is

shared between sender and receiver

 S is used to authenticate all messages exchanged between both

endpoints

 Scenario (f) also uses a symmetric key K for confidentiality, which is

independent from S

Case Study HMAC

 Assume you operate a distributed weather station
with battery-operated sensors located across Ireland

 You use “public” networks (i.e. Wi-Fi, Internet) to
collect data and send it for processing to a central
hub in Galway

 Which basic uses of a Hash function as shown in the
previous slides would be most appropriate and
efficient?

Requirements for a Hash Function H(x)

 One-way property (also called pre-image resistance):

For a given hash function H and a hash value h it is

infeasible to find x such that H(x) = h

 I.e., it is virtually impossible to generate a message given a

hash

 Such a situation is also called a hash collision

 Why is the one-way property important?

 See Figure (e): An opponent could intercept M || H(M, S),

create inputs M || X (with some random value X), until a hash

collision is found (i.e. S)

Requirements for a Hash Function H(x)

 Weak collision resistance (also called second pre-image
resistance):
For a given hash function H and a known input x it is infeasible
to find another input y with
y != x and H(x) = H(y)

 Why is the weak collision resistance important?

 See Figure (b): An opponent could
◼ calculate h(M)(as both h and M are known)

◼ find an alternate message with the same hash code (a hash collision), and

◼ send it together with the encrypted (original) hash code to the receiver

 The receiver would not be able to realise that the original message
had been tampered with
◼ Think of the previous software patch example

Requirements for a Hash Function H(x)

 Strong collision resistance (also called collision resistance):

It is computational infeasible to find any pair of inputs (i.e.,

messages) (x, y) with H(x) = H(y)

 Why is the strong collision resistance important?

 Again, see Figure (b), but this time the attack vector is different:

◼ Rather than intercepting a hashed message in transit, the attacker presents

the signing authority a crafted authentic message that has the same hash

as a fraudulent message

◼ Generating such a crafted message is accommodated by the Birthday

Paradox discussed earlier

Birthday Paradox Attack

 Rather than thinking of birthdays, we consider messages and their hashes

 In the BPA the attacker does not intercept a hashed message in transit, but
presents the signing authority a crafted authentic message that has the
same hash as a fraudulent message (HMAC use case b)

 For a hash value that is m-bit long, the attacker creates a large number
(i.e., in the order of 20.5m) of variations of:
 correct messages

 fraudulent replacement messages

 The birthday paradox will make it more likely to find among both sets a
correct message Mnice that has the same hash as a fraudulent message Mnasty

 Mnice is presented to the signing authority, who
 hashes the message

 encrypt the hash using the secret key (only known to the signing authority and the
receiver)

 concatenate message and hash

 Before the message is sent off, the attacker replaces Mnice with Mnasty

 The receiver gets Mnasty, but will assume that it was signed (and send) by the
signing authority

Birthday Paradox

 What is the minimum value k such that the probability is

greater than 0.5 that at least 2 people in a group of k

people have the same birthday, assuming that a year

has 365 days?

 Intuitively someone would assume that

k = 365 / 2 = 183

 Probability theory shows, that k = 23 is sufficient!

Birthday Paradox

BPA – How to create many

Variations of a Message

 The example gives a

letter in 237 variations

Case Study: Circulating Software

using the BPA

 This is a typical insider attack (here conducted by Grumpy George
– GG – a disgruntled lead engineer in your team)

 Again, your team develops an urgent software patch, which is
hashed

 The 32-bit hash value is encoded using a symmetric key K, which is
shared with your client

 The key is only known to you and you client, but not to GG

Software

patch

Your authenticator

(encrypted hash)

Client validates

software patch

Case Study: Circulating Software

via a Birthday Paradox Attack

 GG as the lead engineer creates a large number of binary code versions for
 software patches (to be presented to quality team)

 malicious software patches (to be circulated)

 How can GG create > 2 * 216 different source code variations?
 GG introduces in both source code files a new constant variable (e.g. long int) that is

not otherwise used, e.g.
…
const unsigned long int var = 12; // possible values are 0 … 264-1

 GG then creates different source codes by systematically incrementing var
◼ GG is able to create 264 different versions of both programs if needs to be

 GG compiles each of those software versions and calculates their hash

 GG looks for a hash collision, i.e. a software patch and a malicious patch
that have the same hash code

 GG present this software patch to quality team, who sign it using key K

 GG replaces the software with the malicious patch before sending it to the
client

Hash Function Execution (Example

HAVAL)

 HAVAL creates a 256-bit fingerprint, for example:

 "The quick brown fox jumps over the lazy dog“
will be translated into the (256 bit) hash
“b89c551cdfe2e06dbd4cea2be1bc7d557416c58ebb4d07cb
c94e49f710c55be4”

 “The quick brown fox jumps over the lazy cog”
will be translated into the hash
“60983bb8c8f49ad3bea29899b78cd741f4c96e911bbc272e
5550a4f195a4077e”

 I.e. very similar inputs result in totally different outputs,
there is no correlation between a hash and its original
input

A naive Hash Function based on XOR

 Consider the XOR function :

 The input is broken into m blocks

 For the resulting hash value C, each bit Ci is calculated

via

 Ci = bi1 bi2 bi3… bim

 Where

 m = the number of n-bit blocks and

 bij is the ith bit of the jth block

A naive Hash Function based on

XOR

Bit 1 Bit 2 … Bit n

Block 1 b11 b21 bn1

Block 2 b12 b22 bn2

…

Block m b1m b2m bnm

Hash code C1 C2 Cn

A naive Hash Function based

on XOR

 Consider the ASCII-encoded input “ABC” and a hash function H that

calculates an 8-bit hash h:

◼ ASCII(A) = 6510 = 010000012

◼ ASCII(B) = 6610 = 010000102

◼ ASCII(C) = 6710 = 010000112

 Perform bitwise XOR to calculate hash value h:Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

A 0 1 0 0 0 0 0 1

B 0 1 0 0 0 0 1 0

C 0 1 0 0 0 0 1 1

h 0 1 0 0 0 0 0 0

H(“ABC”) = h = 6410 = “@”

A naive Hash Function based

on XOR

 Does this algorithm fulfil the requirements of a hash function:

◼ One-way property?

◼ Weak collision resistance?

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

A 0 1 0 0 0 0 0 1

B 0 1 0 0 0 0 1 0

C 0 1 0 0 0 0 1 1

h 0 1 0 0 0 0 0 0

H(“ABC”) = 6410 = “@”

Example: 8-bit Hash Function

based on XOR

 Fulfils requirements of hash function?

◼ One-way property? Certainly not!

◼ Weak collision resistance? H(“ABC”) = H(“@@@”) = H(“@@@@@@“) =

…

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

“@“ 0 1 0 0 0 0 0 0

“@“ 0 1 0 0 0 0 0 0

“@“ 0 1 0 0 0 0 0 0

h 0 1 0 0 0 0 0 0

H(“@@@”) = 6410 = “@”

A naive Hash Function based on rotating

XOR

 Initially set the n-bit hash value to 0

 Process each successive n-bit block
a follows:

 Rotate the current hash value to the
left by one bit

 XOR the block into the hash value

Example: Simple Hash Function based on

Rotating XOR

 Consider “ABCD”

 “AB” = 01000010 010000112

 “CD” = 01000100 010001012

 “CD” left-rotated = 10001000 100010102

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0

h 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1

h = CBC916

Example: Simple Hash Function based on

Rotating XOR

 Assume a password must be

at least 2 ASCII-encoded

characters long

 Fulfils requirements of hash

Function?

 One-way property?

 Weak collision resistance?

Examples for Hash Algorithms

 In order to meet the aforementioned requirements, a hash algorithm
must
 be non-trivial

 calculate long hash values

 Popular hash functions include:
 MD5:

◼ Produces a 128-bit hash value

◼ Specified as Internet standards (RFC1321)

◼ Still has some popularity, but unsafe for years (broken via collision attacks)

 SHA (Secure Hash Algorithm) - X:
◼ Family of hash functions, designed by NIST & NSA

◼ SHA-3 (released 2015) produces 224-, 256-, 384- and 512-bits hash values

◼ Internet standard

 RIPEMD-160:
◼ Creates a 160-bit hash value

◼ Developed in Europe

 See https://defuse.ca/checksums.htm

https://defuse.ca/checksums.htm

FYI: MD5-An Overview

FYI: MD5-Processing of a Single 512 Bit Block (left)

and Elementary MD5 Operation

FYI: MD5-Table T

FYI: MD5-Primitive Functions and

their Truth Tables

Round Primitive function g g(b, c, d)

1 F(b, c, d) (b AND c) OR (NOT b AND d)

2 G(b, c, d) (b AND d) OR (c AND NOT d)

3 H(b, c, d) B EXOR c EXOR d

4 I(a, b, c) C EXOR (b or NOT d)

Non-Cryptographic Hash Functions aka

Checksums

 Checksums are designed to detect bit errors of files or data streams, e.g.

 Hard disk storage errors

 Data transmission errors

 CRC (Cyclic Redundancy Code) is a well know example

 Such checksums are too short and vulnerable to brute force attacks, and are not
suitable for cryptographic purposes

	Slide 1: CT5191 Cryptography and network security Hash functions and message authentication codes
	Slide 2: Lecture Overview
	Slide 3: Recap: Types of Security Attacks on Information in Transit
	Slide 4: Recap: Passive Attacks
	Slide 5: Recap: Active Attacks
	Slide 6: Attack Scenario
	Slide 7: Case Study 2: Weakness of Mode Block Cipher Modes
	Slide 8: Message Authentication Code (MAC)
	Slide 9: Typical Use of a MAC (Wikipedia)
	Slide 10: Typical CMAC Implementation
	Slide 11: Message Authentication Benefits
	Slide 12: Example: Authentication of TCP/IP Packets
	Slide 13: Basic Use Cases of CMACs
	Slide 14: Case Study CMAC
	Slide 15: The AES-CBC-HMAC Mode
	Slide 16: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 17: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 18: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 19: Features of AEAD
	Slide 20: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 21: Hash Functions and HMAC
	Slide 22: Basic Uses of HMACs
	Slide 23: Basic Uses of HMACs
	Slide 24: Case Study HMAC
	Slide 25: Requirements for a Hash Function H(x)
	Slide 26: Requirements for a Hash Function H(x)
	Slide 27: Requirements for a Hash Function H(x)
	Slide 28: Birthday Paradox Attack
	Slide 29: Birthday Paradox
	Slide 30: Birthday Paradox
	Slide 31: BPA – How to create many Variations of a Message
	Slide 32: Case Study: Circulating Software using the BPA
	Slide 33: Case Study: Circulating Software via a Birthday Paradox Attack
	Slide 34: Hash Function Execution (Example HAVAL)
	Slide 35: A naive Hash Function based on XOR
	Slide 36: A naive Hash Function based on XOR
	Slide 37: A naive Hash Function based on XOR
	Slide 38: A naive Hash Function based on XOR
	Slide 39: Example: 8-bit Hash Function based on XOR
	Slide 40: A naive Hash Function based on rotating XOR
	Slide 41: Example: Simple Hash Function based on Rotating XOR
	Slide 42: Example: Simple Hash Function based on Rotating XOR
	Slide 44: Examples for Hash Algorithms
	Slide 45: FYI: MD5-An Overview
	Slide 46: FYI: MD5-Processing of a Single 512 Bit Block (left) and Elementary MD5 Operation
	Slide 47: FYI: MD5-Table T
	Slide 48: FYI: MD5-Primitive Functions and their Truth Tables
	Slide 49: Non-Cryptographic Hash Functions aka Checksums

