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CS4423-Networks: Week 11 (26+27 March 2025)

Part 1: Watts-Strogatz model

Niall Madden, School of Mathematical and Statistical Sciences

University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at https://

www.niallmadden.ie/2425-CS4423/#Week11

This notebook was adapted by Niall Madden from one developed by Angela Carnevale.

Our usual preamble:

import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "#84003d", "font_color": "white" } # Galway Deep Maroon

import random # some random number generators:random, random_choices
import statistics # e.g., mean of entries in a list
import math # for comb (=binomial coef)
import matplotlib.pyplot as plt

np.set_printoptions(precision=2) # just display arrays to 2 decimal places
np.set_printoptions(suppress=True)

Small Worlds, again

Last week, we claimed that small world networks tend to share three characteristics:

1. Short characteristic path length, which scales like , where  is the number of nodes.

2. Low transitivity, meaning that a high proportion of triads form triangles.

3. A high clustering coefficient

We saw that the  models tend to have the first property, but not the second or third. Therefore,
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in this sense, they don't mimicking real world networks very well.

An alternative, developed by Watts and Strogatz in 1998, is to start with some regular network that

naturally has a high clustering, and then to randomly distort its edges, to introduce some short

paths.

Circle Graphs

Cycle graphs

To learn how to create a network that has the right properties, we'll start with one that does not, and

then see how we can change to.

So we start with a cycle graph.

n = 16
G = nx.cycle_graph(n)
nx.draw_circular(G, **opts)
print(f"G has an average path length of L={nx.average_shortest_path_length(G):.3}")
print(f"Its transitivity value is T={nx.transitivity(G)}, and Clustering is C={nx.average_clustering

G has an average path length of L=4.27
Its transitivity value is T=0, and Clustering is C=0.0

We won't dwell on it right now, but the average path length is . Let's focus of the transitivity

and clustering.

• Transitivity: clearly,  has many triads, but no triangles.
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• Clustering: the subgraph induced by the neighbours of any node has no edges.

To address this, we could add edges between nodes that have a common neighbour.

Increasing Clustering

Starting with the cycle graph, , let's add an edge between Node  and Node  (mod ).

for v in G:
G.add_edge(v, (v+2) % n)

nx.draw_circular(G, **opts)
print(f"For this graph, G, we have L={nx.average_shortest_path_length(G):.3}, T = {nx.

For this graph, G, we have L=2.4, T = 0.5, and C = 0.5

Looks like we're going in the right direction:  is getting smaller while  (and ) are increasing. Let's

keep going by adding an edge between Node  and Node  (mod ).

for v in G:
G.add_edge(v, (v+3) % n)

nx.draw_circular(G, **opts)
print(f"For this graph, G, we have L={nx.average_shortest_path_length(G):.3}, and C = 

For this graph, G, we have L=1.8, and C = 0.6

G = Cn i i + 2 n
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Circle Graph: Definition

Definition (Circle Graph). For , an -circle graph is obtained from a cycle on 

vertices by additionally linking each node to all nodes that are not more than  steps away on the

cycle.

Here is some code to generated it:

def circle_graph(n, d):
G = nx.cycle_graph(n)
for v in G:

for o in range(2, d+1):
G.add_edge(v, (v+o) % n)

return G

G = circle_graph(16, 3)
nx.draw_circular(G, **opts)
CPL = nx.average_shortest_path_length(G)
print(f"For this graph, G, we have L={CPL:.3f}, C={nx.average_clustering(G):.2f}")

For this graph, G, we have L=1.800, C=0.60

1 < d < n/2 (n, d) n

d
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N = G.neighbors(0)
S = nx.subgraph(G, list(N))
nx.draw_circular(S, **opts)
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S.degree()

DegreeView({1: 4, 2: 3, 3: 2, 13: 2, 14: 3, 15: 4})

S.size()

9

• An -circle graph has  nodes and  edges.

• Each node has degree .

• The social graph of each node has  edges.

• The graph clustering coefficient of an -circle graph is independent of , and can be

determined as

In particular:
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Characteristic Path Length

• However, things don't work as well when it comes to shortest paths (if we let ). Indeed,

the characteristic path length of an -circle graph is approximately

growing linearly with  (for fixed ).

In conclusion, such regular graphs have high clustering but long shortest paths, hence -circle

graphs do not exhibit the small world behaviour.

To see how we could reduce the CPL, let's return to the Cycle Graph from earlier

n = 16
G = nx.cycle_graph(n)
nx.draw_circular(G, **opts)
print(f"For this G, we have L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering

For this G, we have L=4.27, and C=0.0

Let's "rewire" two edges:

G.remove_edges_from( [(2,3), (9,10)])
G.add_edges_from( [(0, 8), (4, 12)] )
nx.draw_circular(G, **opts)
print(f"Now G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering

Now G has L=3.62, and C=0.0

n → ∞
(n, d)

L ≈ ,
n

4d

n d

(n, d)
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So we can reduce the CPL, by adding relatively few edges. Finally, we can get a combined solution...

The Watts-Strogatz Model

The following modification of the circle graph was suggested by Duncan J. Watts and Steven Strogatz

(1998). The idea is to introduce a probabilistic element to the graph, which results in "shortcuts" (or

"teleports") between the nodes and in a shortening of the characteristic path length.

Definition (The WS Model). Let  and . An -WS graph  is

constructed from an -circle graph  by rewiring each of the edges in  with

probability , as follows:

1. visit the nodes  in turn ('clockwise').

2. for each node  consider the  edges connecting  to  in a clockwise sense (

).

3. With probability , in the edge  replace  by node  chosen uniformly at random,

subject to

• , and

•  must not be an edge of  already.

import random as rd
def ws_graph(n, d, p):

G = circle_graph(n, d)

1 < d < n/2 0 ≤ p ≤ 1 (n, d, p) G = (X, E)
(n, d) G0 = (X, E0) E0

p

X = {0, … , n−1}

i ∈ X d i j

j = i + 1, … , i + d

p (i, j) j k ∈ X

k ≠ i

(i, k) G
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for v in G:
for o in range(1, d+1):

if rd.random() < p:
w = rd.randint(0,n-1) # pick a random node
if w != v and not G.has_edge(v, w):

G.remove_edge(v, (v+o) % n)
G.add_edge(v, w)

return G

n, d = 16, 3
G = ws_graph(n, d, 0.2)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering(

G has L=1.67, and C=0.42

n, d = 16, 3
G = ws_graph(n, d, 0.3)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering(

G has L=1.66, and C=0.49

In [13]:

In [14]:



G = ws_graph(n, d, 1)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3} and C={nx.average_clustering(G

G has L=1.66 and C=0.54
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A WS graph with parameters  can be generated with the command:

nx.watts_strogatz_graph(n, 2*d, p) .

n, d = 21, 3 
G = nx.watts_strogatz_graph(n, 2*d, 0.5)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3} and C={nx.average_clustering(G

G has L=1.75 and C=0.31

(n, d, p)
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G = nx.watts_strogatz_graph(n, 2*d, 0.1)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering(

G has L=1.94, and C=0.48
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G = nx.watts_strogatz_graph(n, 2*d, 0.2)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, C={nx.average_clustering(G):.2f

G has L=1.89, C=0.45
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Properties of WS-Graphs

The small-world attributes of a -WS graph depend on the probability . The following

measurements have been taken for  and .

Exercises

1. In terms of the parameters, ,  and , what is the clustering coefficient  of an -WS

graph?

2. In terms of the parameters, ,  and , what is the average shortest path length  of an -

WS graph?

(n, d, p) p

n = 1000 d = 5

p L C

0 50.5 0.667

0.01 8.94 0.648

0.05 5.26 0.576

1 3.27 0.00910

n d p C (n, d, p)

n d p L (n, d, p)


