
Table of Contents

• 1 Small Worlds, again

• 2 Circle Graphs

▪ 2.1 Cycle graphs

▪ 2.2 Increasing Clustering

▪ 2.3 Circle Graph: Definition

▪ 2.4 Characteristic Path Length

• 3 The Watts-Strogatz Model

• 4 Properties of WS-Graphs

• 5 Exercises

CS4423-Networks: Week 11 (26+27 March 2025)

Part 1: Watts-Strogatz model

Niall Madden, School of Mathematical and Statistical Sciences

University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at https://

www.niallmadden.ie/2425-CS4423/#Week11

This notebook was adapted by Niall Madden from one developed by Angela Carnevale.

Our usual preamble:

import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "#84003d", "font_color": "white" } # Galway Deep Maroon

import random # some random number generators:random, random_choices
import statistics # e.g., mean of entries in a list
import math # for comb (=binomial coef)
import matplotlib.pyplot as plt

np.set_printoptions(precision=2) # just display arrays to 2 decimal places
np.set_printoptions(suppress=True)

Small Worlds, again

Last week, we claimed that small world networks tend to share three characteristics:

1. Short characteristic path length, which scales like , where is the number of nodes.

2. Low transitivity, meaning that a high proportion of triads form triangles.

3. A high clustering coefficient

We saw that the models tend to have the first property, but not the second or third. Therefore,

In [1]:

ln n n

GER

https://www.niallmadden.ie/2425-CS4423/#Week11
https://www.niallmadden.ie/2425-CS4423/#Week11
https://www.niallmadden.ie/2425-CS4423/#Week11
https://www.niallmadden.ie/2425-CS4423/#Week11

in this sense, they don't mimicking real world networks very well.

An alternative, developed by Watts and Strogatz in 1998, is to start with some regular network that

naturally has a high clustering, and then to randomly distort its edges, to introduce some short

paths.

Circle Graphs

Cycle graphs

To learn how to create a network that has the right properties, we'll start with one that does not, and

then see how we can change to.

So we start with a cycle graph.

n = 16
G = nx.cycle_graph(n)
nx.draw_circular(G, **opts)
print(f"G has an average path length of L={nx.average_shortest_path_length(G):.3}")
print(f"Its transitivity value is T={nx.transitivity(G)}, and Clustering is C={nx.average_clustering

G has an average path length of L=4.27
Its transitivity value is T=0, and Clustering is C=0.0

We won't dwell on it right now, but the average path length is . Let's focus of the transitivity

and clustering.

• Transitivity: clearly, has many triads, but no triangles.

In [2]:

≈ n/4

Cn

https://en.wikipedia.org/wiki/Duncan_J._Watts
https://en.wikipedia.org/wiki/Duncan_J._Watts
https://en.wikipedia.org/wiki/Steven_Strogatz
https://en.wikipedia.org/wiki/Steven_Strogatz

• Clustering: the subgraph induced by the neighbours of any node has no edges.

To address this, we could add edges between nodes that have a common neighbour.

Increasing Clustering

Starting with the cycle graph, , let's add an edge between Node and Node (mod).

for v in G:
G.add_edge(v, (v+2) % n)

nx.draw_circular(G, **opts)
print(f"For this graph, G, we have L={nx.average_shortest_path_length(G):.3}, T = {nx.

For this graph, G, we have L=2.4, T = 0.5, and C = 0.5

Looks like we're going in the right direction: is getting smaller while (and) are increasing. Let's

keep going by adding an edge between Node and Node (mod).

for v in G:
G.add_edge(v, (v+3) % n)

nx.draw_circular(G, **opts)
print(f"For this graph, G, we have L={nx.average_shortest_path_length(G):.3}, and C =

For this graph, G, we have L=1.8, and C = 0.6

G = Cn i i + 2 n

In [3]:

L C T

i i + 3 n

In [4]:

Circle Graph: Definition

Definition (Circle Graph). For , an -circle graph is obtained from a cycle on

vertices by additionally linking each node to all nodes that are not more than steps away on the

cycle.

Here is some code to generated it:

def circle_graph(n, d):
G = nx.cycle_graph(n)
for v in G:

for o in range(2, d+1):
G.add_edge(v, (v+o) % n)

return G

G = circle_graph(16, 3)
nx.draw_circular(G, **opts)
CPL = nx.average_shortest_path_length(G)
print(f"For this graph, G, we have L={CPL:.3f}, C={nx.average_clustering(G):.2f}")

For this graph, G, we have L=1.800, C=0.60

1 < d < n/2 (n, d) n

d

In [5]:

In [6]:

N = G.neighbors(0)
S = nx.subgraph(G, list(N))
nx.draw_circular(S, **opts)

In [7]:

S.degree()

DegreeView({1: 4, 2: 3, 3: 2, 13: 2, 14: 3, 15: 4})

S.size()

9

• An -circle graph has nodes and edges.

• Each node has degree .

• The social graph of each node has edges.

• The graph clustering coefficient of an -circle graph is independent of , and can be

determined as

In particular:

In [8]:

Out[8]:

In [9]:

Out[9]:

(n, d) n m = nd

= 2d
2m

n

d(d − 1)
3
2

(n, d) n

C = → , as d → ∞.
3d − 3
4d − 2

3
4

d 1 2 3 4 5
C 0 0.5 0.6 0.643 0.667

Characteristic Path Length

• However, things don't work as well when it comes to shortest paths (if we let). Indeed,

the characteristic path length of an -circle graph is approximately

growing linearly with (for fixed).

In conclusion, such regular graphs have high clustering but long shortest paths, hence -circle

graphs do not exhibit the small world behaviour.

To see how we could reduce the CPL, let's return to the Cycle Graph from earlier

n = 16
G = nx.cycle_graph(n)
nx.draw_circular(G, **opts)
print(f"For this G, we have L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering

For this G, we have L=4.27, and C=0.0

Let's "rewire" two edges:

G.remove_edges_from([(2,3), (9,10)])
G.add_edges_from([(0, 8), (4, 12)])
nx.draw_circular(G, **opts)
print(f"Now G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering

Now G has L=3.62, and C=0.0

n → ∞
(n, d)

L ≈ ,
n

4d

n d

(n, d)

In [10]:

In [11]:

So we can reduce the CPL, by adding relatively few edges. Finally, we can get a combined solution...

The Watts-Strogatz Model

The following modification of the circle graph was suggested by Duncan J. Watts and Steven Strogatz

(1998). The idea is to introduce a probabilistic element to the graph, which results in "shortcuts" (or

"teleports") between the nodes and in a shortening of the characteristic path length.

Definition (The WS Model). Let and . An -WS graph is

constructed from an -circle graph by rewiring each of the edges in with

probability , as follows:

1. visit the nodes in turn ('clockwise').

2. for each node consider the edges connecting to in a clockwise sense (

).

3. With probability , in the edge replace by node chosen uniformly at random,

subject to

• , and

• must not be an edge of already.

import random as rd
def ws_graph(n, d, p):

G = circle_graph(n, d)

1 < d < n/2 0 ≤ p ≤ 1 (n, d, p) G = (X, E)
(n, d) G0 = (X, E0) E0

p

X = {0, … , n−1}

i ∈ X d i j

j = i + 1, … , i + d

p (i, j) j k ∈ X

k ≠ i

(i, k) G

In [12]:

https://en.wikipedia.org/wiki/Watts%E2%80%93Strogatz_model
https://en.wikipedia.org/wiki/Watts%E2%80%93Strogatz_model

for v in G:
for o in range(1, d+1):

if rd.random() < p:
w = rd.randint(0,n-1) # pick a random node
if w != v and not G.has_edge(v, w):

G.remove_edge(v, (v+o) % n)
G.add_edge(v, w)

return G

n, d = 16, 3
G = ws_graph(n, d, 0.2)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering(

G has L=1.67, and C=0.42

n, d = 16, 3
G = ws_graph(n, d, 0.3)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering(

G has L=1.66, and C=0.49

In [13]:

In [14]:

G = ws_graph(n, d, 1)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3} and C={nx.average_clustering(G

G has L=1.66 and C=0.54

In [15]:

A WS graph with parameters can be generated with the command:

nx.watts_strogatz_graph(n, 2*d, p) .

n, d = 21, 3
G = nx.watts_strogatz_graph(n, 2*d, 0.5)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3} and C={nx.average_clustering(G

G has L=1.75 and C=0.31

(n, d, p)

In [16]:

G = nx.watts_strogatz_graph(n, 2*d, 0.1)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, and C={nx.average_clustering(

G has L=1.94, and C=0.48

In [17]:

G = nx.watts_strogatz_graph(n, 2*d, 0.2)
nx.draw_circular(G, **opts)
print(f"G has L={nx.average_shortest_path_length(G):.3}, C={nx.average_clustering(G):.2f

G has L=1.89, C=0.45

In [18]:

Properties of WS-Graphs

The small-world attributes of a -WS graph depend on the probability . The following

measurements have been taken for and .

Exercises

1. In terms of the parameters, , and , what is the clustering coefficient of an -WS

graph?

2. In terms of the parameters, , and , what is the average shortest path length of an -

WS graph?

(n, d, p) p

n = 1000 d = 5

p L C

0 50.5 0.667

0.01 8.94 0.648

0.05 5.26 0.576

1 3.27 0.00910

n d p C (n, d, p)

n d p L (n, d, p)

