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Outline

Today’s notes are split between these slides, and a Jupyter Notebook.
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Centrality Measures

What is it that makes a node in a network important?

Key nodes in networks can be identified through centrality
measures: a way of assigning “scores” to nodes that represents
their “importance”. However, what it means to be central depends
on the context.
Examples

I In a friendship network, who is most popular?

I In a epidemiology network, who is most likely to get infected?

I In a banking, which institution poses the greatest danger to
the system should it fail?

Accordingly, in the context of network analysis, a variety of
different centrality measures have been developed.
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Centrality Measures

Measures of centrality include:

I Degree Centrality which is just the degree of the node. It
can be important in e.g., transport networks.

I Eigenvector Centrality, defined in terms of properties of the
network’s adjacency matrix.

I Closeness Centrality, defined in terms of a nodes distance
to other nodes on the network.

I Betweenness Centrality, defined in terms of shortest paths.
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Degree Centrality

Definition (Degree Centrality)

In a (simple) graph G = (X ,E ), with X = {0, . . . , n − 1} and
adjacency matrix A = (aij), the degree centrality cDi of node i ∈ X
is defined as

cDi = ki =
∑
j

aij ,

where ki is the degree of node i .

Example:
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Degree Centrality Normalized

In some cases, this measure can be misleading, since it
depends–among other things–on the order of the graph. A better
measure is then the following.

Normalized Degree Centrality

The normalized degree centrality CD
i of node i ∈ X is defined

as

CD
i =

ki
n − 1

=
cDi

n − 1

(
=

degree centrality of node i

number of potential neighbors of i

)
.

Note: in a directed graph one distinguishes between the in-degree
and the out-degree of a node and defines the in-degree centrality
and the out-degree centrality accordingly.
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Eigenvector Centrality Eigenvalues and Eigenvectors

We now recall from important facts from Linear Algebra.

Eigenvalues and Eigenvectors

Let A be a square n × n matrix. An n-dimensional vector, v , is
called an eigenvector of A if

Av = λv

for some scalar (number), λ, which is called an eigenvalue of
A.

Example:
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Eigenvector Centrality Eigenvalues and Eigenvectors

I When is a real-valued matrix, one usually finds that λ and v

are complex valued. However, if A is symmetric then they are
real valued.

I A may have up to n eigenvalues: λ1, λ2, . . ., λn.

I The spectral radius of A is ρ(A) := max{|λ1|, |λ2|, . . . , |λn|}
I If v is an eigenvector associated with the eigenvalue λ, so too

is any non-zero multiple of v
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Centrality

The basic idea of eigenvector centrality is that a node’s ranking
in a network should relate to the rankings of the nodes it is
connected to.

More specifically, up to some scalar λ, the centrality cEi of node i
should be equal to the sum of the centralities cEj of its
neighbouring nodes j .

In terms of the adjacency matrix A = (aij), this relationship is
expressed as

λcEi =
∑
j

aijc
E
j ,

which in turn, in matrix language is

λcE = AcE ,

for the vector cE = (cEi ), which then is an eigenvector of A.

So cE is an eigenvector of A! (But which one???)
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Centrality

How to find cE and/or λ?

If the network is small, one could use the usual method (although
it is almost never a good idea)

1. Find the characteristic polynomial pA(x) of A, as determinant
of the matrix xI − A, where I is the n × n identity matrix);

2. Find the roots λ of pA(x) (i.e. scalars λ such that pA(λ) = 0);

3. Find a nontrivial solution of the linear system (λI − A)c = 0
(where 0 stands for an all-0 column vector, and
c = (c1, . . . , cn) is a column of unknowns).

For large networks, there are much better algorithms, such as the
Power Method that we’ll study later (in the Week 6 – Part 3
Jupyter Notebook).
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Perron-Frobenius Theory Irreducible Matrix

Presently, we’ll learn that the adjacency matrix always has one
eigenvalue which is greater than all the others.

First, some definitions:

Irreducible Matrix

A matrix A is called reducible if, for some simultaneous permu-
tation of its rows and columns, it has the block form

A =

(
A11 A12

0 A22

)
.

A is irreducible if it is not reducible.

Important: The adjacency matrix of a simple graph G is
irreducible if and only if G is connected.
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Perron-Frobenius Theory Non-negative matrix

Non-negative matrix

A matrix A = (aij) is non-negative if

aij ≥ 0 for all i , j .

For simplicity, we usually write A ≥ 0.

Important: Adjacency matrices are examples non-negative
matrices.

There are similar concepts of, say, positive matrices (nothing to do
with positive definite!!), negative matrices.

Of particular importance are positive vectors: v = (vi ) is positive
if vi > 0 for all i . We write v > 0.
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The Theorem

Theorem (Perron-Frobenius Theorem 1907/1912)

Suppose that A is a square, nonnegative, irreducible matrix. Then:

I A has a real eigenvalue λ = ρ(A) and λ > |λ′| for any other
eigenvalue λ′ of A. λ is called the Perron root of A

I λ is a simple root of the characteristic polynomial of A (so
has just one corresponding eigenvector)

I There is an eigenvector, v associated with λ, such that v > 0.

For us this means:

I The adjacency matrix of a connected graph has an eigenvalue
that positive, and greater in magnitude than any other.

I It has an eigenvector, v that is positive.

I vi is the Eigenvector Centrality node i .
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