
CS4423-W01-2

January 23, 2025

Table of Contents

0.1 CS4423 - Networks

1 News

2 Graphs

2.1 An example: the Internet (circa 1970)

3 Simple Graphs

4 Simple Graphs in networkx

4.1 Importing the package

4.2 Making a graph:

4.3 Adding and removing nodes and edges

4.4 Subgraphs and Induced subgraphs

5 Important Graphs

5.1 Complete Graphs

5.2 Petersen Graph

6 Code Corner

6.1 python

6.2 networkx

6.3 itertools

0.0.1 CS4423 - Networks

Niall Madden, School of Mathematical and Statistical Sciences
University of Galway

(These notes are adapted from Angela Carnecale’s work)

This notebook is at: https://www.niallmadden.ie/2425-CS4423/W01/CS4423-W01-2.ipynb

1

1 Week 1, Lecture 2:

2 Graphs and networkx

[1]: import networkx as nx

2.1 News
1. Still working on confirming the lab times. We’ll certainly have a lab session, Wednesday at

10am in CA116a.

Tuesday at 4 in AC215 is suboptimal… let’s see if we can improve on that…

After that, we’ll review some of the slides I didn’t cover on Wednesday (see
https://universityofgalway.instructure.com/courses/31889/files?preview=2325934)

2.2 Graphs
A graph can serve as a mathematical model of a network.

Later, we will use the networkx package to work with examples of graphs and networks.

This notebook gives an introduction into graph theory, along with some basic, useful networkx
commands.

2.2.1 An example: the Internet (circa 1970)

Example. The internet (more precisely, ARPANET) in December 1970. Nodes are computers,
connected by a link if they can directly communicate with each other. At the time, only 13
computers participated in that network.

2

https://en.wikipedia.org/wiki/ARPANET

[2]: !cat ../data/arpa.adj

UCSB SRI UCLA
SRI UCLA STAN UTAH
UCLA STAN RAND
UTAH SDC MIT
RAND SDC BBN
MIT BBN LINC
BBN HARV
LINC CASE
HARV CARN
CASE CARN

The very first ARPANET network was even smaller, with node 1 being UCLA and node 2 being
SRI. The first ever message was sent on 29 October 1969. The intended message was “Login” but
things didn’t quite work and the computers crashed just after the more prophetic message “Lo”
was displayed…

The following diagram, built from the adjacencies in the list, contains the same information,
without the distracting details of the US geography! (This is actually an important point: networks
reflect only the topology of the object being studied). Also - don’t worry about the syntax: we’ll
come back to that later!

[3]: H = nx.read_adjlist("../data/arpa.adj")
opts = { "with_labels": True, "node_color": 'y' }
nx.draw(H, **opts)

3

https://100.ucla.edu/timeline/the-internets-first-message-sent-from-ucla

2.3 Simple Graphs
Definition. A (simple) graph is a pair 𝐺 = (𝑋, 𝐸), consisting of a (finite) set 𝑋 of objects, called
nodes or vertices or points, and 𝐸 is the of links or edges; every edge is a set consisting of two
different vertices.

We can also write 𝐸 ⊆ (𝑋
2), where (𝑋

2), pronounced as “𝑋 choose 2”, is the set of all 2-element
subsets of 𝑋.

Usually, 𝑛 is used to denote the number of vertices of a graph, 𝑛 = |𝑋|, and 𝑚 for the number of
edges, 𝑚 = |𝐸|.
𝑛 = |𝑋| is called the order of the graph 𝐺, and 𝑚 = |𝐸| is called the size of 𝐺.

The notation (𝑋
2) for the set of all 2-element subsets of 𝑋 is motivated by the fact that if 𝑋 has 𝑛

elements then (𝑋
2) has (𝑛

2) = 1
2𝑛(𝑛 − 1) elements:

∣(𝑋
2)∣ = (|𝑋|

2).

Obviously, 𝑚 ≤ (𝑛
2).

Example.

4

𝐺 = (𝑋, 𝐸) with 𝑋 = {𝐴, 𝐵, 𝐶, 𝐷} and 𝐸 = {{𝐴𝐵}, {𝐵𝐶}, {𝐵𝐷}, {𝐶𝐷}}. Notation: usually
we’ll be a bit lazy and write {𝐴, 𝐵}) as just 𝐴𝐵. So 𝐸 = {𝐴𝐵, 𝐵𝐶, 𝐵𝐷, 𝐶𝐷}.

So 𝐺 is a graph of order 4 and size 4.

[4]: G = nx.Graph()
G.add_edges_from([('A', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'D')])

[5]: nx.draw(G, **opts)

2.4 Simple Graphs in networkx

2.4.1 Importing the package

We’ll use the Python package networkx to work with graphs. So, from now on, every notebook
with begin with:

[6]: import networkx as nx
opts = { "with_labels": True, "node_color": 'y' } # show labels; yellow noodes

5

2.4.2 Making a graph:

In networkx, we can construct this graph with the Graph constructor function, which takes the
node and edge sets 𝑋 and 𝐸 in a variety of formats.

The simplest approach is to use 2-letter strings for the edges: this implicitly defines the nodes too.

Here is our graph from earlier:

[7]: G = nx.Graph(["AB", "BC", "BD", "CD"])
G

[7]: <networkx.classes.graph.Graph at 0x7fbe1e052750>

• The python object G representing the graph 𝐺 has lots of useful attributes. Firstly, it has
nodes and edges.

[8]: G.nodes

[8]: NodeView(('A', 'B', 'C', 'D'))

[9]: list(G.nodes)

[9]: ['A', 'B', 'C', 'D']

[10]: G.edges

[10]: EdgeView([('A', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'D')])

[11]: list(G.edges)

[11]: [('A', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

A loop over a graph G will effectively loop over G’s nodes. As an example, (recall?) that the degree
of a node is the number of edges incident to it (or, if you prefer, the number of neighbours).

[12]: for node in G:
print(f"node {node} has degree {G.degree(node)}")

node A has degree 1
node B has degree 3
node C has degree 2
node D has degree 2

We can count the nodes, and the edges.

[13]: G.number_of_nodes()

[13]: 4

[14]: G.order()

6

[14]: 4

[15]: G.number_of_edges()

[15]: 4

[16]: G.size()

[16]: 4

To draw the graph:

[17]: nx.draw(G, **{ "with_labels": True, "node_color": 'c'})

The example also illustrates a typical way how diagrams of graphs are drawn: nodes are represented
by small circles, and edges by lines connecting the nodes.

2.4.3 Adding and removing nodes and edges

A graph G can be modified, by adding nodes one at a time …

7

[18]: G.add_node(1)
list(G.nodes)
nx.draw(G, **opts)

or many nodes at once …

[19]: G.add_nodes_from([2, 3, 5])
list(G.nodes)
nx.draw(G, **opts)

8

• … or even as nodes of another graph H

[20]: G.add_nodes_from(H)
list(G.nodes)

[20]: ['A',
'B',
'C',
'D',
1,
2,
3,
5,
'UCSB',
'SRI',
'UCLA',
'STAN',
'UTAH',
'RAND',
'SDC',
'MIT',

9

'BBN',
'LINC',
'HARV',
'CASE',
'CARN']

[21]: G.order(), G.size()

[21]: (21, 4)

Adding edges works in a similar fashion

[22]: G=nx.Graph(["AB", "BC", "BD", "DC"])
G.add_edge(1,2)
#G.add_edge(1,'C')
#G.add_edge(1,'A')
list(G.edges)
nx.draw(G, **opts)

[23]: #edge = (2,3)
#G.add_edge(*edge)

10

#list(G.edges)

Add edges from a list:

[24]: G.add_edges_from([(1,5), (2,5), (3,5)])
list(G.edges)

[24]: [('A', 'B'),
('B', 'C'),
('B', 'D'),
('C', 'D'),
(1, 2),
(1, 5),
(2, 5),
(5, 3)]

Add edges from another graph:

[25]: G.add_edges_from(H.edges)
list(G.edges)

[25]: [('A', 'B'),
('B', 'C'),
('B', 'D'),
('C', 'D'),
(1, 2),
(1, 5),
(2, 5),
(5, 3),
('UCSB', 'SRI'),
('UCSB', 'UCLA'),
('SRI', 'UCLA'),
('SRI', 'STAN'),
('SRI', 'UTAH'),
('UCLA', 'STAN'),
('UCLA', 'RAND'),
('UTAH', 'SDC'),
('UTAH', 'MIT'),
('RAND', 'SDC'),
('RAND', 'BBN'),
('MIT', 'BBN'),
('MIT', 'LINC'),
('BBN', 'HARV'),
('LINC', 'CASE'),
('HARV', 'CARN'),
('CASE', 'CARN')]

[26]: nx.draw(G, **opts)

11

There are corresponding commands for removing nodes or edges from a graph G

[27]: G.order(), G.size()

[27]: (21, 25)

[28]: G.remove_edge(3,5)
G.order(), G.size()

[28]: (21, 24)

[29]: G.remove_edges_from(H.edges())
G.order(), G.size()

[29]: (21, 7)

[30]: nx.draw(G, **opts)

12

[31]: G.remove_nodes_from(H)
nx.draw(G, **opts)

13

• Removing a node will silently delete all edges it forms part of

[32]: G.remove_nodes_from([1, 2, 3, 5])
G.order(), G.size()

[32]: (4, 4)

[33]: nx.draw(G, **opts)

14

That is, networkx is ensuring what we get is a proper graph, which is a subgraph of the original
one.

Finished here Thursday

2.4.4 Subgraphs and Induced subgraphs

Given 𝐺 = (𝑋, 𝐸), a subgraph of 𝐺 is 𝐻 = (𝑌 , 𝐸𝐻) with 𝑌 ⊆ 𝑋 and 𝐸𝐻 ⊆ 𝐸 ∩ (𝑌
2).

So, all the nodes in 𝐻 are also in 𝐺. And any edge in 𝐻 was also in 𝐺, and is incident only to
vertices in 𝑌 .

One of the most important subgraphs of 𝐺 is the induced subgraph on 𝑌 ⊆ 𝑋 is the graph
𝐻 = (𝑌 , 𝐸 ∩ (𝑌

2)). That is, given a subset 𝑌 of 𝑋, we include all possible edges from 𝐺 too.

• Each node has a list of neighbours, the nodes it is directly connected to by an edge of the
graph.

[34]: list(G.neighbors('B'))

[34]: ['A', 'C', 'D']

[35]: G['B']

15

[35]: AtlasView({'A': {}, 'C': {}, 'D': {}})

[36]: list(G['B'])

[36]: ['A', 'C', 'D']

As mentioned earlier, the number of neighbours of a node 𝑥 is its degree

[37]: G.degree('B')

[37]: 3

[38]: G.degree

[38]: DegreeView({'A': 1, 'B': 3, 'C': 2, 'D': 2})

[39]: list(G.degree)

[39]: [('A', 1), ('B', 3), ('C', 2), ('D', 2)]

Anybody knows/remembers a fundamental relationship between (the sum of) the degrees and the
size of a graph?

2.5 Important Graphs
2.5.1 Complete Graphs

The complete graph on a vertex set 𝑋 is the graph with edge set all of (𝑋
2). E.g., if 𝑋 = {0, 1, 2, 3},

then 𝐸 = {01, 02, 03, 12, 13, 23}.

[40]: nodes = range(4)
list(nodes)

[40]: [0, 1, 2, 3]

[41]: E4 = [(x, y) for x in nodes for y in nodes if x < y]
print(E4)

[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

[42]: K4 = nx.Graph(E4)
nx.draw(K4)

16

https://en.wikipedia.org/wiki/Complete_graph

While it is somewhat straightforward to find all 2-element subsets of a given set 𝑋 with a short
python program, it is probably more convenient (and possibly efficient) to use a function from the
itertools package for this purpose.

[43]: from itertools import combinations
nodes5 = range(5)
combinations(nodes5, 2)

[43]: <itertools.combinations at 0x7fbe15856840>

[44]: print(list(combinations(nodes5, 2)))

[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

[45]: K5 = nx.Graph(combinations(nodes5, 2))

[46]: nx.draw(K5, **opts)

17

We can turn this procedure into a python function that constructs the complete graph for an
arbitrary vertex set 𝑋.

[47]: def complete_graph(nodes):
return nx.Graph(combinations(nodes, 2))

[48]: nx.draw(complete_graph(range(3)), **opts)

18

[49]: nx.draw(complete_graph(range(4)), **opts)

19

[50]: nx.draw(complete_graph(range(5)), **opts)

20

[51]: nx.draw(complete_graph(range(6)), **opts)

21

[52]: nx.draw(complete_graph("ABCD"), **opts)

22

In fact, networkx has its own implementation of complete graphs.

[53]: nx.draw(nx.complete_graph("NETWORKS"), **opts)

23

2.5.2 Petersen Graph

The Petersen Graph is a graph on 10 vertices with 15 edges.

It can be constructed as the complement of the line graph of the complete graph 𝐾5, i.e., as the
graph with vertex set

𝑋 = ({0, 1, 2, 3, 4}
2)

(the edge set of 𝐾5) and with an edge between 𝑥, 𝑦 ∈ 𝑋 whenever 𝑥 ∩ 𝑦 = ∅.

[54]: nx.draw(K5, **opts)

24

https://en.wikipedia.org/wiki/Petersen_graph

[55]: lines = K5.edges
print(list(lines))

[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

[56]: print(list(combinations(lines, 2)))

[((0, 1), (0, 2)), ((0, 1), (0, 3)), ((0, 1), (0, 4)), ((0, 1), (1, 2)), ((0,
1), (1, 3)), ((0, 1), (1, 4)), ((0, 1), (2, 3)), ((0, 1), (2, 4)), ((0, 1), (3,
4)), ((0, 2), (0, 3)), ((0, 2), (0, 4)), ((0, 2), (1, 2)), ((0, 2), (1, 3)),
((0, 2), (1, 4)), ((0, 2), (2, 3)), ((0, 2), (2, 4)), ((0, 2), (3, 4)), ((0, 3),
(0, 4)), ((0, 3), (1, 2)), ((0, 3), (1, 3)), ((0, 3), (1, 4)), ((0, 3), (2, 3)),
((0, 3), (2, 4)), ((0, 3), (3, 4)), ((0, 4), (1, 2)), ((0, 4), (1, 3)), ((0, 4),
(1, 4)), ((0, 4), (2, 3)), ((0, 4), (2, 4)), ((0, 4), (3, 4)), ((1, 2), (1, 3)),
((1, 2), (1, 4)), ((1, 2), (2, 3)), ((1, 2), (2, 4)), ((1, 2), (3, 4)), ((1, 3),
(1, 4)), ((1, 3), (2, 3)), ((1, 3), (2, 4)), ((1, 3), (3, 4)), ((1, 4), (2, 3)),
((1, 4), (2, 4)), ((1, 4), (3, 4)), ((2, 3), (2, 4)), ((2, 3), (3, 4)), ((2, 4),
(3, 4))]

[57]: edges = [e for e in combinations(lines, 2)
if not set(e[0]) & set(e[1])]

25

len(edges)

[57]: 15

[58]: P = nx.Graph(edges)

[59]: nx.draw(P, **opts)

Even though there is no parameter involved in this example, it might be worth wrapping the
construction up into a python function.

[60]: def petersen_graph():
nodes = combinations(range(5), 2)
G = nx.Graph()
for e in combinations(nodes, 2):

if not set(e[0]) & set(e[1]):
G.add_edge(*e)

return G

[61]: nx.draw(petersen_graph(), **opts)

26

2.6 Code Corner
2.6.1 python

• list unpacking operator *e: if e is a list, an argument *e passes the elements of e as
individual arguments to a function call.

• dictionary unpacking operator **opts: python function calls take positional arguments
and keyword arguments. The keyword arguments can be collected in a dictionary opts
(with the keywords as keys). This dictionary can then be passed into the function call in its
“unwrapped” form **opts.

• set intersection: if a and b are sets then a & b represents the intersection of a and b. In a
boolean context, an empty set counts as False, and a non-empty set as True.

[62]: a = set([1,2,3])
b = set([3,4,5])
a & b

[62]: {3}

[63]: bool({}), bool({3})

27

[63]: (False, True)

• list [doc] turns its argument into a python list (if possible).

[64]: list("networks")

[64]: ['n', 'e', 't', 'w', 'o', 'r', 'k', 's']

• list comprehension [doc] allows the construction of new list from old ones without explicit
for loops (or if statements).

[65]: [(x, y) for x in range(4) for y in range(4) if x < y]

[65]: [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

2.6.2 networkx

• the read_adjlist command [doc] constructs a graph from a text file in adj format.

• Graph constructor and applicable methods [doc]: if G is Graph object then
– G.nodes returns the nodes of a graph G (as an iterator),
– G.edges returns the edges of a graph G (as an iterator),
– …

• complete_graph [doc]

2.6.3 itertools

• combinations [doc] returns the 𝑘-element combinations of a given list (as an iterator).

[66]: print(["".join(c) for c in combinations("networks", 2)])

['ne', 'nt', 'nw', 'no', 'nr', 'nk', 'ns', 'et', 'ew', 'eo', 'er', 'ek', 'es',
'tw', 'to', 'tr', 'tk', 'ts', 'wo', 'wr', 'wk', 'ws', 'or', 'ok', 'os', 'rk',
'rs', 'ks']

[]:

28

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://networkx.org/documentation/stable/reference/readwrite/generated/networkx.readwrite.adjlist.read_adjlist.html#networkx.readwrite.adjlist.read_adjlist
https://networkx.org/documentation/stable/reference/classes/graph.html
https://networkx.org/documentation/stable//reference/generated/networkx.generators.classic.complete_graph.html
https://docs.python.org/3/library/itertools.html#itertools.combinations

	CS4423 - Networks
	Week 1, Lecture 2:
	Graphs and networkx
	News
	Graphs
	An example: the Internet (circa 1970)

	Simple Graphs
	Simple Graphs in networkx
	Importing the package
	Making a graph:
	Adding and removing nodes and edges
	Subgraphs and Induced subgraphs

	Important Graphs
	Complete Graphs
	Petersen Graph

	Code Corner
	python
	networkx
	itertools

