CT420

Real-Time Systems

Name: Andrew Hayes
StudentID: 21321503 2025-01-23

E-mail: a.hayes18@universityofgalway.ie

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents
(I_Introduction| 1
(L1 Lecturer Contact Informationl 1
(1.2 Assessmentl e 1
(1.3 Introduction to Real-Time Systems| 1
[2 The Essence of Time: From Measurement to Navigation & Beyond| 1
[3 Time Synchronisation in Distributed Systems| 2
[3.1 SynchronisationintheReal World] 2
3.1.1 Cristian’s Algorithm| L o 3
3.1.2 Berkeley Algorithm|. 3
3.2 Logical Clocks|. 3
321 VectorClocks|. 4

2 THE ESSENCE OF TIME: FROM MEASUREMENT TO NAVIGATION & BEYOND

1 Introduction

1.1 Lecturer Contact Information
* Name: Dr. Michael Schukat.
* E-mail: michael.schukat@universityofgalway.ie.
* Office: CSB-3002.
* Name: Dr. Jawad Manzoor.

* E-mail: jawad.manzoor@universityofgalway.ie.

¢ Office: CSB-3012.

1.2 Assessment
* 2 hours of face-to-face & virtual labs per week from Week 03.
* 30% Continuous Assessment:

— 2assignments, 10% each.
— 2in-class quizzes between Week 07 & Week 12, worth 5%.

1.3 Introduction to Real-Time Systems

A system is said to be real-time if the total correctness of an operation depends not only upon its logical correctness
but also upon the time in which it is performed. Contrast functional requirements (logical correctness) versus non-
functional requirements (time constraints). There are two main categorisation factors:

* Criticality:

— Hard RTS: deadlines (responsiveness) is critical. Failure to meet these have severe to catastrophic conse-
quences (e.g., injury, damage, death).
— Soft RTS: deadlines are less critical, in many cases significant tolerance can be permitted.

* Speed

— Fast RTS: responses in microseconds to hundreds of microseconds.

— Slow RTS: responses in the range of seconds to days.

A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in death or
serious injury to people, loss of equipment / property or severe damage, & environmental harm.

2 The Essence of Time: From Measurement to Navigation & Beyond

Time is the continued sequence of existence & events that occurs in an apparently irreversible succession from past,
through the present, into the future. Methods of temporal measurement, or chronometry, take two distinct forms:

* The calendar, a mathematical tool for organising intervals of term;

* The clock, a physical mechanism that counts the passage of time.

Global (maritime) exploration requires exact maritime navigation, i.e., longitude & latitude calculation. Latitude
(north-south) orientation is straightforward; longitude (cast-west orientation) requires a robust (maritime) clock.

Ground-based navigation systems like LOR AN (LOng R Ange Navigation) were developed in the 1940s and
were in use until recently, and required fixed terrestrial longwave radio transmitters, and receivers on-board of ships &
planes. They are also referred to as hyperbolic navigation or multilateration. The principles of ground-based navigation
systems is as follows:

mailto://michael.schukat@universityofgalway.ie
jawad.manzoor@universityofgalway.ie

3 TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

1. A master with a known location broadcasts a radio pulse.

2. Multiple slave stations with a known distance from the master send their own pulse, upon receiving the master
pulse.

3. A receiver receives master & slave pulses and measures the delay between them.

4. This allows the receiver to deduce the distance to each of the stations, providing a fix.

NEED TO FINISH

3 Time Synchronisation in Distributed Systems

A distributed system (DS) is a type of networked system wherein multiple computers (nodes) work together to
perform a task. Such systems may or may not be connected to the Internet. Time & synchronisation are important
issues here: think of error logs in distributed systems — how can error events recorded in different computers be cor-
related with each other if there is no common time base? The problem is that GNSS-based time synchronisation
may or may not be available, as GPS signals are absorbed or weakened by building structures. There is no other time
reference such systems can rely on because in such a distributed system there are just a series of imperfect computer clocks.

In distributed systems, all the different nodes are supposed to have the same notion of time, but quartz oscillators
oscillate at slightly different frequencies. Hence, clocks tick at different rates (called clock skew), resulting in an increasing
gap in perceived time. The difference between two clocks at a given pot is called clock offset. The clock synchronisation
problem aims to minimise the clock skew and subsequently the offset between two or more clocks. A clock can show a
positive or negative offset with regard to a reference clock (e.g., UTC), and will need to be resynchronised periodically.
One cannot just set the clock to the “correct” time: jumps, particularly backwards, can confuse software and operating
systems. Instead, we aim for gradual compensation by correcting the skew: if a clock runs too fast, make it run slower
until correct and if a clock runs too slow, make it run faster until correct.

Synchronisation can take place in different forms:

* Based on physical clocks: absolute to each other by synchronising to an accurate time source (e.g., UTC),
absolute to each other by synchronising to locally agreed time (i.e., no link to a global time reference), where the
term absolute means that the differences in timestamps are proper time intervals.

* Based on logical clocks (i.c., clocks are more like counters): timestamps may be ordered but with no notion of
measurable time intervals.

In either case, the DS endpoints synchronise using a shared network. For physical clock synchronisation, network
latencies must be considered as packets traverse from a sending node to a receiving node. In a perfect network, messages
always arrive, with a propagation delay of exactly d; the sender sends time 7" in a message, the receiver sets its clock to
T + d, and synchronisation is exact.

In a deterministic network, messages arrive with a propagation delay 0 < d < Dj the sender sends time 7" in
a message, the receiver sets its clock to 71" + %, and therefore the synchronisation error is at most %. Deterministic
communication is the ability of a network to guarantee that a message will be transmitted in a specified, predictable
period of time.

3.1 Synchronisation in the Real World

Most off-the-shelf networks are asynchronous, that is, data is transmitted intermittently on a best-effort basis. They
are designed for flexibility, not determinism, and as a result, propagation delays are arbitrary and sometimes even
unsymmetric (i.e., upstream & downstream latencies are different). Therefore, synchronisation algorithms are needed
to accommodate these limitations.

3 TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

3.1.1 Cristian’s Algorithm
Cristian’s algorithm attempts to compensate for symmetric network delays:
1. The client remembers the local time 7§ just before sending a request.
2. The server receives the request, determines 7's, and sends it as a reply.
3. When the client receives the reply, it notes the local arrival time 7.
T1—To)).

. . (
4. The correct time is then approximately (Ts + *—

The algorithm assumes symmetric network latency. If the server is synced to UTC< all clients will follow UTC.
Limitations of Cristian’s algorithm include:

* Assumes a symmetric network latency;
* Assumes that timestamps can be taken as the packet hits the wire / arrives at the client;

* Assumes that Ty is right in the middle of the server process; for example, consider the server process being
pre-empted just before it sends the response back to the client, which will corrupt the synchronisation of the
client.

3.1.2 Berkeley Algorithm

In the Berkeley algorithm, there is no accurate time server: instead, a set of client clocks is synchronised to their
average time. The assumption is that offsets / skews of all clocks follow some symmetric distribution (e.g., a normal
distribution) with some clocks going faster and others slower, and therefore a mean value close to 0.

1. One node is designated to be the master node M.

2. The master node periodically queries all other clients for their local time.

3. Each client returns a timestamp or their clock offset to the master.

4. Cristian’s algorithm is used to determine and compensate for RT'Ts, which can be different for each client.

S. Using these, the master computes the average time (thereby ignoring outliers), calculates the difference to all
timestamps it has received, and sends an adjustment to each client. Again, each computer gradually adjusts its
local clock.

Client clocks are adjusted to run faster or slower, to be synced to an overall agreed system time. The client networks is an
intranet, i.e., an isolated system. Therefore, the Berkeley algorithm is an internal clock synchronisation algorithm.
The Berkeley algorithm was implemented in the TEMPO time synchronisation protocol, which was part of the Berkelely
UNIX 4.3BSD system.

3.2 Logical Clocks

Logical clocks are another concept linked to internal clock synchronisation. Logical clocks only care about their
internal consistency, but not about absolute (UTC) time; subsequently, they do not need clock synchronisation and
take into account the order in which events occur rather than the time at which they occurred. In practice, if clients or
processes only care that event a happens before event b, but don’t care about the exact time difference, they can make
use of a logical clock.

We can define the happens-before relation a — b:

* If events a and b are within the same process, then a — b if a occurs with an earlier local timestamp: process
order.

* If a is the event of a message being sent by one process, and b is the event of the message being received by another
process, then a — b: causal order.

3 TIME SYNCHRONISATION IN DISTRIBUTED SYSTEMS

* We also have transitivity: if ¢ — band b — ¢, thena — c.

Note that this only provides a partial order: if two events a and b happen in different processes that do not exchange
messages (not even indirectly), then neither @ — b nor b — a is true. In this situation, we say that @ and b are
concurrent and write @ ~ b, i.e., nothing can be said about when the events happened or which event happened first.

Happens-before can be implemented using the Lamport scheme:
1. Each process P; has a logical clock L;, where L; can be simply an integer variable initialised to 0.
2. L;is incremented on every local event e; we write L;(e) or L(e) as the timestamp of e.
3. When P; sends a message, it increments L; and copies its content into the packet.
4. When P; receives a message from Py, it extracts Ly, and sets L := max(L;, Lj) and then increments Lj;.

This guarantees that if @ — b, then L;(a) < L (b), but nothing else.

The primary limitation of Lamport clocks is that they do not capture causality. Lamport’s logical clocks lead to
a situation where all events in a distributed system are ordered, so that if an event a (linked to P;) “happened before”
event b (linked to P), i.e., @ — b, then awill allso be positioned in that ordering before b such that L;(a) < Ly (b)
or simply L(a) < L(b); however, nothing can be said about the relationship between two events a & b by merely
comparing their time values L;(a) and Ly, (b.): we can’t tell if @ — bor b — a or a ~ b unless they occur in the same
process.

3.2.1 Vector Clocks

In practice, causality is captured by means of vector clocks:
* There is an ordered list of logical clocks, with one per process.
* Each process P; maintains a vector V;, initially containing all zeroes.

* Onalocal event e, P; increments V;[i] (the ith vector component). If the event is “message send”, a new V; is
copied into the packet.

* If P; receives a message from P, then, for all k

	Introduction
	Lecturer Contact Information
	Assessment
	Introduction to Real-Time Systems

	The Essence of Time: From Measurement to Navigation & Beyond
	Time Synchronisation in Distributed Systems
	Synchronisation in the Real World
	Cristian's Algorithm
	Berkeley Algorithm

	Logical Clocks
	Vector Clocks

