
Online edition (c)
2009 Cambridge UP

An
Introduction

to
Information

Retrieval

Draft of April 1, 2009



Online edition (c)
2009 Cambridge UP



Online edition (c)
2009 Cambridge UP

An
Introduction

to
Information

Retrieval

Christopher D. Manning

Prabhakar Raghavan

Hinrich Schütze

Cambridge University Press
Cambridge, England



Online edition (c)
2009 Cambridge UP

DRAFT!

DO NOT DISTRIBUTE WITHOUT PRIOR PERMISSION

© 2009 Cambridge University Press

By Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze

Printed on April 1, 2009

Website: http://www.informationretrieval.org/

Comments, corrections, and other feedback most welcome at:

informationretrieval@yahoogroups.com



Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. v

Brief Contents

1 Boolean retrieval 1
2 The term vocabulary and postings lists 19
3 Dictionaries and tolerant retrieval 49
4 Index construction 67
5 Index compression 85
6 Scoring, term weighting and the vector space model 109
7 Computing scores in a complete search system 135
8 Evaluation in information retrieval 151
9 Relevance feedback and query expansion 177
10 XML retrieval 195
11 Probabilistic information retrieval 219
12 Language models for information retrieval 237
13 Text classification and Naive Bayes 253
14 Vector space classification 289
15 Support vector machines and machine learning on documents 319
16 Flat clustering 349
17 Hierarchical clustering 377
18 Matrix decompositions and latent semantic indexing 403
19 Web search basics 421
20 Web crawling and indexes 443
21 Link analysis 461



Online edition (c)
2009 Cambridge UP



Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. vii

Contents

List of Tables xv

List of Figures xix

Table of Notation xxvii

Preface xxxi

1 Boolean retrieval 1

1.1 An example information retrieval problem 3
1.2 A first take at building an inverted index 6
1.3 Processing Boolean queries 10
1.4 The extended Boolean model versus ranked retrieval 14
1.5 References and further reading 17

2 The term vocabulary and postings lists 19

2.1 Document delineation and character sequence decoding 19
2.1.1 Obtaining the character sequence in a document 19
2.1.2 Choosing a document unit 20

2.2 Determining the vocabulary of terms 22
2.2.1 Tokenization 22
2.2.2 Dropping common terms: stop words 27
2.2.3 Normalization (equivalence classing of terms) 28
2.2.4 Stemming and lemmatization 32

2.3 Faster postings list intersection via skip pointers 36
2.4 Positional postings and phrase queries 39

2.4.1 Biword indexes 39
2.4.2 Positional indexes 41
2.4.3 Combination schemes 43

2.5 References and further reading 45



Online edition (c)
2009 Cambridge UP

viii Contents

3 Dictionaries and tolerant retrieval 49

3.1 Search structures for dictionaries 49
3.2 Wildcard queries 51

3.2.1 General wildcard queries 53
3.2.2 k-gram indexes for wildcard queries 54

3.3 Spelling correction 56
3.3.1 Implementing spelling correction 57
3.3.2 Forms of spelling correction 57
3.3.3 Edit distance 58
3.3.4 k-gram indexes for spelling correction 60
3.3.5 Context sensitive spelling correction 62

3.4 Phonetic correction 63
3.5 References and further reading 65

4 Index construction 67

4.1 Hardware basics 68
4.2 Blocked sort-based indexing 69
4.3 Single-pass in-memory indexing 73
4.4 Distributed indexing 74
4.5 Dynamic indexing 78
4.6 Other types of indexes 80
4.7 References and further reading 83

5 Index compression 85

5.1 Statistical properties of terms in information retrieval 86
5.1.1 Heaps’ law: Estimating the number of terms 88
5.1.2 Zipf’s law: Modeling the distribution of terms 89

5.2 Dictionary compression 90
5.2.1 Dictionary as a string 91
5.2.2 Blocked storage 92

5.3 Postings file compression 95
5.3.1 Variable byte codes 96
5.3.2 γ codes 98

5.4 References and further reading 105

6 Scoring, term weighting and the vector space model 109

6.1 Parametric and zone indexes 110
6.1.1 Weighted zone scoring 112
6.1.2 Learning weights 113
6.1.3 The optimal weight g 115

6.2 Term frequency and weighting 117
6.2.1 Inverse document frequency 117
6.2.2 Tf-idf weighting 118



Online edition (c)
2009 Cambridge UP

Contents ix

6.3 The vector space model for scoring 120
6.3.1 Dot products 120
6.3.2 Queries as vectors 123
6.3.3 Computing vector scores 124

6.4 Variant tf-idf functions 126
6.4.1 Sublinear tf scaling 126
6.4.2 Maximum tf normalization 127
6.4.3 Document and query weighting schemes 128
6.4.4 Pivoted normalized document length 129

6.5 References and further reading 133

7 Computing scores in a complete search system 135

7.1 Efficient scoring and ranking 135
7.1.1 Inexact top K document retrieval 137
7.1.2 Index elimination 137
7.1.3 Champion lists 138
7.1.4 Static quality scores and ordering 138
7.1.5 Impact ordering 140
7.1.6 Cluster pruning 141

7.2 Components of an information retrieval system 143
7.2.1 Tiered indexes 143
7.2.2 Query-term proximity 144
7.2.3 Designing parsing and scoring functions 145
7.2.4 Putting it all together 146

7.3 Vector space scoring and query operator interaction 147
7.4 References and further reading 149

8 Evaluation in information retrieval 151

8.1 Information retrieval system evaluation 152
8.2 Standard test collections 153
8.3 Evaluation of unranked retrieval sets 154
8.4 Evaluation of ranked retrieval results 158
8.5 Assessing relevance 164

8.5.1 Critiques and justifications of the concept of
relevance 166

8.6 A broader perspective: System quality and user utility 168
8.6.1 System issues 168
8.6.2 User utility 169
8.6.3 Refining a deployed system 170

8.7 Results snippets 170
8.8 References and further reading 173

9 Relevance feedback and query expansion 177



Online edition (c)
2009 Cambridge UP

x Contents

9.1 Relevance feedback and pseudo relevance feedback 178
9.1.1 The Rocchio algorithm for relevance feedback 178
9.1.2 Probabilistic relevance feedback 183
9.1.3 When does relevance feedback work? 183
9.1.4 Relevance feedback on the web 185
9.1.5 Evaluation of relevance feedback strategies 186
9.1.6 Pseudo relevance feedback 187
9.1.7 Indirect relevance feedback 187
9.1.8 Summary 188

9.2 Global methods for query reformulation 189
9.2.1 Vocabulary tools for query reformulation 189
9.2.2 Query expansion 189
9.2.3 Automatic thesaurus generation 192

9.3 References and further reading 193

10 XML retrieval 195

10.1 Basic XML concepts 197
10.2 Challenges in XML retrieval 201
10.3 A vector space model for XML retrieval 206
10.4 Evaluation of XML retrieval 210
10.5 Text-centric vs. data-centric XML retrieval 214
10.6 References and further reading 216
10.7 Exercises 217

11 Probabilistic information retrieval 219

11.1 Review of basic probability theory 220
11.2 The Probability Ranking Principle 221

11.2.1 The 1/0 loss case 221
11.2.2 The PRP with retrieval costs 222

11.3 The Binary Independence Model 222
11.3.1 Deriving a ranking function for query terms 224
11.3.2 Probability estimates in theory 226
11.3.3 Probability estimates in practice 227
11.3.4 Probabilistic approaches to relevance feedback 228

11.4 An appraisal and some extensions 230
11.4.1 An appraisal of probabilistic models 230
11.4.2 Tree-structured dependencies between terms 231
11.4.3 Okapi BM25: a non-binary model 232
11.4.4 Bayesian network approaches to IR 234

11.5 References and further reading 235

12 Language models for information retrieval 237

12.1 Language models 237



Online edition (c)
2009 Cambridge UP

Contents xi

12.1.1 Finite automata and language models 237
12.1.2 Types of language models 240
12.1.3 Multinomial distributions over words 241

12.2 The query likelihood model 242
12.2.1 Using query likelihood language models in IR 242
12.2.2 Estimating the query generation probability 243
12.2.3 Ponte and Croft’s Experiments 246

12.3 Language modeling versus other approaches in IR 248
12.4 Extended language modeling approaches 250
12.5 References and further reading 252

13 Text classification and Naive Bayes 253

13.1 The text classification problem 256
13.2 Naive Bayes text classification 258

13.2.1 Relation to multinomial unigram language model 262
13.3 The Bernoulli model 263
13.4 Properties of Naive Bayes 265

13.4.1 A variant of the multinomial model 270
13.5 Feature selection 271

13.5.1 Mutual information 272
13.5.2 χ2 Feature selection 275
13.5.3 Frequency-based feature selection 277
13.5.4 Feature selection for multiple classifiers 278
13.5.5 Comparison of feature selection methods 278

13.6 Evaluation of text classification 279
13.7 References and further reading 286

14 Vector space classification 289

14.1 Document representations and measures of relatedness in
vector spaces 291

14.2 Rocchio classification 292
14.3 k nearest neighbor 297

14.3.1 Time complexity and optimality of kNN 299
14.4 Linear versus nonlinear classifiers 301
14.5 Classification with more than two classes 306
14.6 The bias-variance tradeoff 308
14.7 References and further reading 314
14.8 Exercises 315

15 Support vector machines and machine learning on documents 319

15.1 Support vector machines: The linearly separable case 320
15.2 Extensions to the SVM model 327

15.2.1 Soft margin classification 327



Online edition (c)
2009 Cambridge UP

xii Contents

15.2.2 Multiclass SVMs 330
15.2.3 Nonlinear SVMs 330
15.2.4 Experimental results 333

15.3 Issues in the classification of text documents 334
15.3.1 Choosing what kind of classifier to use 335
15.3.2 Improving classifier performance 337

15.4 Machine learning methods in ad hoc information retrieval 341
15.4.1 A simple example of machine-learned scoring 341
15.4.2 Result ranking by machine learning 344

15.5 References and further reading 346

16 Flat clustering 349

16.1 Clustering in information retrieval 350
16.2 Problem statement 354

16.2.1 Cardinality – the number of clusters 355
16.3 Evaluation of clustering 356
16.4 K-means 360

16.4.1 Cluster cardinality in K-means 365
16.5 Model-based clustering 368
16.6 References and further reading 372
16.7 Exercises 374

17 Hierarchical clustering 377

17.1 Hierarchical agglomerative clustering 378
17.2 Single-link and complete-link clustering 382

17.2.1 Time complexity of HAC 385
17.3 Group-average agglomerative clustering 388
17.4 Centroid clustering 391
17.5 Optimality of HAC 393
17.6 Divisive clustering 395
17.7 Cluster labeling 396
17.8 Implementation notes 398
17.9 References and further reading 399
17.10 Exercises 401

18 Matrix decompositions and latent semantic indexing 403

18.1 Linear algebra review 403
18.1.1 Matrix decompositions 406

18.2 Term-document matrices and singular value
decompositions 407

18.3 Low-rank approximations 410
18.4 Latent semantic indexing 412
18.5 References and further reading 417



Online edition (c)
2009 Cambridge UP

Contents xiii

19 Web search basics 421

19.1 Background and history 421
19.2 Web characteristics 423

19.2.1 The web graph 425
19.2.2 Spam 427

19.3 Advertising as the economic model 429
19.4 The search user experience 432

19.4.1 User query needs 432
19.5 Index size and estimation 433
19.6 Near-duplicates and shingling 437
19.7 References and further reading 441

20 Web crawling and indexes 443

20.1 Overview 443
20.1.1 Features a crawler must provide 443
20.1.2 Features a crawler should provide 444

20.2 Crawling 444
20.2.1 Crawler architecture 445
20.2.2 DNS resolution 449
20.2.3 The URL frontier 451

20.3 Distributing indexes 454
20.4 Connectivity servers 455
20.5 References and further reading 458

21 Link analysis 461

21.1 The Web as a graph 462
21.1.1 Anchor text and the web graph 462

21.2 PageRank 464
21.2.1 Markov chains 465
21.2.2 The PageRank computation 468
21.2.3 Topic-specific PageRank 471

21.3 Hubs and Authorities 474
21.3.1 Choosing the subset of the Web 477

21.4 References and further reading 480

Bibliography 483

Author Index 519



Online edition (c)
2009 Cambridge UP



Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xv

List of Tables

4.1 Typical system parameters in 2007. The seek time is the time
needed to position the disk head in a new position. The
transfer time per byte is the rate of transfer from disk to
memory when the head is in the right position. 68

4.2 Collection statistics for Reuters-RCV1. Values are rounded for
the computations in this book. The unrounded values are:
806,791 documents, 222 tokens per document, 391,523
(distinct) terms, 6.04 bytes per token with spaces and
punctuation, 4.5 bytes per token without spaces and
punctuation, 7.5 bytes per term, and 96,969,056 tokens. The
numbers in this table correspond to the third line (“case
folding”) in Table 5.1 (page 87). 70

4.3 The five steps in constructing an index for Reuters-RCV1 in
blocked sort-based indexing. Line numbers refer to Figure 4.2. 82

4.4 Collection statistics for a large collection. 82

5.1 The effect of preprocessing on the number of terms,
nonpositional postings, and tokens for Reuters-RCV1. “∆%”
indicates the reduction in size from the previous line, except
that “30 stop words” and “150 stop words” both use “case
folding” as their reference line. “T%” is the cumulative
(“total”) reduction from unfiltered. We performed stemming
with the Porter stemmer (Chapter 2, page 33). 87

5.2 Dictionary compression for Reuters-RCV1. 95
5.3 Encoding gaps instead of document IDs. For example, we

store gaps 107, 5, 43, . . . , instead of docIDs 283154, 283159,
283202, . . . for computer. The first docID is left unchanged
(only shown for arachnocentric). 96

5.4 VB encoding. 97



Online edition (c)
2009 Cambridge UP

xvi List of Tables

5.5 Some examples of unary and γ codes. Unary codes are only
shown for the smaller numbers. Commas in γ codes are for
readability only and are not part of the actual codes. 98

5.6 Index and dictionary compression for Reuters-RCV1. The
compression ratio depends on the proportion of actual text in
the collection. Reuters-RCV1 contains a large amount of XML
markup. Using the two best compression schemes, γ
encoding and blocking with front coding, the ratio
compressed index to collection size is therefore especially
small for Reuters-RCV1: (101 + 5.9)/3600 ≈ 0.03. 103

5.7 Two gap sequences to be merged in blocked sort-based
indexing 105

6.1 Cosine computation for Exercise 6.19. 132

8.1 Calculation of 11-point Interpolated Average Precision. 159
8.2 Calculating the kappa statistic. 165

10.1 RDB (relational database) search, unstructured information
retrieval and structured information retrieval. 196

10.2 INEX 2002 collection statistics. 211
10.3 INEX 2002 results of the vector space model in Section 10.3 for

content-and-structure (CAS) queries and the quantization
function Q. 213

10.4 A comparison of content-only and full-structure search in
INEX 2003/2004. 214

13.1 Data for parameter estimation examples. 261
13.2 Training and test times for NB. 261
13.3 Multinomial versus Bernoulli model. 268
13.4 Correct estimation implies accurate prediction, but accurate

prediction does not imply correct estimation. 269
13.5 A set of documents for which the NB independence

assumptions are problematic. 270
13.6 Critical values of the χ2 distribution with one degree of

freedom. For example, if the two events are independent,
then P(X2 > 6.63) < 0.01. So for X2 > 6.63 the assumption of
independence can be rejected with 99% confidence. 277

13.7 The ten largest classes in the Reuters-21578 collection with
number of documents in training and test sets. 280



Online edition (c)
2009 Cambridge UP

List of Tables xvii

13.8 Macro- and microaveraging. “Truth” is the true class and
“call” the decision of the classifier. In this example,
macroaveraged precision is
[10/(10 + 10) + 90/(10 + 90)]/2 = (0.5 + 0.9)/2 = 0.7.
Microaveraged precision is 100/(100 + 20) ≈ 0.83. 282

13.9 Text classification effectiveness numbers on Reuters-21578 for
F1 (in percent). Results from Li and Yang (2003) (a), Joachims
(1998) (b: kNN) and Dumais et al. (1998) (b: NB, Rocchio,
trees, SVM). 282

13.10 Data for parameter estimation exercise. 284

14.1 Vectors and class centroids for the data in Table 13.1. 294
14.2 Training and test times for Rocchio classification. 296
14.3 Training and test times for kNN classification. 299
14.4 A linear classifier. 303
14.5 A confusion matrix for Reuters-21578. 308

15.1 Training and testing complexity of various classifiers
including SVMs. 329

15.2 SVM classifier break-even F1 from (Joachims 2002a, p. 114). 334
15.3 Training examples for machine-learned scoring. 342

16.1 Some applications of clustering in information retrieval. 351
16.2 The four external evaluation measures applied to the

clustering in Figure 16.4. 357
16.3 The EM clustering algorithm. 371

17.1 Comparison of HAC algorithms. 395
17.2 Automatically computed cluster labels. 397



Online edition (c)
2009 Cambridge UP



Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xix

List of Figures

1.1 A term-document incidence matrix. 4
1.2 Results from Shakespeare for the query Brutus AND Caesar

AND NOT Calpurnia. 5
1.3 The two parts of an inverted index. 7
1.4 Building an index by sorting and grouping. 8
1.5 Intersecting the postings lists for Brutus and Calpurnia from

Figure 1.3. 10
1.6 Algorithm for the intersection of two postings lists p1 and p2. 11
1.7 Algorithm for conjunctive queries that returns the set of

documents containing each term in the input list of terms. 12

2.1 An example of a vocalized Modern Standard Arabic word. 21
2.2 The conceptual linear order of characters is not necessarily the

order that you see on the page. 21
2.3 The standard unsegmented form of Chinese text using the

simplified characters of mainland China. 26
2.4 Ambiguities in Chinese word segmentation. 26
2.5 A stop list of 25 semantically non-selective words which are

common in Reuters-RCV1. 26
2.6 An example of how asymmetric expansion of query terms can

usefully model users’ expectations. 28
2.7 Japanese makes use of multiple intermingled writing systems

and, like Chinese, does not segment words. 31
2.8 A comparison of three stemming algorithms on a sample text. 34
2.9 Postings lists with skip pointers. 36
2.10 Postings lists intersection with skip pointers. 37
2.11 Positional index example. 41
2.12 An algorithm for proximity intersection of postings lists p1

and p2. 42



Online edition (c)
2009 Cambridge UP

xx List of Figures

3.1 A binary search tree. 51
3.2 A B-tree. 52
3.3 A portion of a permuterm index. 54
3.4 Example of a postings list in a 3-gram index. 55
3.5 Dynamic programming algorithm for computing the edit

distance between strings s1 and s2. 59
3.6 Example Levenshtein distance computation. 59
3.7 Matching at least two of the three 2-grams in the query bord. 61

4.1 Document from the Reuters newswire. 70
4.2 Blocked sort-based indexing. 71
4.3 Merging in blocked sort-based indexing. 72
4.4 Inversion of a block in single-pass in-memory indexing 73
4.5 An example of distributed indexing with MapReduce.

Adapted from Dean and Ghemawat (2004). 76
4.6 Map and reduce functions in MapReduce. 77
4.7 Logarithmic merging. Each token (termID,docID) is initially

added to in-memory index Z0 by LMERGEADDTOKEN.
LOGARITHMICMERGE initializes Z0 and indexes. 79

4.8 A user-document matrix for access control lists. Element (i, j)
is 1 if user i has access to document j and 0 otherwise. During
query processing, a user’s access postings list is intersected
with the results list returned by the text part of the index. 81

5.1 Heaps’ law. 88
5.2 Zipf’s law for Reuters-RCV1. 90
5.3 Storing the dictionary as an array of fixed-width entries. 91
5.4 Dictionary-as-a-string storage. 92
5.5 Blocked storage with four terms per block. 93
5.6 Search of the uncompressed dictionary (a) and a dictionary

compressed by blocking with k = 4 (b). 94
5.7 Front coding. 94
5.8 VB encoding and decoding. 97
5.9 Entropy H(P) as a function of P(x1) for a sample space with

two outcomes x1 and x2. 100
5.10 Stratification of terms for estimating the size of a γ encoded

inverted index. 102

6.1 Parametric search. 111
6.2 Basic zone index 111
6.3 Zone index in which the zone is encoded in the postings

rather than the dictionary. 111



Online edition (c)
2009 Cambridge UP

List of Figures xxi

6.4 Algorithm for computing the weighted zone score from two
postings lists. 113

6.5 An illustration of training examples. 115
6.6 The four possible combinations of sT and sB. 115
6.7 Collection frequency (cf) and document frequency (df) behave

differently, as in this example from the Reuters collection. 118
6.8 Example of idf values. 119
6.9 Table of tf values for Exercise 6.10. 120
6.10 Cosine similarity illustrated. 121
6.11 Euclidean normalized tf values for documents in Figure 6.9. 122
6.12 Term frequencies in three novels. 122
6.13 Term vectors for the three novels of Figure 6.12. 123
6.14 The basic algorithm for computing vector space scores. 125
6.15 SMART notation for tf-idf variants. 128
6.16 Pivoted document length normalization. 130
6.17 Implementing pivoted document length normalization by

linear scaling. 131

7.1 A faster algorithm for vector space scores. 136
7.2 A static quality-ordered index. 139
7.3 Cluster pruning. 142
7.4 Tiered indexes. 144
7.5 A complete search system. 147

8.1 Graph comparing the harmonic mean to other means. 157
8.2 Precision/recall graph. 158
8.3 Averaged 11-point precision/recall graph across 50 queries

for a representative TREC system. 160
8.4 The ROC curve corresponding to the precision-recall curve in

Figure 8.2. 162
8.5 An example of selecting text for a dynamic snippet. 172

9.1 Relevance feedback searching over images. 179
9.2 Example of relevance feedback on a text collection. 180
9.3 The Rocchio optimal query for separating relevant and

nonrelevant documents. 181
9.4 An application of Rocchio’s algorithm. 182
9.5 Results showing pseudo relevance feedback greatly

improving performance. 187
9.6 An example of query expansion in the interface of the Yahoo!

web search engine in 2006. 190
9.7 Examples of query expansion via the PubMed thesaurus. 191
9.8 An example of an automatically generated thesaurus. 192



Online edition (c)
2009 Cambridge UP

xxii List of Figures

10.1 An XML document. 198
10.2 The XML document in Figure 10.1 as a simplified DOM object. 198
10.3 An XML query in NEXI format and its partial representation

as a tree. 199
10.4 Tree representation of XML documents and queries. 200
10.5 Partitioning an XML document into non-overlapping

indexing units. 202
10.6 Schema heterogeneity: intervening nodes and mismatched

names. 204
10.7 A structural mismatch between two queries and a document. 206
10.8 A mapping of an XML document (left) to a set of lexicalized

subtrees (right). 207
10.9 The algorithm for scoring documents with SIMNOMERGE. 209
10.10 Scoring of a query with one structural term in SIMNOMERGE. 209
10.11 Simplified schema of the documents in the INEX collection. 211

11.1 A tree of dependencies between terms. 232

12.1 A simple finite automaton and some of the strings in the
language it generates. 238

12.2 A one-state finite automaton that acts as a unigram language
model. 238

12.3 Partial specification of two unigram language models. 239
12.4 Results of a comparison of tf-idf with language modeling

(LM) term weighting by Ponte and Croft (1998). 247
12.5 Three ways of developing the language modeling approach:

(a) query likelihood, (b) document likelihood, and (c) model
comparison. 250

13.1 Classes, training set, and test set in text classification . 257
13.2 Naive Bayes algorithm (multinomial model): Training and

testing. 260
13.3 NB algorithm (Bernoulli model): Training and testing. 263
13.4 The multinomial NB model. 266
13.5 The Bernoulli NB model. 267
13.6 Basic feature selection algorithm for selecting the k best features. 271
13.7 Features with high mutual information scores for six

Reuters-RCV1 classes. 274
13.8 Effect of feature set size on accuracy for multinomial and

Bernoulli models. 275
13.9 A sample document from the Reuters-21578 collection. 281

14.1 Vector space classification into three classes. 290



Online edition (c)
2009 Cambridge UP

List of Figures xxiii

14.2 Projections of small areas of the unit sphere preserve distances. 291
14.3 Rocchio classification. 293
14.4 Rocchio classification: Training and testing. 295
14.5 The multimodal class “a” consists of two different clusters

(small upper circles centered on X’s). 295
14.6 Voronoi tessellation and decision boundaries (double lines) in

1NN classification. 297
14.7 kNN training (with preprocessing) and testing. 298
14.8 There are an infinite number of hyperplanes that separate two

linearly separable classes. 301
14.9 Linear classification algorithm. 302
14.10 A linear problem with noise. 304
14.11 A nonlinear problem. 305
14.12 J hyperplanes do not divide space into J disjoint regions. 307
14.13 Arithmetic transformations for the bias-variance decomposition. 310
14.14 Example for differences between Euclidean distance, dot

product similarity and cosine similarity. 316
14.15 A simple non-separable set of points. 317

15.1 The support vectors are the 5 points right up against the
margin of the classifier. 320

15.2 An intuition for large-margin classification. 321
15.3 The geometric margin of a point (r) and a decision boundary (ρ). 323
15.4 A tiny 3 data point training set for an SVM. 325
15.5 Large margin classification with slack variables. 327
15.6 Projecting data that is not linearly separable into a higher

dimensional space can make it linearly separable. 331
15.7 A collection of training examples. 343

16.1 An example of a data set with a clear cluster structure. 349
16.2 Clustering of search results to improve recall. 352
16.3 An example of a user session in Scatter-Gather. 353
16.4 Purity as an external evaluation criterion for cluster quality. 357
16.5 The K-means algorithm. 361
16.6 A K-means example for K = 2 in R2. 362
16.7 The outcome of clustering in K-means depends on the initial

seeds. 364
16.8 Estimated minimal residual sum of squares as a function of

the number of clusters in K-means. 366

17.1 A dendrogram of a single-link clustering of 30 documents
from Reuters-RCV1. 379

17.2 A simple, but inefficient HAC algorithm. 381



Online edition (c)
2009 Cambridge UP

xxiv List of Figures

17.3 The different notions of cluster similarity used by the four
HAC algorithms. 381

17.4 A single-link (left) and complete-link (right) clustering of
eight documents. 382

17.5 A dendrogram of a complete-link clustering. 383
17.6 Chaining in single-link clustering. 384
17.7 Outliers in complete-link clustering. 385
17.8 The priority-queue algorithm for HAC. 386
17.9 Single-link clustering algorithm using an NBM array. 387
17.10 Complete-link clustering is not best-merge persistent. 388
17.11 Three iterations of centroid clustering. 391
17.12 Centroid clustering is not monotonic. 392

18.1 Illustration of the singular-value decomposition. 409
18.2 Illustration of low rank approximation using the

singular-value decomposition. 411
18.3 The documents of Example 18.4 reduced to two dimensions

in (V′)T. 416
18.4 Documents for Exercise 18.11. 418
18.5 Glossary for Exercise 18.11. 418

19.1 A dynamically generated web page. 425
19.2 Two nodes of the web graph joined by a link. 425
19.3 A sample small web graph. 426
19.4 The bowtie structure of the Web. 427
19.5 Cloaking as used by spammers. 428
19.6 Search advertising triggered by query keywords. 431
19.7 The various components of a web search engine. 434
19.8 Illustration of shingle sketches. 439
19.9 Two sets Sj1 and Sj2 ; their Jaccard coefficient is 2/5. 440

20.1 The basic crawler architecture. 446
20.2 Distributing the basic crawl architecture. 449
20.3 The URL frontier. 452
20.4 Example of an auxiliary hosts-to-back queues table. 453
20.5 A lexicographically ordered set of URLs. 456
20.6 A four-row segment of the table of links. 457

21.1 The random surfer at node A proceeds with probability 1/3 to
each of B, C and D. 464

21.2 A simple Markov chain with three states; the numbers on the
links indicate the transition probabilities. 466

21.3 The sequence of probability vectors. 469



Online edition (c)
2009 Cambridge UP

List of Figures xxv

21.4 A small web graph. 470
21.5 Topic-specific PageRank. 472
21.6 A sample run of HITS on the query japan elementary schools. 479
21.7 Web graph for Exercise 21.22. 480



Online edition (c)
2009 Cambridge UP



Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xxvii

Table of Notation

Symbol Page Meaning

γ p. 98 γ code

γ p. 256 Classification or clustering function: γ(d) is d’s class
or cluster

Γ p. 256 Supervised learning method in Chapters 13 and 14:
Γ(D) is the classification function γ learned from
training set D

λ p. 404 Eigenvalue

~µ(.) p. 292 Centroid of a class (in Rocchio classification) or a
cluster (in K-means and centroid clustering)

Φ p. 114 Training example

σ p. 408 Singular value

Θ(·) p. 11 A tight bound on the complexity of an algorithm

ω, ωk p. 357 Cluster in clustering

Ω p. 357 Clustering or set of clusters {ω1, . . . , ωK}
arg maxx f (x) p. 181 The value of x for which f reaches its maximum

arg minx f (x) p. 181 The value of x for which f reaches its minimum

c, cj p. 256 Class or category in classification

cft p. 89 The collection frequency of term t (the total number
of times the term appears in the document collec-
tion)

C p. 256 Set {c1, . . . , cJ} of all classes

C p. 268 A random variable that takes as values members of
C



Online edition (c)
2009 Cambridge UP

xxviii Table of Notation

C p. 403 Term-document matrix

d p. 4 Index of the dth document in the collection D

d p. 71 A document

~d,~q p. 181 Document vector, query vector

D p. 354 Set {d1, . . . , dN} of all documents

Dc p. 292 Set of documents that is in class c

D p. 256 Set {〈d1, c1〉, . . . , 〈dN, cN〉} of all labeled documents
in Chapters 13–15

dft p. 118 The document frequency of term t (the total number
of documents in the collection the term appears in)

H p. 99 Entropy

HM p. 101 Mth harmonic number

I(X; Y) p. 272 Mutual information of random variables X and Y

idft p. 118 Inverse document frequency of term t

J p. 256 Number of classes

k p. 290 Top k items from a set, e.g., k nearest neighbors in
kNN, top k retrieved documents, top k selected fea-
tures from the vocabulary V

k p. 54 Sequence of k characters

K p. 354 Number of clusters

Ld p. 233 Length of document d (in tokens)

La p. 262 Length of the test document (or application docu-
ment) in tokens

Lave p. 70 Average length of a document (in tokens)

M p. 5 Size of the vocabulary (|V|)
Ma p. 262 Size of the vocabulary of the test document (or ap-

plication document)

Mave p. 78 Average size of the vocabulary in a document in the
collection

Md p. 237 Language model for document d

N p. 4 Number of documents in the retrieval or training
collection

Nc p. 259 Number of documents in class c

N(ω) p. 298 Number of times the event ω occurred



Online edition (c)
2009 Cambridge UP

Table of Notation xxix

O(·) p. 11 A bound on the complexity of an algorithm

O(·) p. 221 The odds of an event

P p. 155 Precision

P(·) p. 220 Probability

P p. 465 Transition probability matrix

q p. 59 A query

R p. 155 Recall

si p. 58 A string

si p. 112 Boolean values for zone scoring

sim(d1, d2) p. 121 Similarity score for documents d1, d2

T p. 43 Total number of tokens in the document collection

Tct p. 259 Number of occurrences of word t in documents of
class c

t p. 4 Index of the tth term in the vocabulary V

t p. 61 A term in the vocabulary

tft,d p. 117 The term frequency of term t in document d (the to-
tal number of occurrences of t in d)

Ut p. 266 Random variable taking values 0 (term t is present)
and 1 (t is not present)

V p. 208 Vocabulary of terms {t1, . . . , tM} in a collection (a.k.a.
the lexicon)

~v(d) p. 122 Length-normalized document vector

~V(d) p. 120 Vector of document d, not length-normalized

wft,d p. 125 Weight of term t in document d

w p. 112 A weight, for example for zones or terms

~wT~x = b p. 293 Hyperplane; ~w is the normal vector of the hyper-
plane and wi component i of ~w

~x p. 222 Term incidence vector ~x = (x1, . . . , xM); more gen-
erally: document feature representation

X p. 266 Random variable taking values in V, the vocabulary
(e.g., at a given position k in a document)

X p. 256 Document space in text classification

|A| p. 61 Set cardinality: the number of members of set A

|S| p. 404 Determinant of the square matrix S



Online edition (c)
2009 Cambridge UP

xxx Table of Notation

|si| p. 58 Length in characters of string si

|~x| p. 139 Length of vector ~x

|~x−~y| p. 131 Euclidean distance of ~x and ~y (which is the length of
(~x−~y))



Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xxxi

Preface

As recently as the 1990s, studies showed that most people preferred getting
information from other people rather than from information retrieval sys-
tems. Of course, in that time period, most people also used human travel
agents to book their travel. However, during the last decade, relentless opti-
mization of information retrieval effectiveness has driven web search engines
to new quality levels where most people are satisfied most of the time, and
web search has become a standard and often preferred source of information
finding. For example, the 2004 Pew Internet Survey (Fallows 2004) found
that “92% of Internet users say the Internet is a good place to go for getting
everyday information.” To the surprise of many, the field of information re-
trieval has moved from being a primarily academic discipline to being the
basis underlying most people’s preferred means of information access. This
book presents the scientific underpinnings of this field, at a level accessible
to graduate students as well as advanced undergraduates.

Information retrieval did not begin with the Web. In response to various
challenges of providing information access, the field of information retrieval
evolved to give principled approaches to searching various forms of con-
tent. The field began with scientific publications and library records, but
soon spread to other forms of content, particularly those of information pro-
fessionals, such as journalists, lawyers, and doctors. Much of the scientific
research on information retrieval has occurred in these contexts, and much of
the continued practice of information retrieval deals with providing access to
unstructured information in various corporate and governmental domains,
and this work forms much of the foundation of our book.

Nevertheless, in recent years, a principal driver of innovation has been the
World Wide Web, unleashing publication at the scale of tens of millions of
content creators. This explosion of published information would be moot
if the information could not be found, annotated and analyzed so that each
user can quickly find information that is both relevant and comprehensive
for their needs. By the late 1990s, many people felt that continuing to index
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the whole Web would rapidly become impossible, due to the Web’s expo-
nential growth in size. But major scientific innovations, superb engineering,
the rapidly declining price of computer hardware, and the rise of a commer-
cial underpinning for web search have all conspired to power today’s major
search engines, which are able to provide high-quality results within subsec-
ond response times for hundreds of millions of searches a day over billions
of web pages.

Book organization and course development

This book is the result of a series of courses we have taught at Stanford Uni-
versity and at the University of Stuttgart, in a range of durations including
a single quarter, one semester and two quarters. These courses were aimed
at early-stage graduate students in computer science, but we have also had
enrollment from upper-class computer science undergraduates, as well as
students from law, medical informatics, statistics, linguistics and various en-
gineering disciplines. The key design principle for this book, therefore, was
to cover what we believe to be important in a one-term graduate course on
information retrieval. An additional principle is to build each chapter around
material that we believe can be covered in a single lecture of 75 to 90 minutes.

The first eight chapters of the book are devoted to the basics of informa-
tion retrieval, and in particular the heart of search engines; we consider this
material to be core to any course on information retrieval. Chapter 1 in-
troduces inverted indexes, and shows how simple Boolean queries can be
processed using such indexes. Chapter 2 builds on this introduction by de-
tailing the manner in which documents are preprocessed before indexing
and by discussing how inverted indexes are augmented in various ways for
functionality and speed. Chapter 3 discusses search structures for dictionar-
ies and how to process queries that have spelling errors and other imprecise
matches to the vocabulary in the document collection being searched. Chap-
ter 4 describes a number of algorithms for constructing the inverted index
from a text collection with particular attention to highly scalable and dis-
tributed algorithms that can be applied to very large collections. Chapter 5
covers techniques for compressing dictionaries and inverted indexes. These
techniques are critical for achieving subsecond response times to user queries
in large search engines. The indexes and queries considered in Chapters 1–5
only deal with Boolean retrieval, in which a document either matches a query,
or does not. A desire to measure the extent to which a document matches a
query, or the score of a document for a query, motivates the development of
term weighting and the computation of scores in Chapters 6 and 7, leading
to the idea of a list of documents that are rank-ordered for a query. Chapter 8
focuses on the evaluation of an information retrieval system based on the
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relevance of the documents it retrieves, allowing us to compare the relative
performances of different systems on benchmark document collections and
queries.

Chapters 9–21 build on the foundation of the first eight chapters to cover
a variety of more advanced topics. Chapter 9 discusses methods by which
retrieval can be enhanced through the use of techniques like relevance feed-
back and query expansion, which aim at increasing the likelihood of retriev-
ing relevant documents. Chapter 10 considers information retrieval from
documents that are structured with markup languages like XML and HTML.
We treat structured retrieval by reducing it to the vector space scoring meth-
ods developed in Chapter 6. Chapters 11 and 12 invoke probability theory to
compute scores for documents on queries. Chapter 11 develops traditional
probabilistic information retrieval, which provides a framework for comput-
ing the probability of relevance of a document, given a set of query terms.
This probability may then be used as a score in ranking. Chapter 12 illus-
trates an alternative, wherein for each document in a collection, we build a
language model from which one can estimate a probability that the language
model generates a given query. This probability is another quantity with
which we can rank-order documents.

Chapters 13–17 give a treatment of various forms of machine learning and
numerical methods in information retrieval. Chapters 13–15 treat the prob-
lem of classifying documents into a set of known categories, given a set of
documents along with the classes they belong to. Chapter 13 motivates sta-
tistical classification as one of the key technologies needed for a successful
search engine, introduces Naive Bayes, a conceptually simple and efficient
text classification method, and outlines the standard methodology for evalu-
ating text classifiers. Chapter 14 employs the vector space model from Chap-
ter 6 and introduces two classification methods, Rocchio and kNN, that op-
erate on document vectors. It also presents the bias-variance tradeoff as an
important characterization of learning problems that provides criteria for se-
lecting an appropriate method for a text classification problem. Chapter 15
introduces support vector machines, which many researchers currently view
as the most effective text classification method. We also develop connections
in this chapter between the problem of classification and seemingly disparate
topics such as the induction of scoring functions from a set of training exam-
ples.

Chapters 16–18 consider the problem of inducing clusters of related doc-
uments from a collection. In Chapter 16, we first give an overview of a
number of important applications of clustering in information retrieval. We
then describe two flat clustering algorithms: the K-means algorithm, an ef-
ficient and widely used document clustering method; and the Expectation-
Maximization algorithm, which is computationally more expensive, but also
more flexible. Chapter 17 motivates the need for hierarchically structured
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clusterings (instead of flat clusterings) in many applications in information
retrieval and introduces a number of clustering algorithms that produce a
hierarchy of clusters. The chapter also addresses the difficult problem of
automatically computing labels for clusters. Chapter 18 develops methods
from linear algebra that constitute an extension of clustering, and also offer
intriguing prospects for algebraic methods in information retrieval, which
have been pursued in the approach of latent semantic indexing.

Chapters 19–21 treat the problem of web search. We give in Chapter 19 a
summary of the basic challenges in web search, together with a set of tech-
niques that are pervasive in web information retrieval. Next, Chapter 20
describes the architecture and requirements of a basic web crawler. Finally,
Chapter 21 considers the power of link analysis in web search, using in the
process several methods from linear algebra and advanced probability the-
ory.

This book is not comprehensive in covering all topics related to informa-
tion retrieval. We have put aside a number of topics, which we deemed
outside the scope of what we wished to cover in an introduction to infor-
mation retrieval class. Nevertheless, for people interested in these topics, we
provide a few pointers to mainly textbook coverage here.

Cross-language IR (Grossman and Frieder 2004, ch. 4) and (Oard and Dorr
1996).

Image and Multimedia IR (Grossman and Frieder 2004, ch. 4), (Baeza-Yates
and Ribeiro-Neto 1999, ch. 6), (Baeza-Yates and Ribeiro-Neto 1999, ch. 11),
(Baeza-Yates and Ribeiro-Neto 1999, ch. 12), (del Bimbo 1999), (Lew 2001),
and (Smeulders et al. 2000).

Speech retrieval (Coden et al. 2002).

Music Retrieval (Downie 2006) and http://www.ismir.net/.

User interfaces for IR (Baeza-Yates and Ribeiro-Neto 1999, ch. 10).

Parallel and Peer-to-Peer IR (Grossman and Frieder 2004, ch. 7), (Baeza-Yates
and Ribeiro-Neto 1999, ch. 9), and (Aberer 2001).

Digital libraries (Baeza-Yates and Ribeiro-Neto 1999, ch. 15) and (Lesk 2004).

Information science perspective (Korfhage 1997), (Meadow et al. 1999), and
(Ingwersen and Järvelin 2005).

Logic-based approaches to IR (van Rijsbergen 1989).

Natural Language Processing techniques (Manning and Schütze 1999), (Ju-
rafsky and Martin 2008), and (Lewis and Jones 1996).
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Prerequisites

Introductory courses in data structures and algorithms, in linear algebra and
in probability theory suffice as prerequisites for all 21 chapters. We now give
more detail for the benefit of readers and instructors who wish to tailor their
reading to some of the chapters.

Chapters 1–5 assume as prerequisite a basic course in algorithms and data
structures. Chapters 6 and 7 require, in addition, a knowledge of basic lin-
ear algebra including vectors and dot products. No additional prerequisites
are assumed until Chapter 11, where a basic course in probability theory is
required; Section 11.1 gives a quick review of the concepts necessary in Chap-
ters 11–13. Chapter 15 assumes that the reader is familiar with the notion of
nonlinear optimization, although the chapter may be read without detailed
knowledge of algorithms for nonlinear optimization. Chapter 18 demands a
first course in linear algebra including familiarity with the notions of matrix
rank and eigenvectors; a brief review is given in Section 18.1. The knowledge
of eigenvalues and eigenvectors is also necessary in Chapter 21.

Book layout

✎ Worked examples in the text appear with a pencil sign next to them in the left
margin. Advanced or difficult material appears in sections or subsections
indicated with scissors in the margin. Exercises are marked in the margin✄ with a question mark. The level of difficulty of exercises is indicated as easy
(⋆), medium (⋆⋆), or difficult (⋆ ⋆ ⋆).?
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1 Boolean retrieval

The meaning of the term information retrieval can be very broad. Just getting
a credit card out of your wallet so that you can type in the card number
is a form of information retrieval. However, as an academic field of study,
information retrieval might be defined thus:INFORMATION

RETRIEVAL

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information need
from within large collections (usually stored on computers).

As defined in this way, information retrieval used to be an activity that only
a few people engaged in: reference librarians, paralegals, and similar pro-
fessional searchers. Now the world has changed, and hundreds of millions
of people engage in information retrieval every day when they use a web
search engine or search their email.1 Information retrieval is fast becoming
the dominant form of information access, overtaking traditional database-
style searching (the sort that is going on when a clerk says to you: “I’m sorry,
I can only look up your order if you can give me your Order ID”).

IR can also cover other kinds of data and information problems beyond
that specified in the core definition above. The term “unstructured data”
refers to data which does not have clear, semantically overt, easy-for-a-computer
structure. It is the opposite of structured data, the canonical example of
which is a relational database, of the sort companies usually use to main-
tain product inventories and personnel records. In reality, almost no data
are truly “unstructured”. This is definitely true of all text data if you count
the latent linguistic structure of human languages. But even accepting that
the intended notion of structure is overt structure, most text has structure,
such as headings and paragraphs and footnotes, which is commonly repre-
sented in documents by explicit markup (such as the coding underlying web

1. In modern parlance, the word “search” has tended to replace “(information) retrieval”; the
term “search” is quite ambiguous, but in context we use the two synonymously.
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pages). IR is also used to facilitate “semistructured” search such as finding a
document where the title contains Java and the body contains threading.

The field of information retrieval also covers supporting users in browsing
or filtering document collections or further processing a set of retrieved doc-
uments. Given a set of documents, clustering is the task of coming up with a
good grouping of the documents based on their contents. It is similar to ar-
ranging books on a bookshelf according to their topic. Given a set of topics,
standing information needs, or other categories (such as suitability of texts
for different age groups), classification is the task of deciding which class(es),
if any, each of a set of documents belongs to. It is often approached by first
manually classifying some documents and then hoping to be able to classify
new documents automatically.

Information retrieval systems can also be distinguished by the scale at
which they operate, and it is useful to distinguish three prominent scales.
In web search, the system has to provide search over billions of documents
stored on millions of computers. Distinctive issues are needing to gather
documents for indexing, being able to build systems that work efficiently
at this enormous scale, and handling particular aspects of the web, such as
the exploitation of hypertext and not being fooled by site providers manip-
ulating page content in an attempt to boost their search engine rankings,
given the commercial importance of the web. We focus on all these issues
in Chapters 19–21. At the other extreme is personal information retrieval. In
the last few years, consumer operating systems have integrated information
retrieval (such as Apple’s Mac OS X Spotlight or Windows Vista’s Instant
Search). Email programs usually not only provide search but also text clas-
sification: they at least provide a spam (junk mail) filter, and commonly also
provide either manual or automatic means for classifying mail so that it can
be placed directly into particular folders. Distinctive issues here include han-
dling the broad range of document types on a typical personal computer,
and making the search system maintenance free and sufficiently lightweight
in terms of startup, processing, and disk space usage that it can run on one
machine without annoying its owner. In between is the space of enterprise,
institutional, and domain-specific search, where retrieval might be provided for
collections such as a corporation’s internal documents, a database of patents,
or research articles on biochemistry. In this case, the documents will typi-
cally be stored on centralized file systems and one or a handful of dedicated
machines will provide search over the collection. This book contains tech-
niques of value over this whole spectrum, but our coverage of some aspects
of parallel and distributed search in web-scale search systems is compara-
tively light owing to the relatively small published literature on the details
of such systems. However, outside of a handful of web search companies, a
software developer is most likely to encounter the personal search and en-
terprise scenarios.
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In this chapter we begin with a very simple example of an information
retrieval problem, and introduce the idea of a term-document matrix (Sec-
tion 1.1) and the central inverted index data structure (Section 1.2). We will
then examine the Boolean retrieval model and how Boolean queries are pro-
cessed (Sections 1.3 and 1.4).

1.1 An example information retrieval problem

A fat book which many people own is Shakespeare’s Collected Works. Sup-
pose you wanted to determine which plays of Shakespeare contain the words
Brutus AND Caesar AND NOT Calpurnia. One way to do that is to start at the
beginning and to read through all the text, noting for each play whether
it contains Brutus and Caesar and excluding it from consideration if it con-
tains Calpurnia. The simplest form of document retrieval is for a computer
to do this sort of linear scan through documents. This process is commonly
referred to as grepping through text, after the Unix command grep , whichGREP

performs this process. Grepping through text can be a very effective process,
especially given the speed of modern computers, and often allows useful
possibilities for wildcard pattern matching through the use of regular expres-
sions. With modern computers, for simple querying of modest collections
(the size of Shakespeare’s Collected Works is a bit under one million words
of text in total), you really need nothing more.

But for many purposes, you do need more:

1. To process large document collections quickly. The amount of online data
has grown at least as quickly as the speed of computers, and we would
now like to be able to search collections that total in the order of billions
to trillions of words.

2. To allow more flexible matching operations. For example, it is impractical
to perform the query Romans NEAR countrymen with grep , where NEAR

might be defined as “within 5 words” or “within the same sentence”.

3. To allow ranked retrieval: in many cases you want the best answer to an
information need among many documents that contain certain words.

The way to avoid linearly scanning the texts for each query is to index theINDEX

documents in advance. Let us stick with Shakespeare’s Collected Works,
and use it to introduce the basics of the Boolean retrieval model. Suppose
we record for each document – here a play of Shakespeare’s – whether it
contains each word out of all the words Shakespeare used (Shakespeare used
about 32,000 different words). The result is a binary term-document incidenceINCIDENCE MATRIX

matrix, as in Figure 1.1. Terms are the indexed units (further discussed inTERM

Section 2.2); they are usually words, and for the moment you can think of
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Antony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

◮ Figure 1.1 A term-document incidence matrix. Matrix element (t, d) is 1 if the
play in column d contains the word in row t, and is 0 otherwise.

them as words, but the information retrieval literature normally speaks of
terms because some of them, such as perhaps I-9 or Hong Kong are not usually
thought of as words. Now, depending on whether we look at the matrix rows
or columns, we can have a vector for each term, which shows the documents
it appears in, or a vector for each document, showing the terms that occur in
it.2

To answer the query Brutus AND Caesar AND NOT Calpurnia, we take the
vectors for Brutus, Caesar and Calpurnia, complement the last, and then do a
bitwise AND:

110100 AND 110111 AND 101111 = 100100

The answers for this query are thus Antony and Cleopatra and Hamlet (Fig-
ure 1.2).

The Boolean retrieval model is a model for information retrieval in which weBOOLEAN RETRIEVAL
MODEL can pose any query which is in the form of a Boolean expression of terms,

that is, in which terms are combined with the operators AND, OR, and NOT.
The model views each document as just a set of words.

Let us now consider a more realistic scenario, simultaneously using the
opportunity to introduce some terminology and notation. Suppose we have
N = 1 million documents. By documents we mean whatever units we haveDOCUMENT

decided to build a retrieval system over. They might be individual memos
or chapters of a book (see Section 2.1.2 (page 20) for further discussion). We
will refer to the group of documents over which we perform retrieval as the
(document) collection. It is sometimes also referred to as a corpus (a body ofCOLLECTION

CORPUS texts). Suppose each document is about 1000 words long (2–3 book pages). If

2. Formally, we take the transpose of the matrix to be able to get the terms as column vectors.
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Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.

◮ Figure 1.2 Results from Shakespeare for the query Brutus AND Caesar AND NOT

Calpurnia.

we assume an average of 6 bytes per word including spaces and punctuation,
then this is a document collection about 6 GB in size. Typically, there might
be about M = 500,000 distinct terms in these documents. There is nothing
special about the numbers we have chosen, and they might vary by an order
of magnitude or more, but they give us some idea of the dimensions of the
kinds of problems we need to handle. We will discuss and model these size
assumptions in Section 5.1 (page 86).

Our goal is to develop a system to address the ad hoc retrieval task. This isAD HOC RETRIEVAL

the most standard IR task. In it, a system aims to provide documents from
within the collection that are relevant to an arbitrary user information need,
communicated to the system by means of a one-off, user-initiated query. An
information need is the topic about which the user desires to know more, andINFORMATION NEED

is differentiated from a query, which is what the user conveys to the com-QUERY

puter in an attempt to communicate the information need. A document is
relevant if it is one that the user perceives as containing information of valueRELEVANCE

with respect to their personal information need. Our example above was
rather artificial in that the information need was defined in terms of par-
ticular words, whereas usually a user is interested in a topic like “pipeline
leaks” and would like to find relevant documents regardless of whether they
precisely use those words or express the concept with other words such as
pipeline rupture. To assess the effectiveness of an IR system (i.e., the quality ofEFFECTIVENESS

its search results), a user will usually want to know two key statistics about
the system’s returned results for a query:

Precision: What fraction of the returned results are relevant to the informa-PRECISION

tion need?

Recall: What fraction of the relevant documents in the collection were re-RECALL

turned by the system?
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Detailed discussion of relevance and evaluation measures including preci-
sion and recall is found in Chapter 8.

We now cannot build a term-document matrix in a naive way. A 500K×
1M matrix has half-a-trillion 0’s and 1’s – too many to fit in a computer’s
memory. But the crucial observation is that the matrix is extremely sparse,
that is, it has few non-zero entries. Because each document is 1000 words
long, the matrix has no more than one billion 1’s, so a minimum of 99.8% of
the cells are zero. A much better representation is to record only the things
that do occur, that is, the 1 positions.

This idea is central to the first major concept in information retrieval, the
inverted index. The name is actually redundant: an index always maps backINVERTED INDEX

from terms to the parts of a document where they occur. Nevertheless, in-
verted index, or sometimes inverted file, has become the standard term in infor-
mation retrieval.3 The basic idea of an inverted index is shown in Figure 1.3.
We keep a dictionary of terms (sometimes also referred to as a vocabulary orDICTIONARY

VOCABULARY lexicon; in this book, we use dictionary for the data structure and vocabulary
LEXICON for the set of terms). Then for each term, we have a list that records which

documents the term occurs in. Each item in the list – which records that a
term appeared in a document (and, later, often, the positions in the docu-
ment) – is conventionally called a posting.4 The list is then called a postingsPOSTING

POSTINGS LIST list (or inverted list), and all the postings lists taken together are referred to as
the postings. The dictionary in Figure 1.3 has been sorted alphabetically andPOSTINGS

each postings list is sorted by document ID. We will see why this is useful in
Section 1.3, below, but later we will also consider alternatives to doing this
(Section 7.1.5).

1.2 A first take at building an inverted index

To gain the speed benefits of indexing at retrieval time, we have to build the
index in advance. The major steps in this are:

1. Collect the documents to be indexed:
Friends, Romans, countrymen. So let it be with Caesar . . .

2. Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3. Some information retrieval researchers prefer the term inverted file, but expressions like in-
dex construction and index compression are much more common than inverted file construction and
inverted file compression. For consistency, we use (inverted) index throughout this book.
4. In a (non-positional) inverted index, a posting is just a document ID, but it is inherently
associated with a term, via the postings list it is placed on; sometimes we will also talk of a
(term, docID) pair as a posting.
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Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

◮ Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID

struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.
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Doc 1 Doc 2
I did enact Julius Caesar: I was killed
i’ the Capitol; Brutus killed me.

So let it be with Caesar. The noble Brutus
hath told you Caesar was ambitious:

term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2
be 1 → 2
brutus 2 → 1 → 2
capitol 1 → 1
caesar 2 → 1 → 2
did 1 → 1
enact 1 → 1
hath 1 → 2
I 1 → 1
i’ 1 → 1
it 1 → 2
julius 1 → 1
killed 1 → 1
let 1 → 2
me 1 → 1
noble 1 → 2
so 1 → 2
the 2 → 1 → 2
told 1 → 2
you 1 → 2
was 2 → 1 → 2
with 1 → 2

◮ Figure 1.4 Building an index by sorting and grouping. The sequence of terms
in each document, tagged by their documentID (left) is sorted alphabetically (mid-
dle). Instances of the same term are then grouped by word and then by documentID.
The terms and documentIDs are then separated out (right). The dictionary stores
the terms, and has a pointer to the postings list for each term. It commonly also
stores other summary information such as, here, the document frequency of each
term. We use this information for improving query time efficiency and, later, for
weighting in ranked retrieval models. Each postings list stores the list of documents
in which a term occurs, and may store other information such as the term frequency
(the frequency of each term in each document) or the position(s) of the term in each
document.
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search engine at query time, and it is a statistic later used in many ranked re-
trieval models. The postings are secondarily sorted by docID. This provides
the basis for efficient query processing. This inverted index structure is es-
sentially without rivals as the most efficient structure for supporting ad hoc
text search.

In the resulting index, we pay for storage of both the dictionary and the
postings lists. The latter are much larger, but the dictionary is commonly
kept in memory, while postings lists are normally kept on disk, so the size
of each is important, and in Chapter 5 we will examine how each can be
optimized for storage and access efficiency. What data structure should be
used for a postings list? A fixed length array would be wasteful as some
words occur in many documents, and others in very few. For an in-memory
postings list, two good alternatives are singly linked lists or variable length
arrays. Singly linked lists allow cheap insertion of documents into postings
lists (following updates, such as when recrawling the web for updated doc-
uments), and naturally extend to more advanced indexing strategies such as
skip lists (Section 2.3), which require additional pointers. Variable length ar-
rays win in space requirements by avoiding the overhead for pointers and in
time requirements because their use of contiguous memory increases speed
on modern processors with memory caches. Extra pointers can in practice be
encoded into the lists as offsets. If updates are relatively infrequent, variable
length arrays will be more compact and faster to traverse. We can also use a
hybrid scheme with a linked list of fixed length arrays for each term. When
postings lists are stored on disk, they are stored (perhaps compressed) as a
contiguous run of postings without explicit pointers (as in Figure 1.3), so as
to minimize the size of the postings list and the number of disk seeks to read
a postings list into memory.

? Exercise 1.1 [⋆]

Draw the inverted index that would be built for the following document collection.
(See Figure 1.3 for an example.)

Doc 1 new home sales top forecasts
Doc 2 home sales rise in july
Doc 3 increase in home sales in july
Doc 4 july new home sales rise

Exercise 1.2 [⋆]
Consider these documents:

Doc 1 breakthrough drug for schizophrenia
Doc 2 new schizophrenia drug
Doc 3 new approach for treatment of schizophrenia
Doc 4 new hopes for schizophrenia patients

a. Draw the term-document incidence matrix for this document collection.
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Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

◮ Figure 1.5 Intersecting the postings lists for Brutus and Calpurnia from Figure 1.3.

b. Draw the inverted index representation for this collection, as in Figure 1.3 (page 7).

Exercise 1.3 [⋆]

For the document collection shown in Exercise 1.2, what are the returned results for
these queries:

a. schizophrenia AND drug

b. for AND NOT(drug OR approach)

1.3 Processing Boolean queries

How do we process a query using an inverted index and the basic Boolean
retrieval model? Consider processing the simple conjunctive query:SIMPLE CONJUNCTIVE

QUERIES

(1.1) Brutus AND Calpurnia

over the inverted index partially shown in Figure 1.3 (page 7). We:

1. Locate Brutus in the Dictionary

2. Retrieve its postings

3. Locate Calpurnia in the Dictionary

4. Retrieve its postings

5. Intersect the two postings lists, as shown in Figure 1.5.

The intersection operation is the crucial one: we need to efficiently intersectPOSTINGS LIST
INTERSECTION postings lists so as to be able to quickly find documents that contain both

terms. (This operation is sometimes referred to as merging postings lists:POSTINGS MERGE

this slightly counterintuitive name reflects using the term merge algorithm for
a general family of algorithms that combine multiple sorted lists by inter-
leaved advancing of pointers through each; here we are merging the lists
with a logical AND operation.)

There is a simple and effective method of intersecting postings lists using
the merge algorithm (see Figure 1.6): we maintain pointers into both lists
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INTERSECT(p1, p2)
1 answer ← 〈 〉
2 while p1 6= NIL and p2 6= NIL

3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

◮ Figure 1.6 Algorithm for the intersection of two postings lists p1 and p2.

and walk through the two postings lists simultaneously, in time linear in
the total number of postings entries. At each step, we compare the docID
pointed to by both pointers. If they are the same, we put that docID in the
results list, and advance both pointers. Otherwise we advance the pointer
pointing to the smaller docID. If the lengths of the postings lists are x and
y, the intersection takes O(x + y) operations. Formally, the complexity of
querying is Θ(N), where N is the number of documents in the collection.6

Our indexing methods gain us just a constant, not a difference in Θ time
complexity compared to a linear scan, but in practice the constant is huge.
To use this algorithm, it is crucial that postings be sorted by a single global
ordering. Using a numeric sort by docID is one simple way to achieve this.

We can extend the intersection operation to process more complicated queries
like:

(1.2) (Brutus OR Caesar) AND NOT Calpurnia

Query optimization is the process of selecting how to organize the work of an-QUERY OPTIMIZATION

swering a query so that the least total amount of work needs to be done by
the system. A major element of this for Boolean queries is the order in which
postings lists are accessed. What is the best order for query processing? Con-
sider a query that is an AND of t terms, for instance:

(1.3) Brutus AND Caesar AND Calpurnia

For each of the t terms, we need to get its postings, then AND them together.
The standard heuristic is to process terms in order of increasing document

6. The notation Θ(·) is used to express an asymptotically tight bound on the complexity of
an algorithm. Informally, this is often written as O(·), but this notation really expresses an
asymptotic upper bound, which need not be tight (Cormen et al. 1990).
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INTERSECT(〈t1, . . . , tn〉)
1 terms← SORTBYINCREASINGFREQUENCY(〈t1, . . . , tn〉)
2 result ← postings( f irst(terms))
3 terms← rest(terms)
4 while terms 6= NIL and result 6= NIL

5 do result ← INTERSECT(result, postings( f irst(terms)))
6 terms← rest(terms)
7 return result

◮ Figure 1.7 Algorithm for conjunctive queries that returns the set of documents
containing each term in the input list of terms.

frequency: if we start by intersecting the two smallest postings lists, then all
intermediate results must be no bigger than the smallest postings list, and we
are therefore likely to do the least amount of total work. So, for the postings
lists in Figure 1.3 (page 7), we execute the above query as:

(1.4) (Calpurnia AND Brutus) AND Caesar

This is a first justification for keeping the frequency of terms in the dictionary:
it allows us to make this ordering decision based on in-memory data before
accessing any postings list.

Consider now the optimization of more general queries, such as:

(1.5) (madding OR crowd) AND (ignoble OR strife) AND (killed OR slain)

As before, we will get the frequencies for all terms, and we can then (con-
servatively) estimate the size of each OR by the sum of the frequencies of its
disjuncts. We can then process the query in increasing order of the size of
each disjunctive term.

For arbitrary Boolean queries, we have to evaluate and temporarily store
the answers for intermediate expressions in a complex expression. However,
in many circumstances, either because of the nature of the query language,
or just because this is the most common type of query that users submit, a
query is purely conjunctive. In this case, rather than viewing merging post-
ings lists as a function with two inputs and a distinct output, it is more ef-
ficient to intersect each retrieved postings list with the current intermediate
result in memory, where we initialize the intermediate result by loading the
postings list of the least frequent term. This algorithm is shown in Figure 1.7.
The intersection operation is then asymmetric: the intermediate results list
is in memory while the list it is being intersected with is being read from
disk. Moreover the intermediate results list is always at least as short as the
other list, and in many cases it is orders of magnitude shorter. The postings
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intersection can still be done by the algorithm in Figure 1.6, but when the
difference between the list lengths is very large, opportunities to use alter-
native techniques open up. The intersection can be calculated in place by
destructively modifying or marking invalid items in the intermediate results
list. Or the intersection can be done as a sequence of binary searches in the
long postings lists for each posting in the intermediate results list. Another
possibility is to store the long postings list as a hashtable, so that membership
of an intermediate result item can be calculated in constant rather than linear
or log time. However, such alternative techniques are difficult to combine
with postings list compression of the sort discussed in Chapter 5. Moreover,
standard postings list intersection operations remain necessary when both
terms of a query are very common.

? Exercise 1.4 [⋆]

For the queries below, can we still run through the intersection in time O(x + y),
where x and y are the lengths of the postings lists for Brutus and Caesar? If not, what
can we achieve?

a. Brutus AND NOT Caesar

b. Brutus OR NOT Caesar

Exercise 1.5 [⋆]

Extend the postings merge algorithm to arbitrary Boolean query formulas. What is
its time complexity? For instance, consider:

c. (Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

Can we always merge in linear time? Linear in what? Can we do better than this?

Exercise 1.6 [⋆⋆]

We can use distributive laws for AND and OR to rewrite queries.

a. Show how to rewrite the query in Exercise 1.5 into disjunctive normal form using
the distributive laws.

b. Would the resulting query be more or less efficiently evaluated than the original
form of this query?

c. Is this result true in general or does it depend on the words and the contents of
the document collection?

Exercise 1.7 [⋆]

Recommend a query processing order for

d. (tangerine OR trees) AND (marmalade OR skies) AND (kaleidoscope OR eyes)

given the following postings list sizes:
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Term Postings size
eyes 213312
kaleidoscope 87009
marmalade 107913
skies 271658
tangerine 46653
trees 316812

Exercise 1.8 [⋆]

If the query is:

e. friends AND romans AND (NOT countrymen)

how could we use the frequency of countrymen in evaluating the best query evaluation
order? In particular, propose a way of handling negation in determining the order of
query processing.

Exercise 1.9 [⋆⋆]

For a conjunctive query, is processing postings lists in order of size guaranteed to be
optimal? Explain why it is, or give an example where it isn’t.

Exercise 1.10 [⋆⋆]

Write out a postings merge algorithm, in the style of Figure 1.6 (page 11), for an x OR y
query.

Exercise 1.11 [⋆⋆]

How should the Boolean query x AND NOT y be handled? Why is naive evaluation
of this query normally very expensive? Write out a postings merge algorithm that
evaluates this query efficiently.

1.4 The extended Boolean model versus ranked retrieval

The Boolean retrieval model contrasts with ranked retrieval models such as theRANKED RETRIEVAL
MODEL vector space model (Section 6.3), in which users largely use free text queries,

FREE TEXT QUERIES that is, just typing one or more words rather than using a precise language
with operators for building up query expressions, and the system decides
which documents best satisfy the query. Despite decades of academic re-
search on the advantages of ranked retrieval, systems implementing the Boo-
lean retrieval model were the main or only search option provided by large
commercial information providers for three decades until the early 1990s (ap-
proximately the date of arrival of the World Wide Web). However, these
systems did not have just the basic Boolean operations (AND, OR, and NOT)
which we have presented so far. A strict Boolean expression over terms with
an unordered results set is too limited for many of the information needs
that people have, and these systems implemented extended Boolean retrieval
models by incorporating additional operators such as term proximity oper-
ators. A proximity operator is a way of specifying that two terms in a queryPROXIMITY OPERATOR
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must occur close to each other in a document, where closeness may be mea-
sured by limiting the allowed number of intervening words or by reference
to a structural unit such as a sentence or paragraph.

✎ Example 1.1: Commercial Boolean searching: Westlaw. Westlaw (http://www.westlaw.com/)
is the largest commercial legal search service (in terms of the number of paying sub-
scribers), with over half a million subscribers performing millions of searches a day
over tens of terabytes of text data. The service was started in 1975. In 2005, Boolean
search (called “Terms and Connectors” by Westlaw) was still the default, and used
by a large percentage of users, although ranked free text querying (called “Natural
Language” by Westlaw) was added in 1992. Here are some example Boolean queries
on Westlaw:

Information need: Information on the legal theories involved in preventing the
disclosure of trade secrets by employees formerly employed by a competing
company. Query: "trade secret" /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to access a work-
place.
Query: disab! /p access! /s work-site work-place (employment /3 place)

Information need: Cases about a host’s responsibility for drunk guests.
Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Note the long, precise queries and the use of proximity operators, both uncommon
in web search. Submitted queries average about ten words in length. Unlike web
search conventions, a space between words represents disjunction (the tightest bind-
ing operator), & is AND and /s, /p, and /k ask for matches in the same sentence,
same paragraph or within k words respectively. Double quotes give a phrase search
(consecutive words); see Section 2.4 (page 39). The exclamation mark (!) gives a trail-
ing wildcard query (see Section 3.2, page 51); thus liab! matches all words starting
with liab. Additionally work-site matches any of worksite, work-site or work site; see
Section 2.2.1 (page 22). Typical expert queries are usually carefully defined and incre-
mentally developed until they obtain what look to be good results to the user.

Many users, particularly professionals, prefer Boolean query models. Boolean
queries are precise: a document either matches the query or it does not. This of-
fers the user greater control and transparency over what is retrieved. And some do-
mains, such as legal materials, allow an effective means of document ranking within a
Boolean model: Westlaw returns documents in reverse chronological order, which is
in practice quite effective. In 2007, the majority of law librarians still seem to rec-
ommend terms and connectors for high recall searches, and the majority of legal
users think they are getting greater control by using them. However, this does not
mean that Boolean queries are more effective for professional searchers. Indeed, ex-
perimenting on a Westlaw subcollection, Turtle (1994) found that free text queries
produced better results than Boolean queries prepared by Westlaw’s own reference
librarians for the majority of the information needs in his experiments. A general
problem with Boolean search is that using AND operators tends to produce high pre-
cision but low recall searches, while using OR operators gives low precision but high
recall searches, and it is difficult or impossible to find a satisfactory middle ground.

In this chapter, we have looked at the structure and construction of a basic
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inverted index, comprising a dictionary and postings lists. We introduced
the Boolean retrieval model, and examined how to do efficient retrieval via
linear time merges and simple query optimization. In Chapters 2–7 we will
consider in detail richer query models and the sort of augmented index struc-
tures that are needed to handle them efficiently. Here we just mention a few
of the main additional things we would like to be able to do:

1. We would like to better determine the set of terms in the dictionary and
to provide retrieval that is tolerant to spelling mistakes and inconsistent
choice of words.

2. It is often useful to search for compounds or phrases that denote a concept
such as “operating system”. As the Westlaw examples show, we might also
wish to do proximity queries such as Gates NEAR Microsoft. To answer
such queries, the index has to be augmented to capture the proximities of
terms in documents.

3. A Boolean model only records term presence or absence, but often we
would like to accumulate evidence, giving more weight to documents that
have a term several times as opposed to ones that contain it only once. To
be able to do this we need term frequency information (the number of timesTERM FREQUENCY

a term occurs in a document) in postings lists.

4. Boolean queries just retrieve a set of matching documents, but commonly
we wish to have an effective method to order (or “rank”) the returned
results. This requires having a mechanism for determining a document
score which encapsulates how good a match a document is for a query.

With these additional ideas, we will have seen most of the basic technol-
ogy that supports ad hoc searching over unstructured information. Ad hoc
searching over documents has recently conquered the world, powering not
only web search engines but the kind of unstructured search that lies behind
the large eCommerce websites. Although the main web search engines differ
by emphasizing free text querying, most of the basic issues and technologies
of indexing and querying remain the same, as we will see in later chapters.
Moreover, over time, web search engines have added at least partial imple-
mentations of some of the most popular operators from extended Boolean
models: phrase search is especially popular and most have a very partial
implementation of Boolean operators. Nevertheless, while these options are
liked by expert searchers, they are little used by most people and are not the
main focus in work on trying to improve web search engine performance.

? Exercise 1.12 [⋆]

Write a query using Westlaw syntax which would find any of the words professor,
teacher, or lecturer in the same sentence as a form of the verb explain.
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Exercise 1.13 [⋆]

Try using the Boolean search features on a couple of major web search engines. For
instance, choose a word, such as burglar, and submit the queries (i) burglar, (ii) burglar
AND burglar, and (iii) burglar OR burglar. Look at the estimated number of results and
top hits. Do they make sense in terms of Boolean logic? Often they haven’t for major
search engines. Can you make sense of what is going on? What about if you try
different words? For example, query for (i) knight, (ii) conquer, and then (iii) knight OR
conquer. What bound should the number of results from the first two queries place
on the third query? Is this bound observed?

1.5 References and further reading

The practical pursuit of computerized information retrieval began in the late
1940s (Cleverdon 1991, Liddy 2005). A great increase in the production of
scientific literature, much in the form of less formal technical reports rather
than traditional journal articles, coupled with the availability of computers,
led to interest in automatic document retrieval. However, in those days, doc-
ument retrieval was always based on author, title, and keywords; full-text
search came much later.

The article of Bush (1945) provided lasting inspiration for the new field:

“Consider a future device for individual use, which is a sort of mech-
anized private file and library. It needs a name, and, to coin one at
random, ‘memex’ will do. A memex is a device in which an individual
stores all his books, records, and communications, and which is mech-
anized so that it may be consulted with exceeding speed and flexibility.
It is an enlarged intimate supplement to his memory.”

The term Information Retrieval was coined by Calvin Mooers in 1948/1950
(Mooers 1950).

In 1958, much newspaper attention was paid to demonstrations at a con-
ference (see Taube and Wooster 1958) of IBM “auto-indexing” machines, based
primarily on the work of H. P. Luhn. Commercial interest quickly gravitated
towards Boolean retrieval systems, but the early years saw a heady debate
over various disparate technologies for retrieval systems. For example Moo-
ers (1961) dissented:

“It is a common fallacy, underwritten at this date by the investment of
several million dollars in a variety of retrieval hardware, that the al-
gebra of George Boole (1847) is the appropriate formalism for retrieval
system design. This view is as widely and uncritically accepted as it is
wrong.”

The observation of AND vs. OR giving you opposite extremes in a precision/
recall tradeoff, but not the middle ground comes from (Lee and Fox 1988).
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The book (Witten et al. 1999) is the standard reference for an in-depth com-
parison of the space and time efficiency of the inverted index versus other
possible data structures; a more succinct and up-to-date presentation ap-
pears in Zobel and Moffat (2006). We further discuss several approaches in
Chapter 5.

Friedl (2006) covers the practical usage of regular expressions for searching.REGULAR EXPRESSIONS

The underlying computer science appears in (Hopcroft et al. 2000).
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2 The term vocabulary and postings

lists

Recall the major steps in inverted index construction:

1. Collect the documents to be indexed.

2. Tokenize the text.

3. Do linguistic preprocessing of tokens.

4. Index the documents that each term occurs in.

In this chapter we first briefly mention how the basic unit of a document can
be defined and how the character sequence that it comprises is determined
(Section 2.1). We then examine in detail some of the substantive linguis-
tic issues of tokenization and linguistic preprocessing, which determine the
vocabulary of terms which a system uses (Section 2.2). Tokenization is the
process of chopping character streams into tokens, while linguistic prepro-
cessing then deals with building equivalence classes of tokens which are the
set of terms that are indexed. Indexing itself is covered in Chapters 1 and 4.
Then we return to the implementation of postings lists. In Section 2.3, we
examine an extended postings list data structure that supports faster query-
ing, while Section 2.4 covers building postings data structures suitable for
handling phrase and proximity queries, of the sort that commonly appear in
both extended Boolean models and on the web.

2.1 Document delineation and character sequence decoding

2.1.1 Obtaining the character sequence in a document

Digital documents that are the input to an indexing process are typically
bytes in a file or on a web server. The first step of processing is to convert this
byte sequence into a linear sequence of characters. For the case of plain En-
glish text in ASCII encoding, this is trivial. But often things get much more
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complex. The sequence of characters may be encoded by one of various sin-
gle byte or multibyte encoding schemes, such as Unicode UTF-8, or various
national or vendor-specific standards. We need to determine the correct en-
coding. This can be regarded as a machine learning classification problem,
as discussed in Chapter 13,1 but is often handled by heuristic methods, user
selection, or by using provided document metadata. Once the encoding is
determined, we decode the byte sequence to a character sequence. We might
save the choice of encoding because it gives some evidence about what lan-
guage the document is written in.

The characters may have to be decoded out of some binary representation
like Microsoft Word DOC files and/or a compressed format such as zip files.
Again, we must determine the document format, and then an appropriate
decoder has to be used. Even for plain text documents, additional decoding
may need to be done. In XML documents (Section 10.1, page 197), charac-
ter entities, such as &amp; , need to be decoded to give the correct character,
namely & for &amp; . Finally, the textual part of the document may need to
be extracted out of other material that will not be processed. This might be
the desired handling for XML files, if the markup is going to be ignored; we
would almost certainly want to do this with postscript or PDF files. We will
not deal further with these issues in this book, and will assume henceforth
that our documents are a list of characters. Commercial products usually
need to support a broad range of document types and encodings, since users
want things to just work with their data as is. Often, they just think of docu-
ments as text inside applications and are not even aware of how it is encoded
on disk. This problem is usually solved by licensing a software library that
handles decoding document formats and character encodings.

The idea that text is a linear sequence of characters is also called into ques-
tion by some writing systems, such as Arabic, where text takes on some
two dimensional and mixed order characteristics, as shown in Figures 2.1
and 2.2. But, despite some complicated writing system conventions, there
is an underlying sequence of sounds being represented and hence an essen-
tially linear structure remains, and this is what is represented in the digital
representation of Arabic, as shown in Figure 2.1.

2.1.2 Choosing a document unit

The next phase is to determine what the document unit for indexing is. ThusDOCUMENT UNIT

far we have assumed that documents are fixed units for the purposes of in-
dexing. For example, we take each file in a folder as a document. But there

1. A classifier is a function that takes objects of some sort and assigns them to one of a number
of distinct classes (see Chapter 13). Usually classification is done by machine learning methods
such as probabilistic models, but it can also be done by hand-written rules.
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     ك  ِ   ت  ا   ب  ٌ      ⇐   آَِ��بٌ
             un b ā  t  i k  
/kitābun/ ‘a book’ 
 

◮ Figure 2.1 An example of a vocalized Modern Standard Arabic word. The writing
is from right to left and letters undergo complex mutations as they are combined. The
representation of short vowels (here, /i/ and /u/) and the final /n/ (nunation) de-
parts from strict linearity by being represented as diacritics above and below letters.
Nevertheless, the represented text is still clearly a linear ordering of characters repre-
senting sounds. Full vocalization, as here, normally appears only in the Koran and
children’s books. Day-to-day text is unvocalized (short vowels are not represented
but the letter for ā would still appear) or partially vocalized, with short vowels in-
serted in places where the writer perceives ambiguities. These choices add further
complexities to indexing.

�ل ا������132 ��� 1962ا����
 ا��
ا�� �� ��� ��  . #"!" !  ا�
                               ← →   ← →                   ← START 
‘Algeria achieved its independence in 1962 after 132 years of French occupation.’ 
 

◮ Figure 2.2 The conceptual linear order of characters is not necessarily the order
that you see on the page. In languages that are written right-to-left, such as Hebrew
and Arabic, it is quite common to also have left-to-right text interspersed, such as
numbers and dollar amounts. With modern Unicode representation concepts, the
order of characters in files matches the conceptual order, and the reversal of displayed
characters is handled by the rendering system, but this may not be true for documents
in older encodings.

are many cases in which you might want to do something different. A tra-
ditional Unix (mbox-format) email file stores a sequence of email messages
(an email folder) in one file, but you might wish to regard each email mes-
sage as a separate document. Many email messages now contain attached
documents, and you might then want to regard the email message and each
contained attachment as separate documents. If an email message has an
attached zip file, you might want to decode the zip file and regard each file
it contains as a separate document. Going in the opposite direction, various
pieces of web software (such as latex2html) take things that you might regard
as a single document (e.g., a Powerpoint file or a LATEX document) and split
them into separate HTML pages for each slide or subsection, stored as sep-
arate files. In these cases, you might want to combine multiple files into a
single document.

More generally, for very long documents, the issue of indexing granularityINDEXING
GRANULARITY arises. For a collection of books, it would usually be a bad idea to index an
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entire book as a document. A search for Chinese toys might bring up a book
that mentions China in the first chapter and toys in the last chapter, but this
does not make it relevant to the query. Instead, we may well wish to index
each chapter or paragraph as a mini-document. Matches are then more likely
to be relevant, and since the documents are smaller it will be much easier for
the user to find the relevant passages in the document. But why stop there?
We could treat individual sentences as mini-documents. It becomes clear
that there is a precision/recall tradeoff here. If the units get too small, we
are likely to miss important passages because terms were distributed over
several mini-documents, while if units are too large we tend to get spurious
matches and the relevant information is hard for the user to find.

The problems with large document units can be alleviated by use of ex-
plicit or implicit proximity search (Sections 2.4.2 and 7.2.2), and the trade-
offs in resulting system performance that we are hinting at are discussed
in Chapter 8. The issue of index granularity, and in particular a need to
simultaneously index documents at multiple levels of granularity, appears
prominently in XML retrieval, and is taken up again in Chapter 10. An IR
system should be designed to offer choices of granularity. For this choice to
be made well, the person who is deploying the system must have a good
understanding of the document collection, the users, and their likely infor-
mation needs and usage patterns. For now, we will henceforth assume that
a suitable size document unit has been chosen, together with an appropriate
way of dividing or aggregating files, if needed.

2.2 Determining the vocabulary of terms

2.2.1 Tokenization

Given a character sequence and a defined document unit, tokenization is the
task of chopping it up into pieces, called tokens, perhaps at the same time
throwing away certain characters, such as punctuation. Here is an example
of tokenization:

Input: Friends, Romans, Countrymen, lend me your ears;
Output: Friends Romans Countrymen lend me your ears

These tokens are often loosely referred to as terms or words, but it is some-
times important to make a type/token distinction. A token is an instanceTOKEN

of a sequence of characters in some particular document that are grouped
together as a useful semantic unit for processing. A type is the class of allTYPE

tokens containing the same character sequence. A term is a (perhaps nor-TERM

malized) type that is included in the IR system’s dictionary. The set of index
terms could be entirely distinct from the tokens, for instance, they could be
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semantic identifiers in a taxonomy, but in practice in modern IR systems they
are strongly related to the tokens in the document. However, rather than be-
ing exactly the tokens that appear in the document, they are usually derived
from them by various normalization processes which are discussed in Sec-
tion 2.2.3.2 For example, if the document to be indexed is to sleep perchance to
dream, then there are 5 tokens, but only 4 types (since there are 2 instances of
to). However, if to is omitted from the index (as a stop word, see Section 2.2.2
(page 27)), then there will be only 3 terms: sleep, perchance, and dream.

The major question of the tokenization phase is what are the correct tokens
to use? In this example, it looks fairly trivial: you chop on whitespace and
throw away punctuation characters. This is a starting point, but even for
English there are a number of tricky cases. For example, what do you do
about the various uses of the apostrophe for possession and contractions?

Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t
amusing.

For O’Neill, which of the following is the desired tokenization?

neill

oneill

o’neill

o’ neill

o neill ?

And for aren’t, is it:

aren’t
arent

are n’t

aren t ?

A simple strategy is to just split on all non-alphanumeric characters, but
while o neill looks okay, aren t looks intuitively bad. For all of them,
the choices determine which Boolean queries will match. A query of neill
AND capital will match in three cases but not the other two. In how many
cases would a query of o’neill AND capital match? If no preprocessing of a
query is done, then it would match in only one of the five cases. For either

2. That is, as defined here, tokens that are not indexed (stop words) are not terms, and if mul-
tiple tokens are collapsed together via normalization, they are indexed as one term, under the
normalized form. However, we later relax this definition when discussing classification and
clustering in Chapters 13–18, where there is no index. In these chapters, we drop the require-
ment of inclusion in the dictionary. A term means a normalized word.
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Boolean or free text queries, you always want to do the exact same tokeniza-
tion of document and query words, generally by processing queries with the
same tokenizer. This guarantees that a sequence of characters in a text will
always match the same sequence typed in a query.3

These issues of tokenization are language-specific. It thus requires the lan-
guage of the document to be known. Language identification based on clas-LANGUAGE

IDENTIFICATION sifiers that use short character subsequences as features is highly effective;
most languages have distinctive signature patterns (see page 46 for refer-
ences).

For most languages and particular domains within them there are unusual
specific tokens that we wish to recognize as terms, such as the programming
languages C++ and C#, aircraft names like B-52, or a T.V. show name such
as M*A*S*H – which is sufficiently integrated into popular culture that you
find usages such as M*A*S*H-style hospitals. Computer technology has in-
troduced new types of character sequences that a tokenizer should probably
tokenize as a single token, including email addresses (jblack@mail.yahoo.com),
web URLs (http://stuff.big.com/new/specials.html),numeric IP addresses (142.32.48.231),
package tracking numbers (1Z9999W99845399981), and more. One possible
solution is to omit from indexing tokens such as monetary amounts, num-
bers, and URLs, since their presence greatly expands the size of the vocab-
ulary. However, this comes at a large cost in restricting what people can
search for. For instance, people might want to search in a bug database for
the line number where an error occurs. Items such as the date of an email,
which have a clear semantic type, are often indexed separately as document
metadata (see Section 6.1, page 110).

In English, hyphenation is used for various purposes ranging from split-HYPHENS

ting up vowels in words (co-education) to joining nouns as names (Hewlett-
Packard) to a copyediting device to show word grouping (the hold-him-back-
and-drag-him-away maneuver). It is easy to feel that the first example should be
regarded as one token (and is indeed more commonly written as just coedu-
cation), the last should be separated into words, and that the middle case is
unclear. Handling hyphens automatically can thus be complex: it can either
be done as a classification problem, or more commonly by some heuristic
rules, such as allowing short hyphenated prefixes on words, but not longer
hyphenated forms.

Conceptually, splitting on white space can also split what should be re-
garded as a single token. This occurs most commonly with names (San Fran-
cisco, Los Angeles) but also with borrowed foreign phrases (au fait) and com-

3. For the free text case, this is straightforward. The Boolean case is more complex: this tok-
enization may produce multiple terms from one query word. This can be handled by combining
the terms with an AND or as a phrase query (see Section 2.4, page 39). It is harder for a system
to handle the opposite case where the user entered as two terms something that was tokenized
together in the document processing.
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pounds that are sometimes written as a single word and sometimes space
separated (such as white space vs. whitespace). Other cases with internal spaces
that we might wish to regard as a single token include phone numbers ((800) 234-
2333) and dates (Mar 11, 1983). Splitting tokens on spaces can cause bad
retrieval results, for example, if a search for York University mainly returns
documents containing New York University. The problems of hyphens and
non-separating whitespace can even interact. Advertisements for air fares
frequently contain items like San Francisco-Los Angeles, where simply doing
whitespace splitting would give unfortunate results. In such cases, issues of
tokenization interact with handling phrase queries (which we discuss in Sec-
tion 2.4 (page 39)), particularly if we would like queries for all of lowercase,
lower-case and lower case to return the same results. The last two can be han-
dled by splitting on hyphens and using a phrase index. Getting the first case
right would depend on knowing that it is sometimes written as two words
and also indexing it in this way. One effective strategy in practice, which
is used by some Boolean retrieval systems such as Westlaw and Lexis-Nexis
(Example 1.1), is to encourage users to enter hyphens wherever they may be
possible, and whenever there is a hyphenated form, the system will general-
ize the query to cover all three of the one word, hyphenated, and two word
forms, so that a query for over-eager will search for over-eager OR “over eager”
OR overeager. However, this strategy depends on user training, since if you
query using either of the other two forms, you get no generalization.

Each new language presents some new issues. For instance, French has a
variant use of the apostrophe for a reduced definite article ‘the’ before a word
beginning with a vowel (e.g., l’ensemble) and has some uses of the hyphen
with postposed clitic pronouns in imperatives and questions (e.g., donne-
moi ‘give me’). Getting the first case correct will affect the correct indexing
of a fair percentage of nouns and adjectives: you would want documents
mentioning both l’ensemble and un ensemble to be indexed under ensemble.
Other languages make the problem harder in new ways. German writes
compound nouns without spaces (e.g., Computerlinguistik ‘computational lin-COMPOUNDS

guistics’; Lebensversicherungsgesellschaftsangestellter ‘life insurance company
employee’). Retrieval systems for German greatly benefit from the use of a
compound-splitter module, which is usually implemented by seeing if a wordCOMPOUND-SPLITTER

can be subdivided into multiple words that appear in a vocabulary. This phe-
nomenon reaches its limit case with major East Asian Languages (e.g., Chi-
nese, Japanese, Korean, and Thai), where text is written without any spaces
between words. An example is shown in Figure 2.3. One approach here is to
perform word segmentation as prior linguistic processing. Methods of wordWORD SEGMENTATION

segmentation vary from having a large vocabulary and taking the longest
vocabulary match with some heuristics for unknown words to the use of
machine learning sequence models, such as hidden Markov models or condi-
tional random fields, trained over hand-segmented words (see the references
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◮ Figure 2.3 The standard unsegmented form of Chinese text using the simplified
characters of mainland China. There is no whitespace between words, not even be-
tween sentences – the apparent space after the Chinese period (◦) is just a typograph-
ical illusion caused by placing the character on the left side of its square box. The
first sentence is just words in Chinese characters with no spaces between them. The
second and third sentences include Arabic numerals and punctuation breaking up
the Chinese characters.

◮ Figure 2.4 Ambiguities in Chinese word segmentation. The two characters can
be treated as one word meaning ‘monk’ or as a sequence of two words meaning ‘and’
and ‘still’.

a an and are as at be by for from
has he in is it its of on that the
to was were will with

◮ Figure 2.5 A stop list of 25 semantically non-selective words which are common
in Reuters-RCV1.

in Section 2.5). Since there are multiple possible segmentations of character
sequences (see Figure 2.4), all such methods make mistakes sometimes, and
so you are never guaranteed a consistent unique tokenization. The other ap-
proach is to abandon word-based indexing and to do all indexing via just
short subsequences of characters (character k-grams), regardless of whether
particular sequences cross word boundaries or not. Three reasons why this
approach is appealing are that an individual Chinese character is more like a
syllable than a letter and usually has some semantic content, that most words
are short (the commonest length is 2 characters), and that, given the lack of
standardization of word breaking in the writing system, it is not always clear
where word boundaries should be placed anyway. Even in English, some
cases of where to put word boundaries are just orthographic conventions –
think of notwithstanding vs. not to mention or into vs. on to – but people are
educated to write the words with consistent use of spaces.
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2.2.2 Dropping common terms: stop words

Sometimes, some extremely common words which would appear to be of
little value in helping select documents matching a user need are excluded
from the vocabulary entirely. These words are called stop words. The generalSTOP WORDS

strategy for determining a stop list is to sort the terms by collection frequencyCOLLECTION
FREQUENCY (the total number of times each term appears in the document collection),

and then to take the most frequent terms, often hand-filtered for their se-
mantic content relative to the domain of the documents being indexed, as
a stop list, the members of which are then discarded during indexing. AnSTOP LIST

example of a stop list is shown in Figure 2.5. Using a stop list significantly
reduces the number of postings that a system has to store; we will present
some statistics on this in Chapter 5 (see Table 5.1, page 87). And a lot of
the time not indexing stop words does little harm: keyword searches with
terms like the and by don’t seem very useful. However, this is not true for
phrase searches. The phrase query “President of the United States”, which con-
tains two stop words, is more precise than President AND “United States”. The
meaning of flights to London is likely to be lost if the word to is stopped out. A
search for Vannevar Bush’s article As we may think will be difficult if the first
three words are stopped out, and the system searches simply for documents
containing the word think. Some special query types are disproportionately
affected. Some song titles and well known pieces of verse consist entirely of
words that are commonly on stop lists (To be or not to be, Let It Be, I don’t want
to be, . . . ).

The general trend in IR systems over time has been from standard use of
quite large stop lists (200–300 terms) to very small stop lists (7–12 terms)
to no stop list whatsoever. Web search engines generally do not use stop
lists. Some of the design of modern IR systems has focused precisely on
how we can exploit the statistics of language so as to be able to cope with
common words in better ways. We will show in Section 5.3 (page 95) how
good compression techniques greatly reduce the cost of storing the postings
for common words. Section 6.2.1 (page 117) then discusses how standard
term weighting leads to very common words having little impact on doc-
ument rankings. Finally, Section 7.1.5 (page 140) shows how an IR system
with impact-sorted indexes can terminate scanning a postings list early when
weights get small, and hence common words do not cause a large additional
processing cost for the average query, even though postings lists for stop
words are very long. So for most modern IR systems, the additional cost of
including stop words is not that big – neither in terms of index size nor in
terms of query processing time.
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Query term Terms in documents that should be matched
Windows Windows
windows Windows, windows, window
window window, windows

◮ Figure 2.6 An example of how asymmetric expansion of query terms can usefully
model users’ expectations.

2.2.3 Normalization (equivalence classing of terms)

Having broken up our documents (and also our query) into tokens, the easy
case is if tokens in the query just match tokens in the token list of the doc-
ument. However, there are many cases when two character sequences are
not quite the same but you would like a match to occur. For instance, if you
search for USA, you might hope to also match documents containing U.S.A.

Token normalization is the process of canonicalizing tokens so that matchesTOKEN
NORMALIZATION occur despite superficial differences in the character sequences of the to-

kens.4 The most standard way to normalize is to implicitly create equivalenceEQUIVALENCE CLASSES

classes, which are normally named after one member of the set. For instance,
if the tokens anti-discriminatory and antidiscriminatory are both mapped onto
the term antidiscriminatory, in both the document text and queries, then searches
for one term will retrieve documents that contain either.

The advantage of just using mapping rules that remove characters like hy-
phens is that the equivalence classing to be done is implicit, rather than being
fully calculated in advance: the terms that happen to become identical as the
result of these rules are the equivalence classes. It is only easy to write rules
of this sort that remove characters. Since the equivalence classes are implicit,
it is not obvious when you might want to add characters. For instance, it
would be hard to know to turn antidiscriminatory into anti-discriminatory.

An alternative to creating equivalence classes is to maintain relations be-
tween unnormalized tokens. This method can be extended to hand-constructed
lists of synonyms such as car and automobile, a topic we discuss further in
Chapter 9. These term relationships can be achieved in two ways. The usual
way is to index unnormalized tokens and to maintain a query expansion list
of multiple vocabulary entries to consider for a certain query term. A query
term is then effectively a disjunction of several postings lists. The alterna-
tive is to perform the expansion during index construction. When the doc-
ument contains automobile, we index it under car as well (and, usually, also
vice-versa). Use of either of these methods is considerably less efficient than
equivalence classing, as there are more postings to store and merge. The first

4. It is also often referred to as term normalization, but we prefer to reserve the name term for the
output of the normalization process.
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method adds a query expansion dictionary and requires more processing at
query time, while the second method requires more space for storing post-
ings. Traditionally, expanding the space required for the postings lists was
seen as more disadvantageous, but with modern storage costs, the increased
flexibility that comes from distinct postings lists is appealing.

These approaches are more flexible than equivalence classes because the
expansion lists can overlap while not being identical. This means there can
be an asymmetry in expansion. An example of how such an asymmetry can
be exploited is shown in Figure 2.6: if the user enters windows, we wish to
allow matches with the capitalized Windows operating system, but this is not
plausible if the user enters window, even though it is plausible for this query
to also match lowercase windows.

The best amount of equivalence classing or query expansion to do is a
fairly open question. Doing some definitely seems a good idea. But doing a
lot can easily have unexpected consequences of broadening queries in unin-
tended ways. For instance, equivalence-classing U.S.A. and USA to the latter
by deleting periods from tokens might at first seem very reasonable, given
the prevalent pattern of optional use of periods in acronyms. However, if I
put in as my query term C.A.T., I might be rather upset if it matches every
appearance of the word cat in documents.5

Below we present some of the forms of normalization that are commonly
employed and how they are implemented. In many cases they seem helpful,
but they can also do harm. In fact, you can worry about many details of
equivalence classing, but it often turns out that providing processing is done
consistently to the query and to documents, the fine details may not have
much aggregate effect on performance.

Accents and diacritics. Diacritics on characters in English have a fairly
marginal status, and we might well want cliché and cliche to match, or naive
and naïve. This can be done by normalizing tokens to remove diacritics. In
many other languages, diacritics are a regular part of the writing system and
distinguish different sounds. Occasionally words are distinguished only by
their accents. For instance, in Spanish, peña is ‘a cliff’, while pena is ‘sorrow’.
Nevertheless, the important question is usually not prescriptive or linguistic
but is a question of how users are likely to write queries for these words. In
many cases, users will enter queries for words without diacritics, whether
for reasons of speed, laziness, limited software, or habits born of the days
when it was hard to use non-ASCII text on many computer systems. In these
cases, it might be best to equate all words to a form without diacritics.

5. At the time we wrote this chapter (Aug. 2005), this was actually the case on Google: the top
result for the query C.A.T. was a site about cats, the Cat Fanciers Web Site http://www.fanciers.com/.
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Capitalization/case-folding. A common strategy is to do case-folding by re-CASE-FOLDING

ducing all letters to lower case. Often this is a good idea: it will allow in-
stances of Automobile at the beginning of a sentence to match with a query of
automobile. It will also help on a web search engine when most of your users
type in ferrari when they are interested in a Ferrari car. On the other hand,
such case folding can equate words that might better be kept apart. Many
proper nouns are derived from common nouns and so are distinguished only
by case, including companies (General Motors, The Associated Press), govern-
ment organizations (the Fed vs. fed) and person names (Bush, Black). We al-
ready mentioned an example of unintended query expansion with acronyms,
which involved not only acronym normalization (C.A.T. → CAT) but also
case-folding (CAT→ cat).

For English, an alternative to making every token lowercase is to just make
some tokens lowercase. The simplest heuristic is to convert to lowercase
words at the beginning of a sentence and all words occurring in a title that is
all uppercase or in which most or all words are capitalized. These words are
usually ordinary words that have been capitalized. Mid-sentence capitalized
words are left as capitalized (which is usually correct). This will mostly avoid
case-folding in cases where distinctions should be kept apart. The same task
can be done more accurately by a machine learning sequence model which
uses more features to make the decision of when to case-fold. This is known
as truecasing. However, trying to get capitalization right in this way probablyTRUECASING

doesn’t help if your users usually use lowercase regardless of the correct case
of words. Thus, lowercasing everything often remains the most practical
solution.

Other issues in English. Other possible normalizations are quite idiosyn-
cratic and particular to English. For instance, you might wish to equate
ne’er and never or the British spelling colour and the American spelling color.
Dates, times and similar items come in multiple formats, presenting addi-
tional challenges. You might wish to collapse together 3/12/91 and Mar. 12,
1991. However, correct processing here is complicated by the fact that in the
U.S., 3/12/91 is Mar. 12, 1991, whereas in Europe it is 3 Dec 1991.

Other languages. English has maintained a dominant position on the WWW;
approximately 60% of web pages are in English (Gerrand 2007). But that still
leaves 40% of the web, and the non-English portion might be expected to
grow over time, since less than one third of Internet users and less than 10%
of the world’s population primarily speak English. And there are signs of
change: Sifry (2007) reports that only about one third of blog posts are in
English.

Other languages again present distinctive issues in equivalence classing.
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◮ Figure 2.7 Japanese makes use of multiple intermingled writing systems and,
like Chinese, does not segment words. The text is mainly Chinese characters with
the hiragana syllabary for inflectional endings and function words. The part in latin
letters is actually a Japanese expression, but has been taken up as the name of an
environmental campaign by 2004 Nobel Peace Prize winner Wangari Maathai. His
name is written using the katakana syllabary in the middle of the first line. The first
four characters of the final line express a monetary amount that we would want to
match with ¥500,000 (500,000 Japanese yen).

The French word for the has distinctive forms based not only on the gender
(masculine or feminine) and number of the following noun, but also depend-
ing on whether the following word begins with a vowel: le, la, l’, les. We may
well wish to equivalence class these various forms of the. German has a con-
vention whereby vowels with an umlaut can be rendered instead as a two
vowel digraph. We would want to treat Schütze and Schuetze as equivalent.

Japanese is a well-known difficult writing system, as illustrated in Fig-
ure 2.7. Modern Japanese is standardly an intermingling of multiple alpha-
bets, principally Chinese characters, two syllabaries (hiragana and katakana)
and western characters (Latin letters, Arabic numerals, and various sym-
bols). While there are strong conventions and standardization through the
education system over the choice of writing system, in many cases the same
word can be written with multiple writing systems. For example, a word
may be written in katakana for emphasis (somewhat like italics). Or a word
may sometimes be written in hiragana and sometimes in Chinese charac-
ters. Successful retrieval thus requires complex equivalence classing across
the writing systems. In particular, an end user might commonly present a
query entirely in hiragana, because it is easier to type, just as Western end
users commonly use all lowercase.

Document collections being indexed can include documents from many
different languages. Or a single document can easily contain text from mul-
tiple languages. For instance, a French email might quote clauses from a
contract document written in English. Most commonly, the language is de-
tected and language-particular tokenization and normalization rules are ap-
plied at a predetermined granularity, such as whole documents or individual
paragraphs, but this still will not correctly deal with cases where language
changes occur for brief quotations. When document collections contain mul-
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tiple languages, a single index may have to contain terms of several lan-
guages. One option is to run a language identification classifier on docu-
ments and then to tag terms in the vocabulary for their language. Or this
tagging can simply be omitted, since it is relatively rare for the exact same
character sequence to be a word in different languages.

When dealing with foreign or complex words, particularly foreign names,
the spelling may be unclear or there may be variant transliteration standards
giving different spellings (for example, Chebyshev and Tchebycheff or Beijing
and Peking). One way of dealing with this is to use heuristics to equiva-
lence class or expand terms with phonetic equivalents. The traditional and
best known such algorithm is the Soundex algorithm, which we cover in
Section 3.4 (page 63).

2.2.4 Stemming and lemmatization

For grammatical reasons, documents are going to use different forms of a
word, such as organize, organizes, and organizing. Additionally, there are fami-
lies of derivationally related words with similar meanings, such as democracy,
democratic, and democratization. In many situations, it seems as if it would be
useful for a search for one of these words to return documents that contain
another word in the set.

The goal of both stemming and lemmatization is to reduce inflectional
forms and sometimes derivationally related forms of a word to a common
base form. For instance:

am, are, is⇒ be
car, cars, car’s, cars’⇒ car

The result of this mapping of text will be something like:

the boy’s cars are different colors⇒
the boy car be differ color

However, the two words differ in their flavor. Stemming usually refers toSTEMMING

a crude heuristic process that chops off the ends of words in the hope of
achieving this goal correctly most of the time, and often includes the re-
moval of derivational affixes. Lemmatization usually refers to doing thingsLEMMATIZATION

properly with the use of a vocabulary and morphological analysis of words,
normally aiming to remove inflectional endings only and to return the base
or dictionary form of a word, which is known as the lemma. If confrontedLEMMA

with the token saw, stemming might return just s, whereas lemmatization
would attempt to return either see or saw depending on whether the use of
the token was as a verb or a noun. The two may also differ in that stemming
most commonly collapses derivationally related words, whereas lemmatiza-
tion commonly only collapses the different inflectional forms of a lemma.
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Linguistic processing for stemming or lemmatization is often done by an ad-
ditional plug-in component to the indexing process, and a number of such
components exist, both commercial and open-source.

The most common algorithm for stemming English, and one that has re-
peatedly been shown to be empirically very effective, is Porter’s algorithmPORTER STEMMER

(Porter 1980). The entire algorithm is too long and intricate to present here,
but we will indicate its general nature. Porter’s algorithm consists of 5 phases
of word reductions, applied sequentially. Within each phase there are var-
ious conventions to select rules, such as selecting the rule from each rule
group that applies to the longest suffix. In the first phase, this convention is
used with the following rule group:

(2.1) Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

Many of the later rules use a concept of the measure of a word, which loosely
checks the number of syllables to see whether a word is long enough that it
is reasonable to regard the matching portion of a rule as a suffix rather than
as part of the stem of a word. For example, the rule:

(m > 1) EMENT →
would map replacement to replac, but not cement to c. The official site for the
Porter Stemmer is:

http://www.tartarus.org/˜ martin/PorterStemmer/

Other stemmers exist, including the older, one-pass Lovins stemmer (Lovins
1968), and newer entrants like the Paice/Husk stemmer (Paice 1990); see:

http://www.cs.waikato.ac.nz/˜ eibe/stemmers/
http://www.comp.lancs.ac.uk/computing/research/stemming/

Figure 2.8 presents an informal comparison of the different behaviors of these
stemmers. Stemmers use language-specific rules, but they require less know-
ledge than a lemmatizer, which needs a complete vocabulary and morpho-
logical analysis to correctly lemmatize words. Particular domains may also
require special stemming rules. However, the exact stemmed form does not
matter, only the equivalence classes it forms.

Rather than using a stemmer, you can use a lemmatizer, a tool from Nat-LEMMATIZER

ural Language Processing which does full morphological analysis to accu-
rately identify the lemma for each word. Doing full morphological analysis
produces at most very modest benefits for retrieval. It is hard to say more,
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Sample text: Such an analysis can reveal features that are not easily visible
from the variations in the individual genes and can lead to a picture of
expression that is more biologically transparent and accessible to
interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that is mor
biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur of express
that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that is mor
biolog transp and access to interpret

◮ Figure 2.8 A comparison of three stemming algorithms on a sample text.

because either form of normalization tends not to improve English informa-
tion retrieval performance in aggregate – at least not by very much. While
it helps a lot for some queries, it equally hurts performance a lot for others.
Stemming increases recall while harming precision. As an example of what
can go wrong, note that the Porter stemmer stems all of the following words:

operate operating operates operation operative operatives operational

to oper. However, since operate in its various forms is a common verb, we
would expect to lose considerable precision on queries such as the following
with Porter stemming:

operational AND research
operating AND system
operative AND dentistry

For a case like this, moving to using a lemmatizer would not completely fix
the problem because particular inflectional forms are used in particular col-
locations: a sentence with the words operate and system is not a good match
for the query operating AND system. Getting better value from term normaliza-
tion depends more on pragmatic issues of word use than on formal issues of
linguistic morphology.

The situation is different for languages with much more morphology (such
as Spanish, German, and Finnish). Results in the European CLEF evaluations
have repeatedly shown quite large gains from the use of stemmers (and com-
pound splitting for languages like German); see the references in Section 2.5.
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? Exercise 2.1 [⋆]

Are the following statements true or false?

a. In a Boolean retrieval system, stemming never lowers precision.

b. In a Boolean retrieval system, stemming never lowers recall.

c. Stemming increases the size of the vocabulary.

d. Stemming should be invoked at indexing time but not while processing a query.

Exercise 2.2 [⋆]

Suggest what normalized form should be used for these words (including the word
itself as a possibility):

a. ’Cos

b. Shi’ite

c. cont’d

d. Hawai’i

e. O’Rourke

Exercise 2.3 [⋆]

The following pairs of words are stemmed to the same form by the Porter stemmer.
Which pairs would you argue shouldn’t be conflated. Give your reasoning.

a. abandon/abandonment

b. absorbency/absorbent

c. marketing/markets

d. university/universe

e. volume/volumes

Exercise 2.4 [⋆]

For the Porter stemmer rule group shown in (2.1):

a. What is the purpose of including an identity rule such as SS→ SS?

b. Applying just this rule group, what will the following words be stemmed to?

circus canaries boss

c. What rule should be added to correctly stem pony?

d. The stemming for ponies and pony might seem strange. Does it have a deleterious
effect on retrieval? Why or why not?
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◮ Figure 2.9 Postings lists with skip pointers. The postings intersection can use a
skip pointer when the end point is still less than the item on the other list.

2.3 Faster postings list intersection via skip pointers

In the remainder of this chapter, we will discuss extensions to postings list
data structures and ways to increase the efficiency of using postings lists. Re-
call the basic postings list intersection operation from Section 1.3 (page 10):
we walk through the two postings lists simultaneously, in time linear in the
total number of postings entries. If the list lengths are m and n, the intersec-
tion takes O(m + n) operations. Can we do better than this? That is, empiri-
cally, can we usually process postings list intersection in sublinear time? We
can, if the index isn’t changing too fast.

One way to do this is to use a skip list by augmenting postings lists withSKIP LIST

skip pointers (at indexing time), as shown in Figure 2.9. Skip pointers are
effectively shortcuts that allow us to avoid processing parts of the postings
list that will not figure in the search results. The two questions are then where
to place skip pointers and how to do efficient merging using skip pointers.

Consider first efficient merging, with Figure 2.9 as an example. Suppose
we’ve stepped through the lists in the figure until we have matched 8 on
each list and moved it to the results list. We advance both pointers, giving us
16 on the upper list and 41 on the lower list. The smallest item is then the

element 16 on the top list. Rather than simply advancing the upper pointer,
we first check the skip list pointer and note that 28 is also less than 41. Hence
we can follow the skip list pointer, and then we advance the upper pointer
to 28 . We thus avoid stepping to 19 and 23 on the upper list. A number
of variant versions of postings list intersection with skip pointers is possible
depending on when exactly you check the skip pointer. One version is shown
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INTERSECTWITHSKIPS(p1, p2)
1 answer ← 〈 〉
2 while p1 6= NIL and p2 6= NIL

3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer

◮ Figure 2.10 Postings lists intersection with skip pointers.

in Figure 2.10. Skip pointers will only be available for the original postings
lists. For an intermediate result in a complex query, the call hasSkip(p) will
always return false. Finally, note that the presence of skip pointers only helps
for AND queries, not for OR queries.

Where do we place skips? There is a tradeoff. More skips means shorter
skip spans, and that we are more likely to skip. But it also means lots of
comparisons to skip pointers, and lots of space storing skip pointers. Fewer
skips means few pointer comparisons, but then long skip spans which means
that there will be fewer opportunities to skip. A simple heuristic for placing
skips, which has been found to work well in practice, is that for a postings
list of length P, use

√
P evenly-spaced skip pointers. This heuristic can be

improved upon; it ignores any details of the distribution of query terms.
Building effective skip pointers is easy if an index is relatively static; it

is harder if a postings list keeps changing because of updates. A malicious
deletion strategy can render skip lists ineffective.

Choosing the optimal encoding for an inverted index is an ever-changing
game for the system builder, because it is strongly dependent on underly-
ing computer technologies and their relative speeds and sizes. Traditionally,
CPUs were slow, and so highly compressed techniques were not optimal.
Now CPUs are fast and disk is slow, so reducing disk postings list size dom-
inates. However, if you’re running a search engine with everything in mem-
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ory then the equation changes again. We discuss the impact of hardware
parameters on index construction time in Section 4.1 (page 68) and the im-
pact of index size on system speed in Chapter 5.

? Exercise 2.5 [⋆]

Why are skip pointers not useful for queries of the form x OR y?

Exercise 2.6 [⋆]

We have a two-word query. For one term the postings list consists of the following 16
entries:

[4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180]

and for the other it is the one entry postings list:

[47].

Work out how many comparisons would be done to intersect the two postings lists
with the following two strategies. Briefly justify your answers:

a. Using standard postings lists

b. Using postings lists stored with skip pointers, with a skip length of
√

P, as sug-
gested in Section 2.3.

Exercise 2.7 [⋆]

Consider a postings intersection between this postings list, with skip pointers:

3 5 9 15 24 39 60 68 75 81 84 89 92 96 97 100 115

and the following intermediate result postings list (which hence has no skip pointers):

3 5 89 95 97 99 100 101

Trace through the postings intersection algorithm in Figure 2.10 (page 37).

a. How often is a skip pointer followed (i.e., p1 is advanced to skip(p1))?

b. How many postings comparisons will be made by this algorithm while intersect-
ing the two lists?

c. How many postings comparisons would be made if the postings lists are inter-
sected without the use of skip pointers?



Online edition (c)
2009 Cambridge UP

2.4 Positional postings and phrase queries 39

2.4 Positional postings and phrase queries

Many complex or technical concepts and many organization and product
names are multiword compounds or phrases. We would like to be able to
pose a query such as Stanford University by treating it as a phrase so that a
sentence in a document like The inventor Stanford Ovshinsky never went to uni-
versity. is not a match. Most recent search engines support a double quotes
syntax (“stanford university”) for phrase queries, which has proven to be veryPHRASE QUERIES

easily understood and successfully used by users. As many as 10% of web
queries are phrase queries, and many more are implicit phrase queries (such
as person names), entered without use of double quotes. To be able to sup-
port such queries, it is no longer sufficient for postings lists to be simply lists
of documents that contain individual terms. In this section we consider two
approaches to supporting phrase queries and their combination. A search
engine should not only support phrase queries, but implement them effi-
ciently. A related but distinct concept is term proximity weighting, where a
document is preferred to the extent that the query terms appear close to each
other in the text. This technique is covered in Section 7.2.2 (page 144) in the
context of ranked retrieval.

2.4.1 Biword indexes

One approach to handling phrases is to consider every pair of consecutive
terms in a document as a phrase. For example, the text Friends, Romans,
Countrymen would generate the biwords:BIWORD INDEX

friends romans
romans countrymen

In this model, we treat each of these biwords as a vocabulary term. Being
able to process two-word phrase queries is immediate. Longer phrases can
be processed by breaking them down. The query stanford university palo alto
can be broken into the Boolean query on biwords:

“stanford university” AND “university palo” AND “palo alto”

This query could be expected to work fairly well in practice, but there can
and will be occasional false positives. Without examining the documents,
we cannot verify that the documents matching the above Boolean query do
actually contain the original 4 word phrase.

Among possible queries, nouns and noun phrases have a special status in
describing the concepts people are interested in searching for. But related
nouns can often be divided from each other by various function words, in
phrases such as the abolition of slavery or renegotiation of the constitution. These
needs can be incorporated into the biword indexing model in the following
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way. First, we tokenize the text and perform part-of-speech-tagging.6 We
can then group terms into nouns, including proper nouns, (N) and function
words, including articles and prepositions, (X), among other classes. Now
deem any string of terms of the form NX*N to be an extended biword. Each
such extended biword is made a term in the vocabulary. For example:

renegotiation of the constitution
N X X N

To process a query using such an extended biword index, we need to also
parse it into N’s and X’s, and then segment the query into extended biwords,
which can be looked up in the index.

This algorithm does not always work in an intuitively optimal manner
when parsing longer queries into Boolean queries. Using the above algo-
rithm, the query

cost overruns on a power plant

is parsed into

“cost overruns” AND “overruns power” AND “power plant”

whereas it might seem a better query to omit the middle biword. Better
results can be obtained by using more precise part-of-speech patterns that
define which extended biwords should be indexed.

The concept of a biword index can be extended to longer sequences of
words, and if the index includes variable length word sequences, it is gen-
erally referred to as a phrase index. Indeed, searches for a single term arePHRASE INDEX

not naturally handled in a biword index (you would need to scan the dic-
tionary for all biwords containing the term), and so we also need to have an
index of single-word terms. While there is always a chance of false positive
matches, the chance of a false positive match on indexed phrases of length 3
or more becomes very small indeed. But on the other hand, storing longer
phrases has the potential to greatly expand the vocabulary size. Maintain-
ing exhaustive phrase indexes for phrases of length greater than two is a
daunting prospect, and even use of an exhaustive biword dictionary greatly
expands the size of the vocabulary. However, towards the end of this sec-
tion we discuss the utility of the strategy of using a partial phrase index in a
compound indexing scheme.

6. Part of speech taggers classify words as nouns, verbs, etc. – or, in practice, often as finer-
grained classes like “plural proper noun”. Many fairly accurate (c. 96% per-tag accuracy) part-
of-speech taggers now exist, usually trained by machine learning methods on hand-tagged text.
See, for instance, Manning and Schütze (1999, ch. 10).
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to, 993427:
〈 1, 6: 〈7, 18, 33, 72, 86, 231〉;

2, 5: 〈1, 17, 74, 222, 255〉;
4, 5: 〈8, 16, 190, 429, 433〉;
5, 2: 〈363, 367〉;
7, 3: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1, 2: 〈17, 25〉;

4, 5: 〈17, 191, 291, 430, 434〉;
5, 3: 〈14, 19, 101〉; . . . 〉

◮ Figure 2.11 Positional index example. The word to has a document frequency
993,477, and occurs 6 times in document 1 at positions 7, 18, 33, etc.

2.4.2 Positional indexes

For the reasons given, a biword index is not the standard solution. Rather,
a positional index is most commonly employed. Here, for each term in thePOSITIONAL INDEX

vocabulary, we store postings of the form docID: 〈position1, position2, . . . 〉,
as shown in Figure 2.11, where each position is a token index in the docu-
ment. Each posting will also usually record the term frequency, for reasons
discussed in Chapter 6.

To process a phrase query, you still need to access the inverted index en-
tries for each distinct term. As before, you would start with the least frequent
term and then work to further restrict the list of possible candidates. In the
merge operation, the same general technique is used as before, but rather
than simply checking that both terms are in a document, you also need to
check that their positions of appearance in the document are compatible with
the phrase query being evaluated. This requires working out offsets between
the words.

✎ Example 2.1: Satisfying phrase queries. Suppose the postings lists for to and
be are as in Figure 2.11, and the query is “to be or not to be”. The postings lists to access
are: to, be, or, not. We will examine intersecting the postings lists for to and be. We
first look for documents that contain both terms. Then, we look for places in the lists
where there is an occurrence of be with a token index one higher than a position of to,
and then we look for another occurrence of each word with token index 4 higher than
the first occurrence. In the above lists, the pattern of occurrences that is a possible
match is:

to: 〈. . . ; 4:〈. . . ,429,433〉; . . . 〉
be: 〈. . . ; 4:〈. . . ,430,434〉; . . . 〉
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POSITIONALINTERSECT(p1, p2, k)
1 answer ← 〈 〉
2 while p1 6= NIL and p2 6= NIL

3 do if docID(p1) = docID(p2)
4 then l ← 〈 〉
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 6= NIL

8 do while pp2 6= NIL

9 do if |pos(pp1)− pos(pp2)| ≤ k
10 then ADD(l, pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break
13 pp2 ← next(pp2)
14 while l 6= 〈 〉 and |l[0]− pos(pp1)| > k
15 do DELETE(l[0])
16 for each ps ∈ l
17 do ADD(answer, 〈docID(p1), pos(pp1), ps〉)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer

◮ Figure 2.12 An algorithm for proximity intersection of postings lists p1 and p2.
The algorithm finds places where the two terms appear within k words of each other
and returns a list of triples giving docID and the term position in p1 and p2.

The same general method is applied for within k word proximity searches,
of the sort we saw in Example 1.1 (page 15):

employment /3 place

Here, /k means “within k words of (on either side)”. Clearly, positional in-
dexes can be used for such queries; biword indexes cannot. We show in
Figure 2.12 an algorithm for satisfying within k word proximity searches; it
is further discussed in Exercise 2.12.

Positional index size. Adopting a positional index expands required post-
ings storage significantly, even if we compress position values/offsets as we
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will discuss in Section 5.3 (page 95). Indeed, moving to a positional index
also changes the asymptotic complexity of a postings intersection operation,
because the number of items to check is now bounded not by the number of
documents but by the total number of tokens in the document collection T.
That is, the complexity of a Boolean query is Θ(T) rather than Θ(N). How-
ever, most applications have little choice but to accept this, since most users
now expect to have the functionality of phrase and proximity searches.

Let’s examine the space implications of having a positional index. A post-
ing now needs an entry for each occurrence of a term. The index size thus
depends on the average document size. The average web page has less than
1000 terms, but documents like SEC stock filings, books, and even some epic
poems easily reach 100,000 terms. Consider a term with frequency 1 in 1000
terms on average. The result is that large documents cause an increase of two
orders of magnitude in the space required to store the postings list:

Expected Expected entries
Document size postings in positional posting
1000 1 1
100,000 1 100

While the exact numbers depend on the type of documents and the language
being indexed, some rough rules of thumb are to expect a positional index to
be 2 to 4 times as large as a non-positional index, and to expect a compressed
positional index to be about one third to one half the size of the raw text
(after removal of markup, etc.) of the original uncompressed documents.
Specific numbers for an example collection are given in Table 5.1 (page 87)
and Table 5.6 (page 103).

2.4.3 Combination schemes

The strategies of biword indexes and positional indexes can be fruitfully
combined. If users commonly query on particular phrases, such as Michael
Jackson, it is quite inefficient to keep merging positional postings lists. A
combination strategy uses a phrase index, or just a biword index, for certain
queries and uses a positional index for other phrase queries. Good queries
to include in the phrase index are ones known to be common based on re-
cent querying behavior. But this is not the only criterion: the most expensive
phrase queries to evaluate are ones where the individual words are com-
mon but the desired phrase is comparatively rare. Adding Britney Spears as
a phrase index entry may only give a speedup factor to that query of about
3, since most documents that mention either word are valid results, whereas
adding The Who as a phrase index entry may speed up that query by a factor
of 1000. Hence, having the latter is more desirable, even if it is a relatively
less common query.
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Williams et al. (2004) evaluate an even more sophisticated scheme which
employs indexes of both these sorts and additionally a partial next word
index as a halfway house between the first two strategies. For each term, a
next word index records terms that follow it in a document. They concludeNEXT WORD INDEX

that such a strategy allows a typical mixture of web phrase queries to be
completed in one quarter of the time taken by use of a positional index alone,
while taking up 26% more space than use of a positional index alone.

? Exercise 2.8 [⋆]

Assume a biword index. Give an example of a document which will be returned
for a query of New York University but is actually a false positive which should not be
returned.

Exercise 2.9 [⋆]

Shown below is a portion of a positional index in the format: term: doc1: 〈position1,
position2, . . . 〉; doc2: 〈position1, position2, . . . 〉; etc.

angels: 2: 〈36,174,252,651〉; 4: 〈12,22,102,432〉; 7: 〈17〉;
fools: 2: 〈1,17,74,222〉; 4: 〈8,78,108,458〉; 7: 〈3,13,23,193〉;
fear: 2: 〈87,704,722,901〉; 4: 〈13,43,113,433〉; 7: 〈18,328,528〉;
in: 2: 〈3,37,76,444,851〉; 4: 〈10,20,110,470,500〉; 7: 〈5,15,25,195〉;
rush: 2: 〈2,66,194,321,702〉; 4: 〈9,69,149,429,569〉; 7: 〈4,14,404〉;
to: 2: 〈47,86,234,999〉; 4: 〈14,24,774,944〉; 7: 〈199,319,599,709〉;
tread: 2: 〈57,94,333〉; 4: 〈15,35,155〉; 7: 〈20,320〉;
where: 2: 〈67,124,393,1001〉; 4: 〈11,41,101,421,431〉; 7: 〈16,36,736〉;

Which document(s) if any match each of the following queries, where each expression
within quotes is a phrase query?

a. “fools rush in”

b. “fools rush in” AND “angels fear to tread”

Exercise 2.10 [⋆]

Consider the following fragment of a positional index with the format:

word: document: 〈position, position, . . .〉; document: 〈position, . . .〉
. . .

Gates: 1: 〈3〉; 2: 〈6〉; 3: 〈2,17〉; 4: 〈1〉;
IBM: 4: 〈3〉; 7: 〈14〉;
Microsoft: 1: 〈1〉; 2: 〈1,21〉; 3: 〈3〉; 5: 〈16,22,51〉;

The /k operator, word1 /k word2 finds occurrences of word1 within k words of word2 (on
either side), where k is a positive integer argument. Thus k = 1 demands that word1
be adjacent to word2.

a. Describe the set of documents that satisfy the query Gates /2 Microsoft.

b. Describe each set of values for k for which the query Gates /k Microsoft returns a
different set of documents as the answer.
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Exercise 2.11 [⋆⋆]

Consider the general procedure for merging two positional postings lists for a given
document, to determine the document positions where a document satisfies a /k
clause (in general there can be multiple positions at which each term occurs in a sin-
gle document). We begin with a pointer to the position of occurrence of each term
and move each pointer along the list of occurrences in the document, checking as we
do so whether we have a hit for /k. Each move of either pointer counts as a step. Let
L denote the total number of occurrences of the two terms in the document. What is
the big-O complexity of the merge procedure, if we wish to have postings including
positions in the result?

Exercise 2.12 [⋆⋆]

Consider the adaptation of the basic algorithm for intersection of two postings lists
(Figure 1.6, page 11) to the one in Figure 2.12 (page 42), which handles proximity
queries. A naive algorithm for this operation could be O(PLmax

2), where P is the
sum of the lengths of the postings lists (i.e., the sum of document frequencies) and
Lmax is the maximum length of a document (in tokens).

a. Go through this algorithm carefully and explain how it works.

b. What is the complexity of this algorithm? Justify your answer carefully.

c. For certain queries and data distributions, would another algorithm be more effi-
cient? What complexity does it have?

Exercise 2.13 [⋆⋆]

Suppose we wish to use a postings intersection procedure to determine simply the
list of documents that satisfy a /k clause, rather than returning the list of positions,
as in Figure 2.12 (page 42). For simplicity, assume k ≥ 2. Let L denote the total
number of occurrences of the two terms in the document collection (i.e., the sum of
their collection frequencies). Which of the following is true? Justify your answer.

a. The merge can be accomplished in a number of steps linear in L and independent
of k, and we can ensure that each pointer moves only to the right.

b. The merge can be accomplished in a number of steps linear in L and independent
of k, but a pointer may be forced to move non-monotonically (i.e., to sometimes
back up)

c. The merge can require kL steps in some cases.

Exercise 2.14 [⋆⋆]

How could an IR system combine use of a positional index and use of stop words?
What is the potential problem, and how could it be handled?

2.5 References and further reading

Exhaustive discussion of the character-level processing of East Asian lan-EAST ASIAN
LANGUAGES guages can be found in Lunde (1998). Character bigram indexes are perhaps

the most standard approach to indexing Chinese, although some systems use
word segmentation. Due to differences in the language and writing system,
word segmentation is most usual for Japanese (Luk and Kwok 2002, Kishida
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et al. 2005). The structure of a character k-gram index over unsegmented text
differs from that in Section 3.2.2 (page 54): there the k-gram dictionary points
to postings lists of entries in the regular dictionary, whereas here it points
directly to document postings lists. For further discussion of Chinese word
segmentation, see Sproat et al. (1996), Sproat and Emerson (2003), Tseng et al.
(2005), and Gao et al. (2005).

Lita et al. (2003) present a method for truecasing. Natural language pro-
cessing work on computational morphology is presented in (Sproat 1992,
Beesley and Karttunen 2003).

Language identification was perhaps first explored in cryptography; for
example, Konheim (1981) presents a character-level k-gram language identi-
fication algorithm. While other methods such as looking for particular dis-
tinctive function words and letter combinations have been used, with the
advent of widespread digital text, many people have explored the charac-
ter n-gram technique, and found it to be highly successful (Beesley 1998,
Dunning 1994, Cavnar and Trenkle 1994). Written language identification
is regarded as a fairly easy problem, while spoken language identification
remains more difficult; see Hughes et al. (2006) for a recent survey.

Experiments on and discussion of the positive and negative impact of
stemming in English can be found in the following works: Salton (1989), Har-
man (1991), Krovetz (1995), Hull (1996). Hollink et al. (2004) provide detailed
results for the effectiveness of language-specific methods on 8 European lan-
guages. In terms of percent change in mean average precision (see page 159)
over a baseline system, diacritic removal gains up to 23% (being especially
helpful for Finnish, French, and Swedish). Stemming helped markedly for
Finnish (30% improvement) and Spanish (10% improvement), but for most
languages, including English, the gain from stemming was in the range 0–
5%, and results from a lemmatizer were poorer still. Compound splitting
gained 25% for Swedish and 15% for German, but only 4% for Dutch. Rather
than language-particular methods, indexing character k-grams (as we sug-
gested for Chinese) could often give as good or better results: using within-
word character 4-grams rather than words gave gains of 37% in Finnish, 27%
in Swedish, and 20% in German, while even being slightly positive for other
languages, such as Dutch, Spanish, and English. Tomlinson (2003) presents
broadly similar results. Bar-Ilan and Gutman (2005) suggest that, at the
time of their study (2003), the major commercial web search engines suffered
from lacking decent language-particular processing; for example, a query on
www.google.fr for l’électricité did not separate off the article l’ but only matched
pages with precisely this string of article+noun.

The classic presentation of skip pointers for IR can be found in Moffat andSKIP LIST

Zobel (1996). Extended techniques are discussed in Boldi and Vigna (2005).
The main paper in the algorithms literature is Pugh (1990), which uses mul-
tilevel skip pointers to give expected O(log P) list access (the same expected
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efficiency as using a tree data structure) with less implementational complex-
ity. In practice, the effectiveness of using skip pointers depends on various
system parameters. Moffat and Zobel (1996) report conjunctive queries run-
ning about five times faster with the use of skip pointers, but Bahle et al.
(2002, p. 217) report that, with modern CPUs, using skip lists instead slows
down search because it expands the size of the postings list (i.e., disk I/O
dominates performance). In contrast, Strohman and Croft (2007) again show
good performance gains from skipping, in a system architecture designed to
optimize for the large memory spaces and multiple cores of recent CPUs.

Johnson et al. (2006) report that 11.7% of all queries in two 2002 web query
logs contained phrase queries, though Kammenhuber et al. (2006) report
only 3% phrase queries for a different data set. Silverstein et al. (1999) note
that many queries without explicit phrase operators are actually implicit
phrase searches.
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3 Dictionaries and tolerant

retrieval

In Chapters 1 and 2 we developed the ideas underlying inverted indexes
for handling Boolean and proximity queries. Here, we develop techniques
that are robust to typographical errors in the query, as well as alternative
spellings. In Section 3.1 we develop data structures that help the search
for terms in the vocabulary in an inverted index. In Section 3.2 we study
the idea of a wildcard query: a query such as *a*e*i*o*u*, which seeks doc-WILDCARD QUERY

uments containing any term that includes all the five vowels in sequence.
The * symbol indicates any (possibly empty) string of characters. Users pose
such queries to a search engine when they are uncertain about how to spell
a query term, or seek documents containing variants of a query term; for in-
stance, the query automat* would seek documents containing any of the terms
automatic, automation and automated.

We then turn to other forms of imprecisely posed queries, focusing on
spelling errors in Section 3.3. Users make spelling errors either by accident,
or because the term they are searching for (e.g., Herman) has no unambiguous
spelling in the collection. We detail a number of techniques for correcting
spelling errors in queries, one term at a time as well as for an entire string
of query terms. Finally, in Section 3.4 we study a method for seeking vo-
cabulary terms that are phonetically close to the query term(s). This can be
especially useful in cases like the Herman example, where the user may not
know how a proper name is spelled in documents in the collection.

Because we will develop many variants of inverted indexes in this chapter,
we will use sometimes the phrase standard inverted index to mean the inverted
index developed in Chapters 1 and 2, in which each vocabulary term has a
postings list with the documents in the collection.

3.1 Search structures for dictionaries

Given an inverted index and a query, our first task is to determine whether
each query term exists in the vocabulary and if so, identify the pointer to the
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corresponding postings. This vocabulary lookup operation uses a classical
data structure called the dictionary and has two broad classes of solutions:
hashing, and search trees. In the literature of data structures, the entries in
the vocabulary (in our case, terms) are often referred to as keys. The choice
of solution (hashing, or search trees) is governed by a number of questions:
(1) How many keys are we likely to have? (2) Is the number likely to remain
static, or change a lot – and in the case of changes, are we likely to only have
new keys inserted, or to also have some keys in the dictionary be deleted? (3)
What are the relative frequencies with which various keys will be accessed?

Hashing has been used for dictionary lookup in some search engines. Each
vocabulary term (key) is hashed into an integer over a large enough space
that hash collisions are unlikely; collisions if any are resolved by auxiliary
structures that can demand care to maintain.1 At query time, we hash each
query term separately and following a pointer to the corresponding post-
ings, taking into account any logic for resolving hash collisions. There is no
easy way to find minor variants of a query term (such as the accented and
non-accented versions of a word like resume), since these could be hashed to
very different integers. In particular, we cannot seek (for instance) all terms
beginning with the prefix automat, an operation that we will require below
in Section 3.2. Finally, in a setting (such as the Web) where the size of the
vocabulary keeps growing, a hash function designed for current needs may
not suffice in a few years’ time.

Search trees overcome many of these issues – for instance, they permit us
to enumerate all vocabulary terms beginning with automat. The best-known
search tree is the binary tree, in which each internal node has two children.BINARY TREE

The search for a term begins at the root of the tree. Each internal node (in-
cluding the root) represents a binary test, based on whose outcome the search
proceeds to one of the two sub-trees below that node. Figure 3.1 gives an ex-
ample of a binary search tree used for a dictionary. Efficient search (with a
number of comparisons that is O(log M)) hinges on the tree being balanced:
the numbers of terms under the two sub-trees of any node are either equal
or differ by one. The principal issue here is that of rebalancing: as terms are
inserted into or deleted from the binary search tree, it needs to be rebalanced
so that the balance property is maintained.

To mitigate rebalancing, one approach is to allow the number of sub-trees
under an internal node to vary in a fixed interval. A search tree commonly
used for a dictionary is the B-tree – a search tree in which every internal nodeB-TREE

has a number of children in the interval [a, b], where a and b are appropriate
positive integers; Figure 3.2 shows an example with a = 2 and b = 4. Each
branch under an internal node again represents a test for a range of char-

1. So-called perfect hash functions are designed to preclude collisions, but are rather more com-
plicated both to implement and to compute.
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◮ Figure 3.1 A binary search tree. In this example the branch at the root partitions
vocabulary terms into two subtrees, those whose first letter is between a and m, and
the rest.

acter sequences, as in the binary tree example of Figure 3.1. A B-tree may
be viewed as “collapsing” multiple levels of the binary tree into one; this
is especially advantageous when some of the dictionary is disk-resident, in
which case this collapsing serves the function of pre-fetching imminent bi-
nary tests. In such cases, the integers a and b are determined by the sizes of
disk blocks. Section 3.5 contains pointers to further background on search
trees and B-trees.

It should be noted that unlike hashing, search trees demand that the char-
acters used in the document collection have a prescribed ordering; for in-
stance, the 26 letters of the English alphabet are always listed in the specific
order A through Z. Some Asian languages such as Chinese do not always
have a unique ordering, although by now all languages (including Chinese
and Japanese) have adopted a standard ordering system for their character
sets.

3.2 Wildcard queries

Wildcard queries are used in any of the following situations: (1) the user
is uncertain of the spelling of a query term (e.g., Sydney vs. Sidney, which
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◮ Figure 3.2 A B-tree. In this example every internal node has between 2 and 4
children.

leads to the wildcard query S*dney); (2) the user is aware of multiple vari-
ants of spelling a term and (consciously) seeks documents containing any of
the variants (e.g., color vs. colour); (3) the user seeks documents containing
variants of a term that would be caught by stemming, but is unsure whether
the search engine performs stemming (e.g., judicial vs. judiciary, leading to the
wildcard query judicia*); (4) the user is uncertain of the correct rendition of a
foreign word or phrase (e.g., the query Universit* Stuttgart).

A query such as mon* is known as a trailing wildcard query, because the *WILDCARD QUERY

symbol occurs only once, at the end of the search string. A search tree on
the dictionary is a convenient way of handling trailing wildcard queries: we
walk down the tree following the symbols m, o and n in turn, at which point
we can enumerate the set W of terms in the dictionary with the prefix mon.
Finally, we use |W| lookups on the standard inverted index to retrieve all
documents containing any term in W.

But what about wildcard queries in which the * symbol is not constrained
to be at the end of the search string? Before handling this general case, we
mention a slight generalization of trailing wildcard queries. First, consider
leading wildcard queries, or queries of the form *mon. Consider a reverse B-tree
on the dictionary – one in which each root-to-leaf path of the B-tree corre-
sponds to a term in the dictionary written backwards: thus, the term lemon
would, in the B-tree, be represented by the path root-n-o-m-e-l. A walk down
the reverse B-tree then enumerates all terms R in the vocabulary with a given
prefix.

In fact, using a regular B-tree together with a reverse B-tree, we can handle
an even more general case: wildcard queries in which there is a single * sym-
bol, such as se*mon. To do this, we use the regular B-tree to enumerate the set
W of dictionary terms beginning with the prefix se, then the reverse B-tree to
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enumerate the set R of terms ending with the suffix mon. Next, we take the
intersection W ∩ R of these two sets, to arrive at the set of terms that begin
with the prefix se and end with the suffix mon. Finally, we use the standard
inverted index to retrieve all documents containing any terms in this inter-
section. We can thus handle wildcard queries that contain a single * symbol
using two B-trees, the normal B-tree and a reverse B-tree.

3.2.1 General wildcard queries

We now study two techniques for handling general wildcard queries. Both
techniques share a common strategy: express the given wildcard query qw as
a Boolean query Q on a specially constructed index, such that the answer to
Q is a superset of the set of vocabulary terms matching qw. Then, we check
each term in the answer to Q against qw, discarding those vocabulary terms
that do not match qw. At this point we have the vocabulary terms matching
qw and can resort to the standard inverted index.

Permuterm indexes

Our first special index for general wildcard queries is the permuterm index,PERMUTERM INDEX

a form of inverted index. First, we introduce a special symbol $ into our
character set, to mark the end of a term. Thus, the term hello is shown here as
the augmented term hello$. Next, we construct a permuterm index, in which
the various rotations of each term (augmented with $) all link to the original
vocabulary term. Figure 3.3 gives an example of such a permuterm index
entry for the term hello.

We refer to the set of rotated terms in the permuterm index as the per-
muterm vocabulary.

How does this index help us with wildcard queries? Consider the wildcard
query m*n. The key is to rotate such a wildcard query so that the * symbol
appears at the end of the string – thus the rotated wildcard query becomes
n$m*. Next, we look up this string in the permuterm index, where seeking
n$m* (via a search tree) leads to rotations of (among others) the terms man
and moron.

Now that the permuterm index enables us to identify the original vocab-
ulary terms matching a wildcard query, we look up these terms in the stan-
dard inverted index to retrieve matching documents. We can thus handle
any wildcard query with a single * symbol. But what about a query such as
fi*mo*er? In this case we first enumerate the terms in the dictionary that are
in the permuterm index of er$fi*. Not all such dictionary terms will have
the string mo in the middle - we filter these out by exhaustive enumera-
tion, checking each candidate to see if it contains mo. In this example, the
term fishmonger would survive this filtering but filibuster would not. We then
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◮ Figure 3.3 A portion of a permuterm index.

run the surviving terms through the standard inverted index for document
retrieval. One disadvantage of the permuterm index is that its dictionary
becomes quite large, including as it does all rotations of each term.

Notice the close interplay between the B-tree and the permuterm index
above. Indeed, it suggests that the structure should perhaps be viewed as
a permuterm B-tree. However, we follow traditional terminology here in
describing the permuterm index as distinct from the B-tree that allows us to
select the rotations with a given prefix.

3.2.2 k-gram indexes for wildcard queries

Whereas the permuterm index is simple, it can lead to a considerable blowup
from the number of rotations per term; for a dictionary of English terms, this
can represent an almost ten-fold space increase. We now present a second
technique, known as the k-gram index, for processing wildcard queries. We
will also use k-gram indexes in Section 3.3.4. A k-gram is a sequence of k
characters. Thus cas, ast and stl are all 3-grams occurring in the term castle.
We use a special character $ to denote the beginning or end of a term, so the
full set of 3-grams generated for castle is: $ca, cas, ast, stl, tle, le$.

In a k-gram index, the dictionary contains all k-grams that occur in any termk-GRAM INDEX

in the vocabulary. Each postings list points from a k-gram to all vocabulary
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etr beetroot metric petrify retrieval- - - -

◮ Figure 3.4 Example of a postings list in a 3-gram index. Here the 3-gram etr is
illustrated. Matching vocabulary terms are lexicographically ordered in the postings.

terms containing that k-gram. For instance, the 3-gram etr would point to vo-
cabulary terms such as metric and retrieval. An example is given in Figure 3.4.

How does such an index help us with wildcard queries? Consider the
wildcard query re*ve. We are seeking documents containing any term that
begins with re and ends with ve. Accordingly, we run the Boolean query $re
AND ve$. This is looked up in the 3-gram index and yields a list of matching
terms such as relive, remove and retrieve. Each of these matching terms is then
looked up in the standard inverted index to yield documents matching the
query.

There is however a difficulty with the use of k-gram indexes, that demands
one further step of processing. Consider using the 3-gram index described
above for the query red*. Following the process described above, we first
issue the Boolean query $re AND red to the 3-gram index. This leads to a
match on terms such as retired, which contain the conjunction of the two 3-
grams $re and red, yet do not match the original wildcard query red*.

To cope with this, we introduce a post-filtering step, in which the terms enu-
merated by the Boolean query on the 3-gram index are checked individually
against the original query red*. This is a simple string-matching operation
and weeds out terms such as retired that do not match the original query.
Terms that survive are then searched in the standard inverted index as usual.

We have seen that a wildcard query can result in multiple terms being
enumerated, each of which becomes a single-term query on the standard in-
verted index. Search engines do allow the combination of wildcard queries
using Boolean operators, for example, re*d AND fe*ri. What is the appropriate
semantics for such a query? Since each wildcard query turns into a disjunc-
tion of single-term queries, the appropriate interpretation of this example
is that we have a conjunction of disjunctions: we seek all documents that
contain any term matching re*d and any term matching fe*ri.

Even without Boolean combinations of wildcard queries, the processing of
a wildcard query can be quite expensive, because of the added lookup in the
special index, filtering and finally the standard inverted index. A search en-
gine may support such rich functionality, but most commonly, the capability
is hidden behind an interface (say an “Advanced Query” interface) that most
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users never use. Exposing such functionality in the search interface often en-
courages users to invoke it even when they do not require it (say, by typing
a prefix of their query followed by a *), increasing the processing load on the
search engine.

? Exercise 3.1

In the permuterm index, each permuterm vocabulary term points to the original vo-
cabulary term(s) from which it was derived. How many original vocabulary terms
can there be in the postings list of a permuterm vocabulary term?

Exercise 3.2

Write down the entries in the permuterm index dictionary that are generated by the
term mama.

Exercise 3.3

If you wanted to search for s*ng in a permuterm wildcard index, what key(s) would
one do the lookup on?

Exercise 3.4

Refer to Figure 3.4; it is pointed out in the caption that the vocabulary terms in the
postings are lexicographically ordered. Why is this ordering useful?

Exercise 3.5

Consider again the query fi*mo*er from Section 3.2.1. What Boolean query on a bigram
index would be generated for this query? Can you think of a term that matches the
permuterm query in Section 3.2.1, but does not satisfy this Boolean query?

Exercise 3.6

Give an example of a sentence that falsely matches the wildcard query mon*h if the
search were to simply use a conjunction of bigrams.

3.3 Spelling correction

We next look at the problem of correcting spelling errors in queries. For in-
stance, we may wish to retrieve documents containing the term carrot when
the user types the query carot. Google reports (http://www.google.com/jobs/britney.html)
that the following are all treated as misspellings of the query britney spears:
britian spears, britney’s spears, brandy spears and prittany spears. We look at two
steps to solving this problem: the first based on edit distance and the second
based on k-gram overlap. Before getting into the algorithmic details of these
methods, we first review how search engines provide spell-correction as part
of a user experience.
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3.3.1 Implementing spelling correction

There are two basic principles underlying most spelling correction algorithms.

1. Of various alternative correct spellings for a mis-spelled query, choose
the “nearest” one. This demands that we have a notion of nearness or
proximity between a pair of queries. We will develop these proximity
measures in Section 3.3.3.

2. When two correctly spelled queries are tied (or nearly tied), select the one
that is more common. For instance, grunt and grant both seem equally
plausible as corrections for grnt. Then, the algorithm should choose the
more common of grunt and grant as the correction. The simplest notion
of more common is to consider the number of occurrences of the term
in the collection; thus if grunt occurs more often than grant, it would be
the chosen correction. A different notion of more common is employed
in many search engines, especially on the web. The idea is to use the
correction that is most common among queries typed in by other users.
The idea here is that if grunt is typed as a query more often than grant, then
it is more likely that the user who typed grnt intended to type the query
grunt.

Beginning in Section 3.3.3 we describe notions of proximity between queries,
as well as their efficient computation. Spelling correction algorithms build on
these computations of proximity; their functionality is then exposed to users
in one of several ways:

1. On the query carot always retrieve documents containing carot as well as
any “spell-corrected” version of carot, including carrot and tarot.

2. As in (1) above, but only when the query term carot is not in the dictionary.

3. As in (1) above, but only when the original query returned fewer than a
preset number of documents (say fewer than five documents).

4. When the original query returns fewer than a preset number of docu-
ments, the search interface presents a spelling suggestion to the end user:
this suggestion consists of the spell-corrected query term(s). Thus, the
search engine might respond to the user: “Did you mean carrot?”

3.3.2 Forms of spelling correction

We focus on two specific forms of spelling correction that we refer to as
isolated-term correction and context-sensitive correction. In isolated-term cor-
rection, we attempt to correct a single query term at a time – even when we
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have a multiple-term query. The carot example demonstrates this type of cor-
rection. Such isolated-term correction would fail to detect, for instance, that
the query flew form Heathrow contains a mis-spelling of the term from – because
each term in the query is correctly spelled in isolation.

We begin by examining two techniques for addressing isolated-term cor-
rection: edit distance, and k-gram overlap. We then proceed to context-
sensitive correction.

3.3.3 Edit distance

Given two character strings s1 and s2, the edit distance between them is theEDIT DISTANCE

minimum number of edit operations required to transform s1 into s2. Most
commonly, the edit operations allowed for this purpose are: (i) insert a char-
acter into a string; (ii) delete a character from a string and (iii) replace a char-
acter of a string by another character; for these operations, edit distance is
sometimes known as Levenshtein distance. For example, the edit distance be-LEVENSHTEIN

DISTANCE tween cat and dog is 3. In fact, the notion of edit distance can be generalized
to allowing different weights for different kinds of edit operations, for in-
stance a higher weight may be placed on replacing the character s by the
character p, than on replacing it by the character a (the latter being closer to s
on the keyboard). Setting weights in this way depending on the likelihood of
letters substituting for each other is very effective in practice (see Section 3.4
for the separate issue of phonetic similarity). However, the remainder of our
treatment here will focus on the case in which all edit operations have the
same weight.

It is well-known how to compute the (weighted) edit distance between
two strings in time O(|s1| × |s2|), where |si| denotes the length of a string si.
The idea is to use the dynamic programming algorithm in Figure 3.5, where
the characters in s1 and s2 are given in array form. The algorithm fills the
(integer) entries in a matrix m whose two dimensions equal the lengths of
the two strings whose edit distances is being computed; the (i, j) entry of the
matrix will hold (after the algorithm is executed) the edit distance between
the strings consisting of the first i characters of s1 and the first j characters
of s2. The central dynamic programming step is depicted in Lines 8-10 of
Figure 3.5, where the three quantities whose minimum is taken correspond
to substituting a character in s1, inserting a character in s1 and inserting a
character in s2.

Figure 3.6 shows an example Levenshtein distance computation of Fig-
ure 3.5. The typical cell [i, j] has four entries formatted as a 2× 2 cell. The
lower right entry in each cell is the min of the other three, corresponding to
the main dynamic programming step in Figure 3.5. The other three entries
are the three entries m[i − 1, j − 1] + 0 or 1 depending on whether s1[i] =
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EDITDISTANCE(s1, s2)
1 int m[i, j] = 0
2 for i← 1 to |s1|
3 do m[i, 0] = i
4 for j← 1 to |s2|
5 do m[0, j] = j
6 for i← 1 to |s1|
7 do for j← 1 to |s2|
8 do m[i, j] = min{m[i− 1, j− 1] + if (s1[i] = s2[j]) then 0 else 1fi,
9 m[i− 1, j] + 1,

10 m[i, j− 1] + 1}
11 return m[|s1|, |s2|]

◮ Figure 3.5 Dynamic programming algorithm for computing the edit distance be-
tween strings s1 and s2.
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◮ Figure 3.6 Example Levenshtein distance computation. The 2× 2 cell in the [i, j]
entry of the table shows the three numbers whose minimum yields the fourth. The
cells in italics determine the edit distance in this example.

s2[j], m[i− 1, j] + 1 and m[i, j− 1] + 1. The cells with numbers in italics depict
the path by which we determine the Levenshtein distance.

The spelling correction problem however demands more than computing
edit distance: given a set S of strings (corresponding to terms in the vocab-
ulary) and a query string q, we seek the string(s) in V of least edit distance
from q. We may view this as a decoding problem, in which the codewords
(the strings in V) are prescribed in advance. The obvious way of doing this
is to compute the edit distance from q to each string in V, before selecting the
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string(s) of minimum edit distance. This exhaustive search is inordinately
expensive. Accordingly, a number of heuristics are used in practice to effi-
ciently retrieve vocabulary terms likely to have low edit distance to the query
term(s).

The simplest such heuristic is to restrict the search to dictionary terms be-
ginning with the same letter as the query string; the hope would be that
spelling errors do not occur in the first character of the query. A more sophis-
ticated variant of this heuristic is to use a version of the permuterm index,
in which we omit the end-of-word symbol $. Consider the set of all rota-
tions of the query string q. For each rotation r from this set, we traverse the
B-tree into the permuterm index, thereby retrieving all dictionary terms that
have a rotation beginning with r. For instance, if q is mase and we consider
the rotation r = sema, we would retrieve dictionary terms such as semantic
and semaphore that do not have a small edit distance to q. Unfortunately, we
would miss more pertinent dictionary terms such as mare and mane. To ad-
dress this, we refine this rotation scheme: for each rotation, we omit a suffix
of ℓ characters before performing the B-tree traversal. This ensures that each
term in the set R of terms retrieved from the dictionary includes a “long”
substring in common with q. The value of ℓ could depend on the length of q.
Alternatively, we may set it to a fixed constant such as 2.

3.3.4 k-gram indexes for spelling correction

To further limit the set of vocabulary terms for which we compute edit dis-
tances to the query term, we now show how to invoke the k-gram index of
Section 3.2.2 (page 54) to assist with retrieving vocabulary terms with low
edit distance to the query q. Once we retrieve such terms, we can then find
the ones of least edit distance from q.

In fact, we will use the k-gram index to retrieve vocabulary terms that
have many k-grams in common with the query. We will argue that for rea-
sonable definitions of “many k-grams in common,” the retrieval process is
essentially that of a single scan through the postings for the k-grams in the
query string q.

The 2-gram (or bigram) index in Figure 3.7 shows (a portion of) the post-
ings for the three bigrams in the query bord. Suppose we wanted to retrieve
vocabulary terms that contained at least two of these three bigrams. A single
scan of the postings (much as in Chapter 1) would let us enumerate all such
terms; in the example of Figure 3.7 we would enumerate aboard, boardroom
and border.

This straightforward application of the linear scan intersection of postings
immediately reveals the shortcoming of simply requiring matched vocabu-
lary terms to contain a fixed number of k-grams from the query q: terms
like boardroom, an implausible “correction” of bord, get enumerated. Conse-
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rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

- - - -

- - - -

- - - -

◮ Figure 3.7 Matching at least two of the three 2-grams in the query bord.

quently, we require more nuanced measures of the overlap in k-grams be-
tween a vocabulary term and q. The linear scan intersection can be adapted
when the measure of overlap is the Jaccard coefficient for measuring the over-JACCARD COEFFICIENT

lap between two sets A and B, defined to be |A∩ B|/|A∪ B|. The two sets we
consider are the set of k-grams in the query q, and the set of k-grams in a vo-
cabulary term. As the scan proceeds, we proceed from one vocabulary term
t to the next, computing on the fly the Jaccard coefficient between q and t. If
the coefficient exceeds a preset threshold, we add t to the output; if not, we
move on to the next term in the postings. To compute the Jaccard coefficient,
we need the set of k-grams in q and t.

Since we are scanning the postings for all k-grams in q, we immediately
have these k-grams on hand. What about the k-grams of t? In principle,
we could enumerate these on the fly from t; in practice this is not only slow
but potentially infeasible since, in all likelihood, the postings entries them-
selves do not contain the complete string t but rather some encoding of t. The
crucial observation is that to compute the Jaccard coefficient, we only need
the length of the string t. To see this, recall the example of Figure 3.7 and
consider the point when the postings scan for query q = bord reaches term
t = boardroom. We know that two bigrams match. If the postings stored the
(pre-computed) number of bigrams in boardroom (namely, 8), we have all the
information we require to compute the Jaccard coefficient to be 2/(8 + 3− 2);
the numerator is obtained from the number of postings hits (2, from bo and
rd) while the denominator is the sum of the number of bigrams in bord and
boardroom, less the number of postings hits.

We could replace the Jaccard coefficient by other measures that allow ef-
ficient on the fly computation during postings scans. How do we use these
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for spelling correction? One method that has some empirical support is to
first use the k-gram index to enumerate a set of candidate vocabulary terms
that are potential corrections of q. We then compute the edit distance from q
to each term in this set, selecting terms from the set with small edit distance
to q.

3.3.5 Context sensitive spelling correction

Isolated-term correction would fail to correct typographical errors such as
flew form Heathrow, where all three query terms are correctly spelled. When
a phrase such as this retrieves few documents, a search engine may like to
offer the corrected query flew from Heathrow. The simplest way to do this is to
enumerate corrections of each of the three query terms (using the methods
leading up to Section 3.3.4) even though each query term is correctly spelled,
then try substitutions of each correction in the phrase. For the example flew
form Heathrow, we enumerate such phrases as fled form Heathrow and flew fore
Heathrow. For each such substitute phrase, the search engine runs the query
and determines the number of matching results.

This enumeration can be expensive if we find many corrections of the in-
dividual terms, since we could encounter a large number of combinations of
alternatives. Several heuristics are used to trim this space. In the example
above, as we expand the alternatives for flew and form, we retain only the
most frequent combinations in the collection or in the query logs, which con-
tain previous queries by users. For instance, we would retain flew from as an
alternative to try and extend to a three-term corrected query, but perhaps not
fled fore or flea form. In this example, the biword fled fore is likely to be rare
compared to the biword flew from. Then, we only attempt to extend the list of
top biwords (such as flew from), to corrections of Heathrow. As an alternative
to using the biword statistics in the collection, we may use the logs of queries
issued by users; these could of course include queries with spelling errors.

? Exercise 3.7

If |si| denotes the length of string si, show that the edit distance between s1 and s2 is
never more than max{|s1|, |s2|}.
Exercise 3.8

Compute the edit distance between paris and alice. Write down the 5 × 5 array of
distances between all prefixes as computed by the algorithm in Figure 3.5.

Exercise 3.9

Write pseudocode showing the details of computing on the fly the Jaccard coefficient
while scanning the postings of the k-gram index, as mentioned on page 61.

Exercise 3.10

Compute the Jaccard coefficients between the query bord and each of the terms in
Figure 3.7 that contain the bigram or.
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Exercise 3.11

Consider the four-term query catched in the rye and suppose that each of the query
terms has five alternative terms suggested by isolated-term correction. How many
possible corrected phrases must we consider if we do not trim the space of corrected
phrases, but instead try all six variants for each of the terms?

Exercise 3.12

For each of the prefixes of the query — catched, catched in and catched in the — we have
a number of substitute prefixes arising from each term and its alternatives. Suppose
that we were to retain only the top 10 of these substitute prefixes, as measured by
its number of occurrences in the collection. We eliminate the rest from consideration
for extension to longer prefixes: thus, if batched in is not one of the 10 most common
2-term queries in the collection, we do not consider any extension of batched in as pos-
sibly leading to a correction of catched in the rye. How many of the possible substitute
prefixes are we eliminating at each phase?

Exercise 3.13

Are we guaranteed that retaining and extending only the 10 commonest substitute
prefixes of catched in will lead to one of the 10 commonest substitute prefixes of catched
in the?

3.4 Phonetic correction

Our final technique for tolerant retrieval has to do with phonetic correction:
misspellings that arise because the user types a query that sounds like the tar-
get term. Such algorithms are especially applicable to searches on the names
of people. The main idea here is to generate, for each term, a “phonetic hash”
so that similar-sounding terms hash to the same value. The idea owes its
origins to work in international police departments from the early 20th cen-
tury, seeking to match names for wanted criminals despite the names being
spelled differently in different countries. It is mainly used to correct phonetic
misspellings in proper nouns.

Algorithms for such phonetic hashing are commonly collectively known as
soundex algorithms. However, there is an original soundex algorithm, withSOUNDEX

various variants, built on the following scheme:

1. Turn every term to be indexed into a 4-character reduced form. Build an
inverted index from these reduced forms to the original terms; call this
the soundex index.

2. Do the same with query terms.

3. When the query calls for a soundex match, search this soundex index.

The variations in different soundex algorithms have to do with the conver-
sion of terms to 4-character forms. A commonly used conversion results in
a 4-character code, with the first character being a letter of the alphabet and
the other three being digits between 0 and 9.
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1. Retain the first letter of the term.

2. Change all occurrences of the following letters to ’0’ (zero): ’A’, E’, ’I’, ’O’,
’U’, ’H’, ’W’, ’Y’.

3. Change letters to digits as follows:

B, F, P, V to 1.

C, G, J, K, Q, S, X, Z to 2.

D,T to 3.

L to 4.

M, N to 5.

R to 6.

4. Repeatedly remove one out of each pair of consecutive identical digits.

5. Remove all zeros from the resulting string. Pad the resulting string with
trailing zeros and return the first four positions, which will consist of a
letter followed by three digits.

For an example of a soundex map, Hermann maps to H655. Given a query
(say herman), we compute its soundex code and then retrieve all vocabulary
terms matching this soundex code from the soundex index, before running
the resulting query on the standard inverted index.

This algorithm rests on a few observations: (1) vowels are viewed as inter-
changeable, in transcribing names; (2) consonants with similar sounds (e.g.,
D and T) are put in equivalence classes. This leads to related names often
having the same soundex codes. While these rules work for many cases,
especially European languages, such rules tend to be writing system depen-
dent. For example, Chinese names can be written in Wade-Giles or Pinyin
transcription. While soundex works for some of the differences in the two
transcriptions, for instance mapping both Wade-Giles hs and Pinyin x to 2,
it fails in other cases, for example Wade-Giles j and Pinyin r are mapped
differently.

? Exercise 3.14

Find two differently spelled proper nouns whose soundex codes are the same.

Exercise 3.15

Find two phonetically similar proper nouns whose soundex codes are different.



Online edition (c)
2009 Cambridge UP

3.5 References and further reading 65

3.5 References and further reading

Knuth (1997) is a comprehensive source for information on search trees, in-
cluding B-trees and their use in searching through dictionaries.

Garfield (1976) gives one of the first complete descriptions of the permuterm
index. Ferragina and Venturini (2007) give an approach to addressing the
space blowup in permuterm indexes.

One of the earliest formal treatments of spelling correction was due to
Damerau (1964). The notion of edit distance that we have used is due to Lev-
enshtein (1965) and the algorithm in Figure 3.5 is due to Wagner and Fischer
(1974). Peterson (1980) and Kukich (1992) developed variants of methods
based on edit distances, culminating in a detailed empirical study of sev-
eral methods by Zobel and Dart (1995), which shows that k-gram indexing
is very effective for finding candidate mismatches, but should be combined
with a more fine-grained technique such as edit distance to determine the
most likely misspellings. Gusfield (1997) is a standard reference on string
algorithms such as edit distance.

Probabilistic models (“noisy channel” models) for spelling correction were
pioneered by Kernighan et al. (1990) and further developed by Brill and
Moore (2000) and Toutanova and Moore (2002). In these models, the mis-
spelled query is viewed as a probabilistic corruption of a correct query. They
have a similar mathematical basis to the language model methods presented
in Chapter 12, and also provide ways of incorporating phonetic similarity,
closeness on the keyboard, and data from the actual spelling mistakes of
users. Many would regard them as the state-of-the-art approach. Cucerzan
and Brill (2004) show how this work can be extended to learning spelling
correction models based on query reformulations in search engine logs.

The soundex algorithm is attributed to Margaret K. Odell and Robert C.
Russelli (from U.S. patents granted in 1918 and 1922); the version described
here draws on Bourne and Ford (1961). Zobel and Dart (1996) evaluate var-
ious phonetic matching algorithms, finding that a variant of the soundex
algorithm performs poorly for general spelling correction, but that other al-
gorithms based on the phonetic similarity of term pronunciations perform
well.
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4 Index construction

In this chapter, we look at how to construct an inverted index. We call this
process index construction or indexing; the process or machine that performs itINDEXING

the indexer. The design of indexing algorithms is governed by hardware con-INDEXER

straints. We therefore begin this chapter with a review of the basics of com-
puter hardware that are relevant for indexing. We then introduce blocked
sort-based indexing (Section 4.2), an efficient single-machine algorithm de-
signed for static collections that can be viewed as a more scalable version of
the basic sort-based indexing algorithm we introduced in Chapter 1. Sec-
tion 4.3 describes single-pass in-memory indexing, an algorithm that has
even better scaling properties because it does not hold the vocabulary in
memory. For very large collections like the web, indexing has to be dis-
tributed over computer clusters with hundreds or thousands of machines.
We discuss this in Section 4.4. Collections with frequent changes require dy-
namic indexing introduced in Section 4.5 so that changes in the collection are
immediately reflected in the index. Finally, we cover some complicating is-
sues that can arise in indexing – such as security and indexes for ranked
retrieval – in Section 4.6.

Index construction interacts with several topics covered in other chapters.
The indexer needs raw text, but documents are encoded in many ways (see
Chapter 2). Indexers compress and decompress intermediate files and the
final index (see Chapter 5). In web search, documents are not on a local
file system, but have to be spidered or crawled (see Chapter 20). In enter-
prise search, most documents are encapsulated in varied content manage-
ment systems, email applications, and databases. We give some examples
in Section 4.7. Although most of these applications can be accessed via http,
native Application Programming Interfaces (APIs) are usually more efficient.
The reader should be aware that building the subsystem that feeds raw text
to the indexing process can in itself be a challenging problem.
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◮ Table 4.1 Typical system parameters in 2007. The seek time is the time needed
to position the disk head in a new position. The transfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Symbol Statistic Value
s average seek time 5 ms = 5× 10−3 s
b transfer time per byte 0.02 µs = 2× 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation
(e.g., compare & swap a word) 0.01 µs = 10−8 s

size of main memory several GB
size of disk space 1 TB or more

4.1 Hardware basics

When building an information retrieval (IR) system, many decisions are based
on the characteristics of the computer hardware on which the system runs.
We therefore begin this chapter with a brief review of computer hardware.
Performance characteristics typical of systems in 2007 are shown in Table 4.1.
A list of hardware basics that we need in this book to motivate IR system
design follows.

• Access to data in memory is much faster than access to data on disk. It
takes a few clock cycles (perhaps 5 × 10−9 seconds) to access a byte in
memory, but much longer to transfer it from disk (about 2 × 10−8 sec-
onds). Consequently, we want to keep as much data as possible in mem-
ory, especially those data that we need to access frequently. We call the
technique of keeping frequently used disk data in main memory caching.CACHING

• When doing a disk read or write, it takes a while for the disk head to
move to the part of the disk where the data are located. This time is called
the seek time and it averages 5 ms for typical disks. No data are beingSEEK TIME

transferred during the seek. To maximize data transfer rates, chunks of
data that will be read together should therefore be stored contiguously on
disk. For example, using the numbers in Table 4.1 it may take as little as
0.2 seconds to transfer 10 megabytes (MB) from disk to memory if it is
stored as one chunk, but up to 0.2 + 100× (5× 10−3) = 0.7 seconds if it
is stored in 100 noncontiguous chunks because we need to move the disk
head up to 100 times.

• Operating systems generally read and write entire blocks. Thus, reading
a single byte from disk can take as much time as reading the entire block.
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Block sizes of 8, 16, 32, and 64 kilobytes (KB) are common. We call the part
of main memory where a block being read or written is stored a buffer.BUFFER

• Data transfers from disk to memory are handled by the system bus, not by
the processor. This means that the processor is available to process data
during disk I/O. We can exploit this fact to speed up data transfers by
storing compressed data on disk. Assuming an efficient decompression
algorithm, the total time of reading and then decompressing compressed
data is usually less than reading uncompressed data.

• Servers used in IR systems typically have several gigabytes (GB) of main
memory, sometimes tens of GB. Available disk space is several orders of
magnitude larger.

4.2 Blocked sort-based indexing

The basic steps in constructing a nonpositional index are depicted in Fig-
ure 1.4 (page 8). We first make a pass through the collection assembling all
term–docID pairs. We then sort the pairs with the term as the dominant key
and docID as the secondary key. Finally, we organize the docIDs for each
term into a postings list and compute statistics like term and document fre-
quency. For small collections, all this can be done in memory. In this chapter,
we describe methods for large collections that require the use of secondary
storage.

To make index construction more efficient, we represent terms as termIDs
(instead of strings as we did in Figure 1.4), where each termID is a uniqueTERMID

serial number. We can build the mapping from terms to termIDs on the fly
while we are processing the collection; or, in a two-pass approach, we com-
pile the vocabulary in the first pass and construct the inverted index in the
second pass. The index construction algorithms described in this chapter all
do a single pass through the data. Section 4.7 gives references to multipass
algorithms that are preferable in certain applications, for example, when disk
space is scarce.

We work with the Reuters-RCV1 collection as our model collection in thisREUTERS-RCV1

chapter, a collection with roughly 1 GB of text. It consists of about 800,000
documents that were sent over the Reuters newswire during a 1-year pe-
riod between August 20, 1996, and August 19, 1997. A typical document is
shown in Figure 4.1, but note that we ignore multimedia information like
images in this book and are only concerned with text. Reuters-RCV1 covers
a wide range of international topics, including politics, business, sports, and
(as in this example) science. Some key statistics of the collection are shown
in Table 4.2.
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◮ Table 4.2 Collection statistics for Reuters-RCV1. Values are rounded for the com-
putations in this book. The unrounded values are: 806,791 documents, 222 tokens
per document, 391,523 (distinct) terms, 6.04 bytes per token with spaces and punc-
tuation, 4.5 bytes per token without spaces and punctuation, 7.5 bytes per term, and
96,969,056 tokens. The numbers in this table correspond to the third line (“case fold-
ing”) in Table 5.1 (page 87).

Symbol Statistic Value
N documents 800,000
Lave avg. # tokens per document 200
M terms 400,000

avg. # bytes per token (incl. spaces/punct.) 6
avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term 7.5

T tokens 100,000,000

REUTERS

Extreme conditions create rare Antarctic clouds

You are here:  Home > News > Science > Article

Go to a Section:      U.S.     International      Business      Markets Politics Entertainment Technology

Tue Aug 1, 2006 3:20am ET

Email This Article | Print This Article | Reprints

SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds

caused by extreme weather conditions above Antarctica are a

possible indication of global warming, Australian scientists said on

Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate

wisps of colors were photographed in the sky over an Australian

meteorological base at Mawson Station on July 25.

Sports Oddly Enough

[-] Text [+]

◮ Figure 4.1 Document from the Reuters newswire.

Reuters-RCV1 has 100 million tokens. Collecting all termID–docID pairs of
the collection using 4 bytes each for termID and docID therefore requires 0.8
GB of storage. Typical collections today are often one or two orders of mag-
nitude larger than Reuters-RCV1. You can easily see how such collections
overwhelm even large computers if we try to sort their termID–docID pairs
in memory. If the size of the intermediate files during index construction is
within a small factor of available memory, then the compression techniques
introduced in Chapter 5 can help; however, the postings file of many large
collections cannot fit into memory even after compression.

With main memory insufficient, we need to use an external sorting algo-EXTERNAL SORTING
ALGORITHM rithm, that is, one that uses disk. For acceptable speed, the central require-
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BSBINDEXCONSTRUCTION()
1 n← 0
2 while (all documents have not been processed)
3 do n← n + 1
4 block← PARSENEXTBLOCK()
5 BSBI-INVERT(block)
6 WRITEBLOCKTODISK(block, fn)
7 MERGEBLOCKS( f1, . . . , fn; f merged)

◮ Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted blocks in
files f1, . . . , fn and the merged index in f merged.

ment of such an algorithm is that it minimize the number of random disk
seeks during sorting – sequential disk reads are far faster than seeks as we
explained in Section 4.1. One solution is the blocked sort-based indexing algo-BLOCKED SORT-BASED

INDEXING ALGORITHM rithm or BSBI in Figure 4.2. BSBI (i) segments the collection into parts of equal
size, (ii) sorts the termID–docID pairs of each part in memory, (iii) stores in-
termediate sorted results on disk, and (iv) merges all intermediate results
into the final index.

The algorithm parses documents into termID–docID pairs and accumu-
lates the pairs in memory until a block of a fixed size is full (PARSENEXTBLOCK

in Figure 4.2). We choose the block size to fit comfortably into memory to
permit a fast in-memory sort. The block is then inverted and written to disk.
Inversion involves two steps. First, we sort the termID–docID pairs. Next,INVERSION

we collect all termID–docID pairs with the same termID into a postings list,
where a posting is simply a docID. The result, an inverted index for the blockPOSTING

we have just read, is then written to disk. Applying this to Reuters-RCV1 and
assuming we can fit 10 million termID–docID pairs into memory, we end up
with ten blocks, each an inverted index of one part of the collection.

In the final step, the algorithm simultaneously merges the ten blocks into
one large merged index. An example with two blocks is shown in Figure 4.3,
where we use di to denote the ith document of the collection. To do the merg-
ing, we open all block files simultaneously, and maintain small read buffers
for the ten blocks we are reading and a write buffer for the final merged in-
dex we are writing. In each iteration, we select the lowest termID that has
not been processed yet using a priority queue or a similar data structure. All
postings lists for this termID are read and merged, and the merged list is
written back to disk. Each read buffer is refilled from its file when necessary.

How expensive is BSBI? Its time complexity is Θ(T log T) because the step
with the highest time complexity is sorting and T is an upper bound for the
number of items we must sort (i.e., the number of termID–docID pairs). But
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brutus d1,d3

caesar d1,d2,d4

noble d5

with d1,d2,d3,d5

brutus d6,d7

caesar d8,d9

julius d10

killed d8

postings lists
to be merged

brutus d1,d3,d6,d7

caesar d1,d2,d4,d8,d9

julius d10

killed d8

noble d5

with d1,d2,d3,d5

merged
postings lists

disk

◮ Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings lists to
be merged”) are loaded from disk into memory, merged in memory (“merged post-
ings lists”) and written back to disk. We show terms instead of termIDs for better
readability.

the actual indexing time is usually dominated by the time it takes to parse the
documents (PARSENEXTBLOCK) and to do the final merge (MERGEBLOCKS).
Exercise 4.6 asks you to compute the total index construction time for RCV1
that includes these steps as well as inverting the blocks and writing them to
disk.

Notice that Reuters-RCV1 is not particularly large in an age when one or
more GB of memory are standard on personal computers. With appropriate
compression (Chapter 5), we could have created an inverted index for RCV1
in memory on a not overly beefy server. The techniques we have described
are needed, however, for collections that are several orders of magnitude
larger.

? Exercise 4.1

If we need T log2 T comparisons (where T is the number of termID–docID pairs) and
two disk seeks for each comparison, how much time would index construction for
Reuters-RCV1 take if we used disk instead of memory for storage and an unopti-
mized sorting algorithm (i.e., not an external sorting algorithm)? Use the system
parameters in Table 4.1.

Exercise 4.2 [⋆]

How would you create the dictionary in blocked sort-based indexing on the fly to
avoid an extra pass through the data?
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SPIMI-INVERT(token_stream)
1 output_ f ile = NEWFILE()
2 dictionary = NEWHASH()
3 while (free memory available)
4 do token← next(token_stream)
5 if term(token) /∈ dictionary
6 then postings_list = ADDTODICTIONARY(dictionary, term(token))
7 else postings_list = GETPOSTINGSLIST(dictionary, term(token))
8 if f ull(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))

10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms← SORTTERMS(dictionary)
12 WRITEBLOCKTODISK(sorted_terms, dictionary, output_ f ile)
13 return output_ f ile

◮ Figure 4.4 Inversion of a block in single-pass in-memory indexing

4.3 Single-pass in-memory indexing

Blocked sort-based indexing has excellent scaling properties, but it needs
a data structure for mapping terms to termIDs. For very large collections,
this data structure does not fit into memory. A more scalable alternative is
single-pass in-memory indexing or SPIMI. SPIMI uses terms instead of termIDs,SINGLE-PASS

IN-MEMORY INDEXING writes each block’s dictionary to disk, and then starts a new dictionary for the
next block. SPIMI can index collections of any size as long as there is enough
disk space available.

The SPIMI algorithm is shown in Figure 4.4. The part of the algorithm that
parses documents and turns them into a stream of term–docID pairs, which
we call tokens here, has been omitted. SPIMI-INVERT is called repeatedly on
the token stream until the entire collection has been processed.

Tokens are processed one by one (line 4) during each successive call of
SPIMI-INVERT. When a term occurs for the first time, it is added to the
dictionary (best implemented as a hash), and a new postings list is created
(line 6). The call in line 7 returns this postings list for subsequent occurrences
of the term.

A difference between BSBI and SPIMI is that SPIMI adds a posting di-
rectly to its postings list (line 10). Instead of first collecting all termID–docID
pairs and then sorting them (as we did in BSBI), each postings list is dynamic
(i.e., its size is adjusted as it grows) and it is immediately available to collect
postings. This has two advantages: It is faster because there is no sorting
required, and it saves memory because we keep track of the term a postings
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list belongs to, so the termIDs of postings need not be stored. As a result, the
blocks that individual calls of SPIMI-INVERT can process are much larger
and the index construction process as a whole is more efficient.

Because we do not know how large the postings list of a term will be when
we first encounter it, we allocate space for a short postings list initially and
double the space each time it is full (lines 8–9). This means that some mem-
ory is wasted, which counteracts the memory savings from the omission of
termIDs in intermediate data structures. However, the overall memory re-
quirements for the dynamically constructed index of a block in SPIMI are
still lower than in BSBI.

When memory has been exhausted, we write the index of the block (which
consists of the dictionary and the postings lists) to disk (line 12). We have to
sort the terms (line 11) before doing this because we want to write postings
lists in lexicographic order to facilitate the final merging step. If each block’s
postings lists were written in unsorted order, merging blocks could not be
accomplished by a simple linear scan through each block.

Each call of SPIMI-INVERT writes a block to disk, just as in BSBI. The last
step of SPIMI (corresponding to line 7 in Figure 4.2; not shown in Figure 4.4)
is then to merge the blocks into the final inverted index.

In addition to constructing a new dictionary structure for each block and
eliminating the expensive sorting step, SPIMI has a third important compo-
nent: compression. Both the postings and the dictionary terms can be stored
compactly on disk if we employ compression. Compression increases the ef-
ficiency of the algorithm further because we can process even larger blocks,
and because the individual blocks require less space on disk. We refer readers
to the literature for this aspect of the algorithm (Section 4.7).

The time complexity of SPIMI is Θ(T) because no sorting of tokens is re-
quired and all operations are at most linear in the size of the collection.

4.4 Distributed indexing

Collections are often so large that we cannot perform index construction effi-
ciently on a single machine. This is particularly true of the World Wide Web
for which we need large computer clusters1 to construct any reasonably sized
web index. Web search engines, therefore, use distributed indexing algorithms
for index construction. The result of the construction process is a distributed
index that is partitioned across several machines – either according to term
or according to document. In this section, we describe distributed indexing
for a term-partitioned index. Most large search engines prefer a document-

1. A cluster in this chapter is a group of tightly coupled computers that work together closely.
This sense of the word is different from the use of cluster as a group of documents that are
semantically similar in Chapters 16–18.
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partitioned index (which can be easily generated from a term-partitioned
index). We discuss this topic further in Section 20.3 (page 454).

The distributed index construction method we describe in this section is an
application of MapReduce, a general architecture for distributed computing.MAPREDUCE

MapReduce is designed for large computer clusters. The point of a cluster is
to solve large computing problems on cheap commodity machines or nodes
that are built from standard parts (processor, memory, disk) as opposed to on
a supercomputer with specialized hardware. Although hundreds or thou-
sands of machines are available in such clusters, individual machines can
fail at any time. One requirement for robust distributed indexing is, there-
fore, that we divide the work up into chunks that we can easily assign and
– in case of failure – reassign. A master node directs the process of assigningMASTER NODE

and reassigning tasks to individual worker nodes.
The map and reduce phases of MapReduce split up the computing job

into chunks that standard machines can process in a short time. The various
steps of MapReduce are shown in Figure 4.5 and an example on a collection
consisting of two documents is shown in Figure 4.6. First, the input data,
in our case a collection of web pages, are split into n splits where the size ofSPLITS

the split is chosen to ensure that the work can be distributed evenly (chunks
should not be too large) and efficiently (the total number of chunks we need
to manage should not be too large); 16 or 64 MB are good sizes in distributed
indexing. Splits are not preassigned to machines, but are instead assigned
by the master node on an ongoing basis: As a machine finishes processing
one split, it is assigned the next one. If a machine dies or becomes a laggard
due to hardware problems, the split it is working on is simply reassigned to
another machine.

In general, MapReduce breaks a large computing problem into smaller
parts by recasting it in terms of manipulation of key-value pairs. For index-KEY-VALUE PAIRS

ing, a key-value pair has the form (termID,docID). In distributed indexing,
the mapping from terms to termIDs is also distributed and therefore more
complex than in single-machine indexing. A simple solution is to maintain
a (perhaps precomputed) mapping for frequent terms that is copied to all
nodes and to use terms directly (instead of termIDs) for infrequent terms.
We do not address this problem here and assume that all nodes share a con-
sistent term→ termID mapping.

The map phase of MapReduce consists of mapping splits of the input dataMAP PHASE

to key-value pairs. This is the same parsing task we also encountered in BSBI
and SPIMI, and we therefore call the machines that execute the map phase
parsers. Each parser writes its output to local intermediate files, the segmentPARSER

SEGMENT FILE
files (shown as a-f g-p q-z in Figure 4.5).

For the reduce phase, we want all values for a given key to be stored closeREDUCE PHASE

together, so that they can be read and processed quickly. This is achieved by
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masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

◮ Figure 4.5 An example of distributed indexing with MapReduce. Adapted from
Dean and Ghemawat (2004).

partitioning the keys into j term partitions and having the parsers write key-
value pairs for each term partition into a separate segment file. In Figure 4.5,
the term partitions are according to first letter: a–f, g–p, q–z, and j = 3. (We
chose these key ranges for ease of exposition. In general, key ranges need not
correspond to contiguous terms or termIDs.) The term partitions are defined
by the person who operates the indexing system (Exercise 4.10). The parsers
then write corresponding segment files, one for each term partition. Each
term partition thus corresponds to r segments files, where r is the number
of parsers. For instance, Figure 4.5 shows three a–f segment files of the a–f
partition, corresponding to the three parsers shown in the figure.

Collecting all values (here: docIDs) for a given key (here: termID) into one
list is the task of the inverters in the reduce phase. The master assigns eachINVERTER

term partition to a different inverter – and, as in the case of parsers, reas-
signs term partitions in case of failing or slow inverters. Each term partition
(corresponding to r segment files, one on each parser) is processed by one in-
verter. We assume here that segment files are of a size that a single machine
can handle (Exercise 4.9). Finally, the list of values is sorted for each key and
written to the final sorted postings list (“postings” in the figure). (Note that
postings in Figure 4.6 include term frequencies, whereas each posting in the
other sections of this chapter is simply a docID without term frequency in-
formation.) The data flow is shown for a–f in Figure 4.5. This completes the
construction of the inverted index.
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Schema of map and reduce functions

map: input list(k,v)

reduce: (k,list(v)) output

Instantiation of the schema for index construction

map: web collection list(termID, docID)

reduce: ( termID ,1 list(docID) ,  termID  ,2 list(docID) , . . . ) (postings list list1, postings 2, . . . )

Example for index construction

map: d2 : C died. d1 : C came, C c’ed. ( C, d2 ,  died,d2 ,  C,d1 ,  came,d1 ,  C,d1 ,  〈c’ed,d1〉)

reduce: ( C,(d2,d1,d1) ,  died,(d2) ,  came,(d1) , c’ed,(d1) ) (〈C,(d1:2,d2:1)〉,  〈died,(d2:1)〉,  〈came,(d1:1)〉,  〈c’ed,(d1:1)〉 )

〉 〉

〉 〉 〉 〉

〉〉〉〉 〉

〈

〈 〈

〈 〈 〈

〈〈〈〈 〈

→

→

→

→

→

→

◮ Figure 4.6 Map and reduce functions in MapReduce. In general, the map func-
tion produces a list of key-value pairs. All values for a key are collected into one
list in the reduce phase. This list is then processed further. The instantiations of the
two functions and an example are shown for index construction. Because the map
phase processes documents in a distributed fashion, termID–docID pairs need not be
ordered correctly initially as in this example. The example shows terms instead of
termIDs for better readability. We abbreviate Caesar as C and conquered as c’ed.

Parsers and inverters are not separate sets of machines. The master iden-
tifies idle machines and assigns tasks to them. The same machine can be a
parser in the map phase and an inverter in the reduce phase. And there are
often other jobs that run in parallel with index construction, so in between
being a parser and an inverter a machine might do some crawling or another
unrelated task.

To minimize write times before inverters reduce the data, each parser writes
its segment files to its local disk. In the reduce phase, the master communi-
cates to an inverter the locations of the relevant segment files (e.g., of the r
segment files of the a–f partition). Each segment file only requires one se-
quential read because all data relevant to a particular inverter were written
to a single segment file by the parser. This setup minimizes the amount of
network traffic needed during indexing.

Figure 4.6 shows the general schema of the MapReduce functions. In-
put and output are often lists of key-value pairs themselves, so that several
MapReduce jobs can run in sequence. In fact, this was the design of the
Google indexing system in 2004. What we describe in this section corre-
sponds to only one of five to ten MapReduce operations in that indexing
system. Another MapReduce operation transforms the term-partitioned in-
dex we just created into a document-partitioned one.

MapReduce offers a robust and conceptually simple framework for imple-
menting index construction in a distributed environment. By providing a
semiautomatic method for splitting index construction into smaller tasks, it
can scale to almost arbitrarily large collections, given computer clusters of
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sufficient size.

? Exercise 4.3

For n = 15 splits, r = 10 segments, and j = 3 term partitions, how long would
distributed index creation take for Reuters-RCV1 in a MapReduce architecture? Base
your assumptions about cluster machines on Table 4.1.

4.5 Dynamic indexing

Thus far, we have assumed that the document collection is static. This is fine
for collections that change infrequently or never (e.g., the Bible or Shake-
speare). But most collections are modified frequently with documents being
added, deleted, and updated. This means that new terms need to be added
to the dictionary, and postings lists need to be updated for existing terms.

The simplest way to achieve this is to periodically reconstruct the index
from scratch. This is a good solution if the number of changes over time is
small and a delay in making new documents searchable is acceptable – and
if enough resources are available to construct a new index while the old one
is still available for querying.

If there is a requirement that new documents be included quickly, one solu-
tion is to maintain two indexes: a large main index and a small auxiliary indexAUXILIARY INDEX

that stores new documents. The auxiliary index is kept in memory. Searches
are run across both indexes and results merged. Deletions are stored in an in-
validation bit vector. We can then filter out deleted documents before return-
ing the search result. Documents are updated by deleting and reinserting
them.

Each time the auxiliary index becomes too large, we merge it into the main
index. The cost of this merging operation depends on how we store the index
in the file system. If we store each postings list as a separate file, then the
merge simply consists of extending each postings list of the main index by
the corresponding postings list of the auxiliary index. In this scheme, the
reason for keeping the auxiliary index is to reduce the number of disk seeks
required over time. Updating each document separately requires up to Mave

disk seeks, where Mave is the average size of the vocabulary of documents in
the collection. With an auxiliary index, we only put additional load on the
disk when we merge auxiliary and main indexes.

Unfortunately, the one-file-per-postings-list scheme is infeasible because
most file systems cannot efficiently handle very large numbers of files. The
simplest alternative is to store the index as one large file, that is, as a concate-
nation of all postings lists. In reality, we often choose a compromise between
the two extremes (Section 4.7). To simplify the discussion, we choose the
simple option of storing the index as one large file here.
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LMERGEADDTOKEN(indexes, Z0, token)
1 Z0 ← MERGE(Z0, {token})
2 if |Z0| = n
3 then for i← 0 to ∞

4 do if Ii ∈ indexes
5 then Zi+1 ← MERGE(Ii, Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes← indexes− {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii.)
9 indexes← indexes ∪ {Ii}

10 BREAK

11 Z0 ← ∅

LOGARITHMICMERGE()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes← ∅

3 while true
4 do LMERGEADDTOKEN(indexes, Z0, GETNEXTTOKEN())

◮ Figure 4.7 Logarithmic merging. Each token (termID,docID) is initially added to
in-memory index Z0 by LMERGEADDTOKEN. LOGARITHMICMERGE initializes Z0
and indexes.

In this scheme, we process each posting ⌊T/n⌋ times because we touch it
during each of ⌊T/n⌋merges where n is the size of the auxiliary index and T
the total number of postings. Thus, the overall time complexity is Θ(T2/n).
(We neglect the representation of terms here and consider only the docIDs.
For the purpose of time complexity, a postings list is simply a list of docIDs.)

We can do better than Θ(T2/n) by introducing log2(T/n) indexes I0, I1,
I2, . . . of size 20 × n, 21 × n, 22 × n . . . . Postings percolate up this sequence of
indexes and are processed only once on each level. This scheme is called log-LOGARITHMIC

MERGING arithmic merging (Figure 4.7). As before, up to n postings are accumulated in
an in-memory auxiliary index, which we call Z0. When the limit n is reached,
the 20 × n postings in Z0 are transferred to a new index I0 that is created on
disk. The next time Z0 is full, it is merged with I0 to create an index Z1 of size
21× n. Then Z1 is either stored as I1 (if there isn’t already an I1) or merged
with I1 into Z2 (if I1 exists); and so on. We service search requests by query-
ing in-memory Z0 and all currently valid indexes Ii on disk and merging the
results. Readers familiar with the binomial heap data structure2 will recog-

2. See, for example, (Cormen et al. 1990, Chapter 19).
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nize its similarity with the structure of the inverted indexes in logarithmic
merging.

Overall index construction time is Θ(T log(T/n)) because each posting
is processed only once on each of the log(T/n) levels. We trade this effi-
ciency gain for a slow down of query processing; we now need to merge
results from log(T/n) indexes as opposed to just two (the main and auxil-
iary indexes). As in the auxiliary index scheme, we still need to merge very
large indexes occasionally (which slows down the search system during the
merge), but this happens less frequently and the indexes involved in a merge
on average are smaller.

Having multiple indexes complicates the maintenance of collection-wide
statistics. For example, it affects the spelling correction algorithm in Sec-
tion 3.3 (page 56) that selects the corrected alternative with the most hits.
With multiple indexes and an invalidation bit vector, the correct number of
hits for a term is no longer a simple lookup. In fact, all aspects of an IR
system – index maintenance, query processing, distribution, and so on – are
more complex in logarithmic merging.

Because of this complexity of dynamic indexing, some large search engines
adopt a reconstruction-from-scratch strategy. They do not construct indexes
dynamically. Instead, a new index is built from scratch periodically. Query
processing is then switched from the new index and the old index is deleted.

? Exercise 4.4

For n = 2 and 1 ≤ T ≤ 30, perform a step-by-step simulation of the algorithm in
Figure 4.7. Create a table that shows, for each point in time at which T = 2 ∗ k tokens
have been processed (1 ≤ k ≤ 15), which of the three indexes I0, . . . , I3 are in use. The
first three lines of the table are given below.

I3 I2 I1 I0
2 0 0 0 0
4 0 0 0 1
6 0 0 1 0

4.6 Other types of indexes

This chapter only describes construction of nonpositional indexes. Except
for the much larger data volume we need to accommodate, the main differ-
ence for positional indexes is that (termID, docID, (position1, position2, . . . ))
triples, instead of (termID, docID) pairs have to be processed and that tokens
and postings contain positional information in addition to docIDs. With this
change, the algorithms discussed here can all be applied to positional in-
dexes.

In the indexes we have considered so far, postings lists are ordered with
respect to docID. As we see in Chapter 5, this is advantageous for compres-
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users

documents

0/1
doc e., 1 otherwis
0 if user can’t read

◮ Figure 4.8 A user-document matrix for access control lists. Element (i, j) is 1 if
user i has access to document j and 0 otherwise. During query processing, a user’s
access postings list is intersected with the results list returned by the text part of the
index.

sion – instead of docIDs we can compress smaller gaps between IDs, thus
reducing space requirements for the index. However, this structure for the
index is not optimal when we build ranked (Chapters 6 and 7) – as opposed toRANKED

Boolean – retrieval systems. In ranked retrieval, postings are often ordered ac-RETRIEVAL SYSTEMS

cording to weight or impact, with the highest-weighted postings occurring
first. With this organization, scanning of long postings lists during query
processing can usually be terminated early when weights have become so
small that any further documents can be predicted to be of low similarity
to the query (see Chapter 6). In a docID-sorted index, new documents are
always inserted at the end of postings lists. In an impact-sorted index (Sec-
tion 7.1.5, page 140), the insertion can occur anywhere, thus complicating the
update of the inverted index.

Securityis an important consideration for retrieval systems in corporations.SECURITY

A low-level employee should not be able to find the salary roster of the cor-
poration, but authorized managers need to be able to search for it. Users’
results lists must not contain documents they are barred from opening; the
very existence of a document can be sensitive information.

User authorization is often mediated through access control lists or ACLs.ACCESS CONTROL LISTS

ACLs can be dealt with in an information retrieval system by representing
each document as the set of users that can access them (Figure 4.8) and then
inverting the resulting user-document matrix. The inverted ACL index has,
for each user, a “postings list” of documents they can access – the user’s ac-
cess list. Search results are then intersected with this list. However, such
an index is difficult to maintain when access permissions change – we dis-
cussed these difficulties in the context of incremental indexing for regular
postings lists in Section 4.5. It also requires the processing of very long post-
ings lists for users with access to large document subsets. User membership
is therefore often verified by retrieving access information directly from the
file system at query time – even though this slows down retrieval.
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◮ Table 4.3 The five steps in constructing an index for Reuters-RCV1 in blocked
sort-based indexing. Line numbers refer to Figure 4.2.

Step Time
1 reading of collection (line 4)
2 10 initial sorts of 107 records each (line 5)
3 writing of 10 blocks (line 6)
4 total disk transfer time for merging (line 7)
5 time of actual merging (line 7)

total

◮ Table 4.4 Collection statistics for a large collection.
Symbol Statistic Value
N # documents 1,000,000,000
Lave # tokens per document 1000
M # distinct terms 44,000,000

We discussed indexes for storing and retrieving terms (as opposed to doc-
uments) in Chapter 3.

? Exercise 4.5

Can spelling correction compromise document-level security? Consider the case where
a spelling correction is based on documents to which the user does not have access.

? Exercise 4.6

Total index construction time in blocked sort-based indexing is broken down in Ta-
ble 4.3. Fill out the time column of the table for Reuters-RCV1 assuming a system
with the parameters given in Table 4.1.

Exercise 4.7

Repeat Exercise 4.6 for the larger collection in Table 4.4. Choose a block size that is
realistic for current technology (remember that a block should easily fit into main
memory). How many blocks do you need?

Exercise 4.8

Assume that we have a collection of modest size whose index can be constructed with
the simple in-memory indexing algorithm in Figure 1.4 (page 8). For this collection,
compare memory, disk and time requirements of the simple algorithm in Figure 1.4
and blocked sort-based indexing.

Exercise 4.9

Assume that machines in MapReduce have 100 GB of disk space each. Assume fur-
ther that the postings list of the term the has a size of 200 GB. Then the MapReduce
algorithm as described cannot be run to construct the index. How would you modify
MapReduce so that it can handle this case?
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Exercise 4.10

For optimal load balancing, the inverters in MapReduce must get segmented postings
files of similar sizes. For a new collection, the distribution of key-value pairs may not
be known in advance. How would you solve this problem?

Exercise 4.11

Apply MapReduce to the problem of counting how often each term occurs in a set of
files. Specify map and reduce operations for this task. Write down an example along
the lines of Figure 4.6.

Exercise 4.12

We claimed (on page 80) that an auxiliary index can impair the quality of collec-
tion statistics. An example is the term weighting method idf, which is defined as
log(N/dfi) where N is the total number of documents and dfi is the number of docu-
ments that term i occurs in (Section 6.2.1, page 117). Show that even a small auxiliary
index can cause significant error in idf when it is computed on the main index only.
Consider a rare term that suddenly occurs frequently (e.g., Flossie as in Tropical Storm
Flossie).

4.7 References and further reading

Witten et al. (1999, Chapter 5) present an extensive treatment of the subject of
index construction and additional indexing algorithms with different trade-
offs of memory, disk space, and time. In general, blocked sort-based indexing
does well on all three counts. However, if conserving memory or disk space
is the main criterion, then other algorithms may be a better choice. See Wit-
ten et al. (1999), Tables 5.4 and 5.5; BSBI is closest to “sort-based multiway
merge,” but the two algorithms differ in dictionary structure and use of com-
pression.

Moffat and Bell (1995) show how to construct an index “in situ,” that
is, with disk space usage close to what is needed for the final index and
with a minimum of additional temporary files (cf. also Harman and Candela
(1990)). They give Lesk (1988) and Somogyi (1990) credit for being among
the first to employ sorting for index construction.

The SPIMI method in Section 4.3 is from (Heinz and Zobel 2003). We have
simplified several aspects of the algorithm, including compression and the
fact that each term’s data structure also contains, in addition to the postings
list, its document frequency and house keeping information. We recommend
Heinz and Zobel (2003) and Zobel and Moffat (2006) as up-do-date, in-depth
treatments of index construction. Other algorithms with good scaling prop-
erties with respect to vocabulary size require several passes through the data,
e.g., FAST-INV (Fox and Lee 1991, Harman et al. 1992).

The MapReduce architecture was introduced by Dean and Ghemawat (2004).
An open source implementation of MapReduce is available at http://lucene.apache.org/hadoop/.
Ribeiro-Neto et al. (1999) and Melnik et al. (2001) describe other approaches
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to distributed indexing. Introductory chapters on distributed IR are (Baeza-
Yates and Ribeiro-Neto 1999, Chapter 9) and (Grossman and Frieder 2004,
Chapter 8). See also Callan (2000).

Lester et al. (2005) and Büttcher and Clarke (2005a) analyze the proper-
ties of logarithmic merging and compare it with other construction methods.
One of the first uses of this method was in Lucene (http://lucene.apache.org).
Other dynamic indexing methods are discussed by Büttcher et al. (2006) and
Lester et al. (2006). The latter paper also discusses the strategy of replacing
the old index by one built from scratch.

Heinz et al. (2002) compare data structures for accumulating the vocabu-
lary in memory. Büttcher and Clarke (2005b) discuss security models for a
common inverted index for multiple users. A detailed characterization of the
Reuters-RCV1 collection can be found in (Lewis et al. 2004). NIST distributes
the collection (see http://trec.nist.gov/data/reuters/reuters.html).

Garcia-Molina et al. (1999, Chapter 2) review computer hardware relevant
to system design in depth.

An effective indexer for enterprise search needs to be able to communicate
efficiently with a number of applications that hold text data in corporations,
including Microsoft Outlook, IBM’s Lotus software, databases like Oracle
and MySQL, content management systems like Open Text, and enterprise
resource planning software like SAP.
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5 Index compression

Chapter 1 introduced the dictionary and the inverted index as the central
data structures in information retrieval (IR). In this chapter, we employ a
number of compression techniques for dictionary and inverted index that
are essential for efficient IR systems.

One benefit of compression is immediately clear. We need less disk space.
As we will see, compression ratios of 1:4 are easy to achieve, potentially cut-
ting the cost of storing the index by 75%.

There are two more subtle benefits of compression. The first is increased
use of caching. Search systems use some parts of the dictionary and the index
much more than others. For example, if we cache the postings list of a fre-
quently used query term t, then the computations necessary for responding
to the one-term query t can be entirely done in memory. With compression,
we can fit a lot more information into main memory. Instead of having to
expend a disk seek when processing a query with t, we instead access its
postings list in memory and decompress it. As we will see below, there are
simple and efficient decompression methods, so that the penalty of having to
decompress the postings list is small. As a result, we are able to decrease the
response time of the IR system substantially. Because memory is a more ex-
pensive resource than disk space, increased speed owing to caching – rather
than decreased space requirements – is often the prime motivator for com-
pression.

The second more subtle advantage of compression is faster transfer of data
from disk to memory. Efficient decompression algorithms run so fast on
modern hardware that the total time of transferring a compressed chunk of
data from disk and then decompressing it is usually less than transferring
the same chunk of data in uncompressed form. For instance, we can reduce
input/output (I/O) time by loading a much smaller compressed postings
list, even when you add on the cost of decompression. So, in most cases,
the retrieval system runs faster on compressed postings lists than on uncom-
pressed postings lists.

If the main goal of compression is to conserve disk space, then the speed
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of compression algorithms is of no concern. But for improved cache uti-
lization and faster disk-to-memory transfer, decompression speeds must be
high. The compression algorithms we discuss in this chapter are highly effi-
cient and can therefore serve all three purposes of index compression.

In this chapter, we define a posting as a docID in a postings list. For exam-POSTING

ple, the postings list (6; 20, 45, 100), where 6 is the termID of the list’s term,
contains three postings. As discussed in Section 2.4.2 (page 41), postings in
most search systems also contain frequency and position information; but we
will only consider simple docID postings here. See Section 5.4 for references
on compressing frequencies and positions.

This chapter first gives a statistical characterization of the distribution of
the entities we want to compress – terms and postings in large collections
(Section 5.1). We then look at compression of the dictionary, using the dictionary-
as-a-string method and blocked storage (Section 5.2). Section 5.3 describes
two techniques for compressing the postings file, variable byte encoding and
γ encoding.

5.1 Statistical properties of terms in information retrieval

As in the last chapter, we use Reuters-RCV1 as our model collection (see Ta-
ble 4.2, page 70). We give some term and postings statistics for the collection
in Table 5.1. “∆%” indicates the reduction in size from the previous line.
“T%” is the cumulative reduction from unfiltered.

The table shows the number of terms for different levels of preprocessing
(column 2). The number of terms is the main factor in determining the size
of the dictionary. The number of nonpositional postings (column 3) is an
indicator of the expected size of the nonpositional index of the collection.
The expected size of a positional index is related to the number of positions
it must encode (column 4).

In general, the statistics in Table 5.1 show that preprocessing affects the size
of the dictionary and the number of nonpositional postings greatly. Stem-
ming and case folding reduce the number of (distinct) terms by 17% each
and the number of nonpositional postings by 4% and 3%, respectively. The
treatment of the most frequent words is also important. The rule of 30 statesRULE OF 30

that the 30 most common words account for 30% of the tokens in written text
(31% in the table). Eliminating the 150 most common words from indexing
(as stop words; cf. Section 2.2.2, page 27) cuts 25% to 30% of the nonpositional
postings. But, although a stop list of 150 words reduces the number of post-
ings by a quarter or more, this size reduction does not carry over to the size
of the compressed index. As we will see later in this chapter, the postings
lists of frequent words require only a few bits per posting after compression.

The deltas in the table are in a range typical of large collections. Note,
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◮ Table 5.1 The effect of preprocessing on the number of terms, nonpositional post-
ings, and tokens for Reuters-RCV1. “∆%” indicates the reduction in size from the pre-
vious line, except that “30 stop words” and “150 stop words” both use “case folding”
as their reference line. “T%” is the cumulative (“total”) reduction from unfiltered. We
performed stemming with the Porter stemmer (Chapter 2, page 33).

tokens (= number of position
(distinct) terms nonpositional postings entries in postings)

number ∆% T% number ∆% T% number ∆% T%
unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 −2 −2 100,680,242 −8 −8 179,158,204 −9 −9
case folding 391,523 −17 −19 96,969,056 −3 −12 179,158,204 −0 −9
30 stop words 391,493 −0 −19 83,390,443 −14 −24 121,857,825 −31 −38
150 stop words 391,373 −0 −19 67,001,847 −30 −39 94,516,599 −47 −52
stemming 322,383 −17 −33 63,812,300 −4 −42 94,516,599 −0 −52

however, that the percentage reductions can be very different for some text
collections. For example, for a collection of web pages with a high proportion
of French text, a lemmatizer for French reduces vocabulary size much more
than the Porter stemmer does for an English-only collection because French
is a morphologically richer language than English.

The compression techniques we describe in the remainder of this chapter
are lossless, that is, all information is preserved. Better compression ratiosLOSSLESS

can be achieved with lossy compression, which discards some information.LOSSY COMPRESSION

Case folding, stemming, and stop word elimination are forms of lossy com-
pression. Similarly, the vector space model (Chapter 6) and dimensionality
reduction techniques like latent semantic indexing (Chapter 18) create com-
pact representations from which we cannot fully restore the original collec-
tion. Lossy compression makes sense when the “lost” information is unlikely
ever to be used by the search system. For example, web search is character-
ized by a large number of documents, short queries, and users who only look
at the first few pages of results. As a consequence, we can discard postings of
documents that would only be used for hits far down the list. Thus, there are
retrieval scenarios where lossy methods can be used for compression without
any reduction in effectiveness.

Before introducing techniques for compressing the dictionary, we want to
estimate the number of distinct terms M in a collection. It is sometimes said
that languages have a vocabulary of a certain size. The second edition of
the Oxford English Dictionary (OED) defines more than 600,000 words. But
the vocabulary of most large collections is much larger than the OED. The
OED does not include most names of people, locations, products, or scientific
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◮ Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =

0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law
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predicts 38,323 terms:

44× 1,000,0200.49 ≈ 38,323.

The actual number is 38,365 terms, very close to the prediction.
The parameter k is quite variable because vocabulary growth depends a

lot on the nature of the collection and how it is processed. Case-folding and
stemming reduce the growth rate of the vocabulary, whereas including num-
bers and spelling errors increase it. Regardless of the values of the param-
eters for a particular collection, Heaps’ law suggests that (i) the dictionary
size continues to increase with more documents in the collection, rather than
a maximum vocabulary size being reached, and (ii) the size of the dictionary
is quite large for large collections. These two hypotheses have been empir-
ically shown to be true of large text collections (Section 5.4). So dictionary
compression is important for an effective information retrieval system.

5.1.2 Zipf’s law: Modeling the distribution of terms

We also want to understand how terms are distributed across documents.
This helps us to characterize the properties of the algorithms for compressing
postings lists in Section 5.3.

A commonly used model of the distribution of terms in a collection is Zipf’sZIPF’S LAW

law. It states that, if t1 is the most common term in the collection, t2 is the
next most common, and so on, then the collection frequency cfi of the ith
most common term is proportional to 1/i:

cfi ∝
1
i

.(5.2)

So if the most frequent term occurs cf1 times, then the second most frequent
term has half as many occurrences, the third most frequent term a third as
many occurrences, and so on. The intuition is that frequency decreases very
rapidly with rank. Equation (5.2) is one of the simplest ways of formalizing
such a rapid decrease and it has been found to be a reasonably good model.

Equivalently, we can write Zipf’s law as cfi = cik or as log cfi = log c +
k log i where k = −1 and c is a constant to be defined in Section 5.3.2. It
is therefore a power law with exponent k = −1. See Chapter 19, page 426,POWER LAW

for another power law, a law characterizing the distribution of links on web
pages.

The log–log graph in Figure 5.2 plots the collection frequency of a term as
a function of its rank for Reuters-RCV1. A line with slope –1, corresponding
to the Zipf function log cfi = log c − log i, is also shown. The fit of the data
to the law is not particularly good, but good enough to serve as a model for
term distributions in our calculations in Section 5.3.
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◮ Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of
frequency rank for the terms in the collection. The line is the distribution predicted
by Zipf’s law (weighted least-squares fit; intercept is 6.95).

? Exercise 5.1 [⋆]

Assuming one machine word per posting, what is the size of the uncompressed (non-
positional) index for different tokenizations based on Table 5.1? How do these num-
bers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-
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term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
. . . . . . . . .
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

◮ Figure 5.3 Storing the dictionary as an array of fixed-width entries.

put. Although dictionaries of very large collections fit into the memory of a
standard desktop machine, this is not true of many other application scenar-
ios. For example, an enterprise search server for a large corporation may
have to index a multiterabyte collection with a comparatively large vocab-
ulary because of the presence of documents in many different languages.
We also want to be able to design search systems for limited hardware such
as mobile phones and onboard computers. Other reasons for wanting to
conserve memory are fast startup time and having to share resources with
other applications. The search system on your PC must get along with the
memory-hogging word processing suite you are using at the same time.

5.2.1 Dictionary as a string

The simplest data structure for the dictionary is to sort the vocabulary lex-
icographically and store it in an array of fixed-width entries as shown in
Figure 5.3. We allocate 20 bytes for the term itself (because few terms have
more than twenty characters in English), 4 bytes for its document frequency,
and 4 bytes for the pointer to its postings list. Four-byte pointers resolve a
4 gigabytes (GB) address space. For large collections like the web, we need
to allocate more bytes per pointer. We look up terms in the array by binary
search. For Reuters-RCV1, we need M × (20 + 4 + 4) = 400,000× 28 =
11.2megabytes (MB) for storing the dictionary in this scheme.

Using fixed-width entries for terms is clearly wasteful. The average length
of a term in English is about eight characters (Table 4.2, page 70), so on av-
erage we are wasting twelve characters in the fixed-width scheme. Also,
we have no way of storing terms with more than twenty characters like
hydrochlorofluorocarbons and supercalifragilisticexpialidocious. We can overcome
these shortcomings by storing the dictionary terms as one long string of char-
acters, as shown in Figure 5.4. The pointer to the next term is also used to
demarcate the end of the current term. As before, we locate terms in the data
structure by way of binary search in the (now smaller) table. This scheme
saves us 60% compared to fixed-width storage – 12 bytes on average of the
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◮ Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile, syzygetic, and syzygial.

20 bytes we allocated for terms before. However, we now also need to store
term pointers. The term pointers resolve 400,000× 8 = 3.2× 106 positions,
so they need to be log2 3.2× 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000× (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (Figure 5.5). We store the length of the term in the string as an ad-
ditional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k− 1)× 3 = 9 bytes for term pointers, but need an ad-
ditional k = 4 bytes for term lengths. So the total space requirements for the
dictionary of Reuters-RCV1 are reduced by 5 bytes per four-term block, or a
total of 400,000× 1/4× 5 = 0.5 MB, bringing us down to 7.1 MB.
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◮ Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six charac-
ters, respectively. Each term is preceded by a byte encoding its length that indicates
how many bytes to skip to reach subsequent terms.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the un-
compressed dictionary by binary search (a). In the compressed dictionary, we
first locate the term’s block by binary search and then its position within the
list by linear search through the block (b). Searching the uncompressed dic-
tionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps,
assuming each term is equally likely to come up in a query. For example,
finding the two terms, aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, ≈ 25% more. For example, finding den takes one binary
search step and two steps through the block. By increasing k, we can get
the size of the compressed dictionary arbitrarily close to the minimum of
400,000× (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes prohibitively
slow for large values of k.

One source of redundancy in the dictionary we have not exploited yet is
the fact that consecutive entries in an alphabetically sorted list share common
prefixes. This observation leads to front coding (Figure 5.7). A common prefixFRONT CODING
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(a) aid

box

den

ex

job

ox

pit

win

(b) aid box den ex

job ox pit win

◮ Figure 5.6 Search of the uncompressed dictionary (a) and a dictionary com-
pressed by blocking with k = 4 (b).

One block in blocked compression (k = 4) . . .
8automata8automate9au tomatic10automation

⇓

. . . further compressed with front coding.
8automat∗a1⋄e2 ⋄ ic3⋄ i on

◮ Figure 5.7 Front coding. A sequence of terms with identical prefix (“automat”) is
encoded by marking the end of the prefix with ∗ and replacing it with ⋄ in subsequent
terms. As before, the first byte of each entry encodes the number of characters.



Online edition (c)
2009 Cambridge UP

5.3 Postings file compression 95

◮ Table 5.2 Dictionary compression for Reuters-RCV1.
data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

is identified for a subsequence of the term list and then referred to with a
special character. In the case of Reuters, front coding saves another 1.2 MB,
as we found in an experiment.

Other schemes with even greater compression rely on minimal perfect
hashing, that is, a hash function that maps M terms onto [1, . . . , M] without
collisions. However, we cannot adapt perfect hashes incrementally because
each new term causes a collision and therefore requires the creation of a new
perfect hash function. Therefore, they cannot be used in a dynamic environ-
ment.

Even with the best compression scheme, it may not be feasible to store
the entire dictionary in main memory for very large text collections and for
hardware with limited memory. If we have to partition the dictionary onto
pages that are stored on disk, then we can index the first term of each page
using a B-tree. For processing most queries, the search system has to go to
disk anyway to fetch the postings. One additional seek for retrieving the
term’s dictionary page from disk is a significant, but tolerable increase in the
time it takes to process a query.

Table 5.2 summarizes the compression achieved by the four dictionary
data structures.

? Exercise 5.2

Estimate the space usage of the Reuters-RCV1 dictionary with blocks of size k = 8
and k = 16 in blocked dictionary storage.

Exercise 5.3

Estimate the time needed for term lookup in the compressed dictionary of Reuters-
RCV1 with block sizes of k = 4 (Figure 5.6, b), k = 8, and k = 16. What is the
slowdown compared with k = 1 (Figure 5.6, a)?

5.3 Postings file compression

Recall from Table 4.2 (page 70) that Reuters-RCV1 has 800,000 documents,
200 tokens per document, six characters per token, and 100,000,000 post-
ings where we define a posting in this chapter as a docID in a postings
list, that is, excluding frequency and position information. These numbers
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◮ Table 5.3 Encoding gaps instead of document IDs. For example, we store gaps
107, 5, 43, . . . , instead of docIDs 283154, 283159, 283202, . . . for computer. The first
docID is left unchanged (only shown for arachnocentric).

encoding postings list
the docIDs . . . 283042 283043 283044 283045

gaps 1 1 1
computer docIDs . . . 283047 283154 283159 283202

gaps 107 5 43
arachnocentric docIDs 252000 500100

gaps 252000 248100

correspond to line 3 (“case folding”) in Table 5.1. Document identifiers are
log2 800,000 ≈ 20 bits long. Thus, the size of the collection is about 800,000×
200× 6 bytes = 960 MB and the size of the uncompressed postings file is
100,000,000× 20/8 = 250 MB.

To devise a more efficient representation of the postings file, one that uses
fewer than 20 bits per document, we observe that the postings for frequent
terms are close together. Imagine going through the documents of a collec-
tion one by one and looking for a frequent term like computer. We will find
a document containing computer, then we skip a few documents that do not
contain it, then there is again a document with the term and so on (see Ta-
ble 5.3). The key idea is that the gaps between postings are short, requiring a
lot less space than 20 bits to store. In fact, gaps for the most frequent terms
such as the and for are mostly equal to 1. But the gaps for a rare term that
occurs only once or twice in a collection (e.g., arachnocentric in Table 5.3) have
the same order of magnitude as the docIDs and need 20 bits. For an econom-
ical representation of this distribution of gaps, we need a variable encoding
method that uses fewer bits for short gaps.

To encode small numbers in less space than large numbers, we look at two
types of methods: bytewise compression and bitwise compression. As the
names suggest, these methods attempt to encode gaps with the minimum
number of bytes and bits, respectively.

5.3.1 Variable byte codes

Variable byte (VB) encoding uses an integral number of bytes to encode a gap.VARIABLE BYTE
ENCODING The last 7 bits of a byte are “payload” and encode part of the gap. The first

bit of the byte is a continuation bit.It is set to 1 for the last byte of the encodedCONTINUATION BIT

gap and to 0 otherwise. To decode a variable byte code, we read a sequence
of bytes with continuation bit 0 terminated by a byte with continuation bit 1.
We then extract and concatenate the 7-bit parts. Figure 5.8 gives pseudocode
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VBENCODENUMBER(n)
1 bytes← 〈〉
2 while true
3 do PREPEND(bytes, n mod 128)
4 if n < 128
5 then BREAK

6 n← n div 128
7 bytes[LENGTH(bytes)] += 128
8 return bytes

VBENCODE(numbers)
1 bytestream ← 〈〉
2 for each n ∈ numbers
3 do bytes← VBENCODENUMBER(n)
4 bytestream ← EXTEND(bytestream, bytes)
5 return bytestream

VBDECODE(bytestream)
1 numbers ← 〈〉
2 n← 0
3 for i← 1 to LENGTH(bytestream)
4 do if bytestream[i] < 128
5 then n← 128× n + bytestream[i]
6 else n← 128× n + (bytestream[i]− 128)
7 APPEND(numbers, n)
8 n← 0
9 return numbers

◮ Figure 5.8 VB encoding and decoding. The functions div and mod compute
integer division and remainder after integer division, respectively. PREPEND adds an
element to the beginning of a list, for example, PREPEND(〈1, 2〉, 3) = 〈3, 1, 2〉. EXTEND

extends a list, for example, EXTEND(〈1,2〉, 〈3, 4〉) = 〈1, 2, 3, 4〉.

◮ Table 5.4 VB encoding. Gaps are encoded using an integral number of bytes.
The first bit, the continuation bit, of each byte indicates whether the code ends with
this byte (1) or not (0).
docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001
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◮ Table 5.5 Some examples of unary and γ codes. Unary codes are only shown for
the smaller numbers. Commas in γ codes are for readability only and are not part of
the actual codes.
number unary code length offset γ code
0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

for VB encoding and decoding and Table 5.4 an example of a VB-encoded
postings list. 1

With VB compression, the size of the compressed index for Reuters-RCV1
is 116 MB as we verified in an experiment. This is a more than 50% reduction
of the size of the uncompressed index (see Table 5.6).

The idea of VB encoding can also be applied to larger or smaller units than
bytes: 32-bit words, 16-bit words, and 4-bit words or nibbles. Larger wordsNIBBLE

further decrease the amount of bit manipulation necessary at the cost of less
effective (or no) compression. Word sizes smaller than bytes get even better
compression ratios at the cost of more bit manipulation. In general, bytes
offer a good compromise between compression ratio and speed of decom-
pression.

For most IR systems variable byte codes offer an excellent tradeoff between
time and space. They are also simple to implement – most of the alternatives
referred to in Section 5.4 are more complex. But if disk space is a scarce
resource, we can achieve better compression ratios by using bit-level encod-
ings, in particular two closely related encodings: γ codes, which we will turn
to next, and δ codes (Exercise 5.9).

✄ 5.3.2 γ codes

VB codes use an adaptive number of bytes depending on the size of the gap.
Bit-level codes adapt the length of the code on the finer grained bit level. The

1. Note that the origin is 0 in the table. Because we never need to encode a docID or a gap of
0, in practice the origin is usually 1, so that 10000000 encodes 1, 10000101 encodes 6 (not 5 as in
the table), and so on.
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simplest bit-level code is unary code. The unary code of n is a string of n 1sUNARY CODE

followed by a 0 (see the first two columns of Table 5.5). Obviously, this is not
a very efficient code, but it will come in handy in a moment.

How efficient can a code be in principle? Assuming the 2n gaps G with
1 ≤ G ≤ 2n are all equally likely, the optimal encoding uses n bits for each
G. So some gaps (G = 2n in this case) cannot be encoded with fewer than
log2 G bits. Our goal is to get as close to this lower bound as possible.

A method that is within a factor of optimal is γ encoding. γ codes im-γ ENCODING

plement variable-length encoding by splitting the representation of a gap G
into a pair of length and offset. Offset is G in binary, but with the leading 1
removed.2 For example, for 13 (binary 1101) offset is 101. Length encodes the
length of offset in unary code. For 13, the length of offset is 3 bits, which is 1110
in unary. The γ code of 13 is therefore 1110101, the concatenation of length
1110 and offset 101. The right hand column of Table 5.5 gives additional
examples of γ codes.

A γ code is decoded by first reading the unary code up to the 0 that ter-
minates it, for example, the four bits 1110 when decoding 1110101. Now we
know how long the offset is: 3 bits. The offset 101 can then be read correctly
and the 1 that was chopped off in encoding is prepended: 101→ 1101 = 13.

The length of offset is ⌊log2 G⌋ bits and the length of length is ⌊log2 G⌋+ 1
bits, so the length of the entire code is 2 × ⌊log2 G⌋ + 1 bits. γ codes are
always of odd length and they are within a factor of 2 of what we claimed
to be the optimal encoding length log2 G. We derived this optimum from
the assumption that the 2n gaps between 1 and 2n are equiprobable. But this
need not be the case. In general, we do not know the probability distribution
over gaps a priori.

The characteristic of a discrete probability distribution3 P that determines
its coding properties (including whether a code is optimal) is its entropy H(P),ENTROPY

which is defined as follows:

H(P) = − ∑
x∈X

P(x) log2 P(x)

where X is the set of all possible numbers we need to be able to encode
(and therefore ∑x∈X P(x) = 1.0). Entropy is a measure of uncertainty as
shown in Figure 5.9 for a probability distribution P over two possible out-
comes, namely, X = {x1, x2}. Entropy is maximized (H(P) = 1) for P(x1) =
P(x2) = 0.5 when uncertainty about which xi will appear next is largest; and

2. We assume here that G has no leading 0s. If there are any, they are removed before deleting
the leading 1.
3. Readers who want to review basic concepts of probability theory may want to consult Rice
(2006) or Ross (2006). Note that we are interested in probability distributions over integers (gaps,
frequencies, etc.), but that the coding properties of a probability distribution are independent of
whether the outcomes are integers or something else.
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◮ Figure 5.9 Entropy H(P) as a function of P(x1) for a sample space with two
outcomes x1 and x2.

minimized (H(P) = 0) for P(x1) = 1, P(x2) = 0 and for P(x1) = 0, P(x2) = 1
when there is absolute certainty.

It can be shown that the lower bound for the expected length E(L) of a
code L is H(P) if certain conditions hold (see the references). It can further
be shown that for 1 < H(P) < ∞, γ encoding is within a factor of 3 of this
optimal encoding, approaching 2 for large H(P):

E(Lγ)

H(P)
≤ 2 +

1
H(P)

≤ 3.

What is remarkable about this result is that it holds for any probability distri-
bution P. So without knowing anything about the properties of the distribu-
tion of gaps, we can apply γ codes and be certain that they are within a factor
of ≈ 2 of the optimal code for distributions of large entropy. A code like γ
code with the property of being within a factor of optimal for an arbitrary
distribution P is called universal.UNIVERSAL CODE

In addition to universality, γ codes have two other properties that are use-
ful for index compression. First, they are prefix free, namely, no γ code is thePREFIX FREE

prefix of another. This means that there is always a unique decoding of a
sequence of γ codes – and we do not need delimiters between them, which
would decrease the efficiency of the code. The second property is that γ
codes are parameter free. For many other efficient codes, we have to fit thePARAMETER FREE

parameters of a model (e.g., the binomial distribution) to the distribution
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of gaps in the index. This complicates the implementation of compression
and decompression. For instance, the parameters need to be stored and re-
trieved. And in dynamic indexing, the distribution of gaps can change, so
that the original parameters are no longer appropriate. These problems are
avoided with a parameter-free code.

How much compression of the inverted index do γ codes achieve? To
answer this question we use Zipf’s law, the term distribution model intro-
duced in Section 5.1.2. According to Zipf’s law, the collection frequency cfi

is proportional to the inverse of the rank i, that is, there is a constant c′ such
that:

cfi =
c′

i
.(5.3)

We can choose a different constant c such that the fractions c/i are relative
frequencies and sum to 1 (that is, c/i = cfi/T):

1 =
M

∑
i=1

c

i
= c

M

∑
i=1

1
i

= c HM(5.4)

c =
1

HM
(5.5)

where M is the number of distinct terms and HM is the Mth harmonic num-
ber. 4 Reuters-RCV1 has M = 400,000 distinct terms and HM ≈ ln M, so we
have

c =
1

HM
≈ 1

ln M
=

1
ln 400,000

≈ 1
13

.

Thus the ith term has a relative frequency of roughly 1/(13i), and the ex-
pected average number of occurrences of term i in a document of length L
is:

L
c

i
≈ 200× 1

13
i

≈ 15
i

where we interpret the relative frequency as a term occurrence probability.
Recall that 200 is the average number of tokens per document in Reuters-
RCV1 (Table 4.2).

Now we have derived term statistics that characterize the distribution of
terms in the collection and, by extension, the distribution of gaps in the post-
ings lists. From these statistics, we can calculate the space requirements for
an inverted index compressed with γ encoding. We first stratify the vocab-
ulary into blocks of size Lc = 15. On average, term i occurs 15/i times per

4. Note that, unfortunately, the conventional symbol for both entropy and harmonic number is
H. Context should make clear which is meant in this chapter.
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N documents
Lc most
frequent N gaps of 1 each
terms
Lc next most
frequent N/2 gaps of 2 each
terms
Lc next most
frequent N/3 gaps of 3 each
terms
. . . . . .

◮ Figure 5.10 Stratification of terms for estimating the size of a γ encoded inverted
index.

document. So the average number of occurrences f per document is 1 ≤ f for
terms in the first block, corresponding to a total number of N gaps per term.
The average is 1

2 ≤ f < 1 for terms in the second block, corresponding to
N/2 gaps per term, and 1

3 ≤ f < 1
2 for terms in the third block, correspond-

ing to N/3 gaps per term, and so on. (We take the lower bound because it
simplifies subsequent calculations. As we will see, the final estimate is too
pessimistic, even with this assumption.) We will make the somewhat unre-
alistic assumption that all gaps for a given term have the same size as shown
in Figure 5.10. Assuming such a uniform distribution of gaps, we then have
gaps of size 1 in block 1, gaps of size 2 in block 2, and so on.

Encoding the N/j gaps of size j with γ codes, the number of bits needed
for the postings list of a term in the jth block (corresponding to one row in
the figure) is:

bits-per-row =
N

j
× (2× ⌊log2 j⌋+ 1)

≈ 2N log2 j

j
.

To encode the entire block, we need (Lc) · (2N log2 j)/j bits. There are M/(Lc)
blocks, so the postings file as a whole will take up:

M
Lc

∑
j=1

2NLc log2 j

j
.(5.6)
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◮ Table 5.6 Index and dictionary compression for Reuters-RCV1. The compression
ratio depends on the proportion of actual text in the collection. Reuters-RCV1 con-
tains a large amount of XML markup. Using the two best compression schemes, γ
encoding and blocking with front coding, the ratio compressed index to collection
size is therefore especially small for Reuters-RCV1: (101 + 5.9)/3600 ≈ 0.03.

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
term incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0

For Reuters-RCV1, M
Lc ≈ 400,000/15 ≈ 27,000 and

27,000

∑
j=1

2× 106 × 15 log2 j

j
≈ 224 MB.(5.7)

So the postings file of the compressed inverted index for our 960 MB collec-
tion has a size of 224 MB, one fourth the size of the original collection.

When we run γ compression on Reuters-RCV1, the actual size of the com-
pressed index is even lower: 101 MB, a bit more than one tenth of the size of
the collection. The reason for the discrepancy between predicted and actual
value is that (i) Zipf’s law is not a very good approximation of the actual dis-
tribution of term frequencies for Reuters-RCV1 and (ii) gaps are not uniform.
The Zipf model predicts an index size of 251 MB for the unrounded numbers
from Table 4.2. If term frequencies are generated from the Zipf model and
a compressed index is created for these artificial terms, then the compressed
size is 254 MB. So to the extent that the assumptions about the distribution
of term frequencies are accurate, the predictions of the model are correct.

Table 5.6 summarizes the compression techniques covered in this chapter.
The term incidence matrix (Figure 1.1, page 4) for Reuters-RCV1 has size
400,000× 800,000 = 40× 8× 109 bits or 40 GB.

γ codes achieve great compression ratios – about 15% better than vari-
able byte codes for Reuters-RCV1. But they are expensive to decode. This is
because many bit-level operations – shifts and masks – are necessary to de-
code a sequence of γ codes as the boundaries between codes will usually be
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somewhere in the middle of a machine word. As a result, query processing is
more expensive for γ codes than for variable byte codes. Whether we choose
variable byte or γ encoding depends on the characteristics of an application,
for example, on the relative weights we give to conserving disk space versus
maximizing query response time.

The compression ratio for the index in Table 5.6 is about 25%: 400 MB (un-
compressed, each posting stored as a 32-bit word) versus 101 MB (γ) and 116
MB (VB). This shows that both γ and VB codes meet the objectives we stated
in the beginning of the chapter. Index compression substantially improves
time and space efficiency of indexes by reducing the amount of disk space
needed, increasing the amount of information that can be kept in the cache,
and speeding up data transfers from disk to memory.

? Exercise 5.4 [⋆]

Compute variable byte codes for the numbers in Tables 5.3 and 5.5.

Exercise 5.5 [⋆]

Compute variable byte and γ codes for the postings list 〈777, 17743, 294068, 31251336〉.
Use gaps instead of docIDs where possible. Write binary codes in 8-bit blocks.

Exercise 5.6

Consider the postings list 〈4, 10, 11, 12, 15, 62, 63, 265, 268, 270, 400〉with a correspond-
ing list of gaps 〈4, 6, 1, 1, 3, 47, 1, 202, 3, 2, 130〉. Assume that the length of the postings
list is stored separately, so the system knows when a postings list is complete. Us-
ing variable byte encoding: (i) What is the largest gap you can encode in 1 byte? (ii)
What is the largest gap you can encode in 2 bytes? (iii) How many bytes will the
above postings list require under this encoding? (Count only space for encoding the
sequence of numbers.)

Exercise 5.7

A little trick is to notice that a gap cannot be of length 0 and that the stuff left to encode
after shifting cannot be 0. Based on these observations: (i) Suggest a modification to
variable byte encoding that allows you to encode slightly larger gaps in the same
amount of space. (ii) What is the largest gap you can encode in 1 byte? (iii) What
is the largest gap you can encode in 2 bytes? (iv) How many bytes will the postings
list in Exercise 5.6 require under this encoding? (Count only space for encoding the
sequence of numbers.)

Exercise 5.8 [⋆]

From the following sequence of γ-coded gaps, reconstruct first the gap sequence and
then the postings sequence: 1110001110101011111101101111011.

Exercise 5.9

γ codes are relatively inefficient for large numbers (e.g., 1025 in Table 5.5) as they
encode the length of the offset in inefficient unary code. δ codes differ from γ codesδ CODES
in that they encode the first part of the code (length) in γ code instead of unary code.
The encoding of offset is the same. For example, the δ code of 7 is 10,0,11 (again, we
add commas for readability). 10,0 is the γ code for length (2 in this case) and the
encoding of offset (11) is unchanged. (i) Compute the δ codes for the other numbers
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◮ Table 5.7 Two gap sequences to be merged in blocked sort-based indexing
γ encoded gap sequence of run 1 1110110111111001011111111110100011111001
γ encoded gap sequence of run 2 11111010000111111000100011111110010000011111010101

in Table 5.5. For what range of numbers is the δ code shorter than the γ code? (ii) γ
code beats variable byte code in Table 5.6 because the index contains stop words and
thus many small gaps. Show that variable byte code is more compact if larger gaps
dominate. (iii) Compare the compression ratios of δ code and variable byte code for
a distribution of gaps dominated by large gaps.

Exercise 5.10

Go through the above calculation of index size and explicitly state all the approxima-
tions that were made to arrive at Equation (5.6).

Exercise 5.11

For a collection of your choosing, determine the number of documents and terms and
the average length of a document. (i) How large is the inverted index predicted to be
by Equation (5.6)? (ii) Implement an indexer that creates a γ-compressed inverted
index for the collection. How large is the actual index? (iii) Implement an indexer
that uses variable byte encoding. How large is the variable byte encoded index?

Exercise 5.12

To be able to hold as many postings as possible in main memory, it is a good idea to
compress intermediate index files during index construction. (i) This makes merging
runs in blocked sort-based indexing more complicated. As an example, work out the
γ-encoded merged sequence of the gaps in Table 5.7. (ii) Index construction is more
space efficient when using compression. Would you also expect it to be faster?

Exercise 5.13

(i) Show that the size of the vocabulary is finite according to Zipf’s law and infinite
according to Heaps’ law. (ii) Can we derive Heaps’ law from Zipf’s law?

5.4 References and further reading

Heaps’ law was discovered by Heaps (1978). See also Baeza-Yates and Ribeiro-
Neto (1999). A detailed study of vocabulary growth in large collections is
(Williams and Zobel 2005). Zipf’s law is due to Zipf (1949). Witten and Bell
(1990) investigate the quality of the fit obtained by the law. Other term distri-
bution models, including K mixture and two-poisson model, are discussed
by Manning and Schütze (1999, Chapter 15). Carmel et al. (2001), Büttcher
and Clarke (2006), Blanco and Barreiro (2007), and Ntoulas and Cho (2007)
show that lossy compression can achieve good compression with no or no
significant decrease in retrieval effectiveness.

Dictionary compression is covered in detail by Witten et al. (1999, Chap-
ter 4), which is recommended as additional reading.
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Subsection 5.3.1 is based on (Scholer et al. 2002). The authors find that
variable byte codes process queries two times faster than either bit-level
compressed indexes or uncompressed indexes with a 30% penalty in com-
pression ratio compared with the best bit-level compression method. They
also show that compressed indexes can be superior to uncompressed indexes
not only in disk usage, but also in query processing speed. Compared with
VB codes, “variable nibble” codes showed 5% to 10% better compression
and up to one third worse effectiveness in one experiment (Anh and Moffat
2005). Trotman (2003) also recommends using VB codes unless disk space is
at a premium. In recent work, Anh and Moffat (2005; 2006a) and Zukowski
et al. (2006) have constructed word-aligned binary codes that are both faster
in decompression and at least as efficient as VB codes. Zhang et al. (2007) in-
vestigate the increased effectiveness of caching when a number of different
compression techniques for postings lists are used on modern hardware.

δ codes (Exercise 5.9) and γ codes were introduced by Elias (1975), who
proved that both codes are universal. In addition, δ codes are asymptotically
optimal for H(P) → ∞. δ codes perform better than γ codes if large num-
bers (greater than 15) dominate. A good introduction to information theory,
including the concept of entropy, is (Cover and Thomas 1991). While Elias
codes are only asymptotically optimal, arithmetic codes (Witten et al. 1999,
Section 2.4) can be constructed to be arbitrarily close to the optimum H(P)
for any P.

Several additional index compression techniques are covered by Witten et
al. (1999; Sections 3.3 and 3.4 and Chapter 5). They recommend using param-PARAMETERIZED CODE

eterized codes for index compression, codes that explicitly model the probabil-
ity distribution of gaps for each term. For example, they show that GolombGOLOMB CODES

codes achieve better compression ratios than γ codes for large collections.
Moffat and Zobel (1992) compare several parameterized methods, including
LLRUN (Fraenkel and Klein 1985).

The distribution of gaps in a postings list depends on the assignment of
docIDs to documents. A number of researchers have looked into assign-
ing docIDs in a way that is conducive to the efficient compression of gap
sequences (Moffat and Stuiver 1996; Blandford and Blelloch 2002; Silvestri
et al. 2004; Blanco and Barreiro 2006; Silvestri 2007). These techniques assign
docIDs in a small range to documents in a cluster where a cluster can consist
of all documents in a given time period, on a particular web site, or sharing
another property. As a result, when a sequence of documents from a clus-
ter occurs in a postings list, their gaps are small and can be more effectively
compressed.

Different considerations apply to the compression of term frequencies and
word positions than to the compression of docIDs in postings lists. See Scho-
ler et al. (2002) and Zobel and Moffat (2006). Zobel and Moffat (2006) is
recommended in general as an in-depth and up-to-date tutorial on inverted
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indexes, including index compression.
This chapter only looks at index compression for Boolean retrieval. For

ranked retrieval (Chapter 6), it is advantageous to order postings according
to term frequency instead of docID. During query processing, the scanning
of many postings lists can then be terminated early because smaller weights
do not change the ranking of the highest ranked k documents found so far. It
is not a good idea to precompute and store weights in the index (as opposed
to frequencies) because they cannot be compressed as well as integers (see
Section 7.1.5, page 140).

Document compression can also be important in an efficient information re-
trieval system. de Moura et al. (2000) and Brisaboa et al. (2007) describe
compression schemes that allow direct searching of terms and phrases in the
compressed text, which is infeasible with standard text compression utilities
like gzip and compress.

? Exercise 5.14 [⋆]

We have defined unary codes as being “10”: sequences of 1s terminated by a 0. In-
terchanging the roles of 0s and 1s yields an equivalent “01” unary code. When this
01 unary code is used, the construction of a γ code can be stated as follows: (1) Write
G down in binary using b = ⌊log2 j⌋+ 1 bits. (2) Prepend (b− 1) 0s. (i) Encode the
numbers in Table 5.5 in this alternative γ code. (ii) Show that this method produces
a well-defined alternative γ code in the sense that it has the same length and can be
uniquely decoded.

Exercise 5.15 [⋆ ⋆ ⋆]

Unary code is not a universal code in the sense defined above. However, there exists
a distribution over gaps for which unary code is optimal. Which distribution is this?

Exercise 5.16

Give some examples of terms that violate the assumption that gaps all have the same
size (which we made when estimating the space requirements of a γ-encoded index).
What are general characteristics of these terms?

Exercise 5.17

Consider a term whose postings list has size n, say, n = 10,000. Compare the size of
the γ-compressed gap-encoded postings list if the distribution of the term is uniform
(i.e., all gaps have the same size) versus its size when the distribution is not uniform.
Which compressed postings list is smaller?

Exercise 5.18

Work out the sum in Equation (5.7) and show it adds up to about 251 MB. Use the
numbers in Table 4.2, but do not round Lc, c, and the number of vocabulary blocks.
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6 Scoring, term weighting and the

vector space model

Thus far we have dealt with indexes that support Boolean queries: a docu-
ment either matches or does not match a query. In the case of large document
collections, the resulting number of matching documents can far exceed the
number a human user could possibly sift through. Accordingly, it is essen-
tial for a search engine to rank-order the documents matching a query. To do
this, the search engine computes, for each matching document, a score with
respect to the query at hand. In this chapter we initiate the study of assigning
a score to a (query, document) pair. This chapter consists of three main ideas.

1. We introduce parametric and zone indexes in Section 6.1, which serve
two purposes. First, they allow us to index and retrieve documents by
metadata such as the language in which a document is written. Second,
they give us a simple means for scoring (and thereby ranking) documents
in response to a query.

2. Next, in Section 6.2 we develop the idea of weighting the importance of a
term in a document, based on the statistics of occurrence of the term.

3. In Section 6.3 we show that by viewing each document as a vector of such
weights, we can compute a score between a query and each document.
This view is known as vector space scoring.

Section 6.4 develops several variants of term-weighting for the vector space
model. Chapter 7 develops computational aspects of vector space scoring,
and related topics.

As we develop these ideas, the notion of a query will assume multiple
nuances. In Section 6.1 we consider queries in which specific query terms
occur in specified regions of a matching document. Beginning Section 6.2 we
will in fact relax the requirement of matching specific regions of a document;
instead, we will look at so-called free text queries that simply consist of query
terms with no specification on their relative order, importance or where in a
document they should be found. The bulk of our study of scoring will be in
this latter notion of a query being such a set of terms.
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6.1 Parametric and zone indexes

We have thus far viewed a document as a sequence of terms. In fact, most
documents have additional structure. Digital documents generally encode,
in machine-recognizable form, certain metadata associated with each docu-METADATA

ment. By metadata, we mean specific forms of data about a document, such
as its author(s), title and date of publication. This metadata would generally
include fields such as the date of creation and the format of the document, asFIELD

well the author and possibly the title of the document. The possible values
of a field should be thought of as finite – for instance, the set of all dates of
authorship.

Consider queries of the form “find documents authored by William Shake-
speare in 1601, containing the phrase alas poor Yorick”. Query processing then
consists as usual of postings intersections, except that we may merge post-
ings from standard inverted as well as parametric indexes. There is one para-PARAMETRIC INDEX

metric index for each field (say, date of creation); it allows us to select only
the documents matching a date specified in the query. Figure 6.1 illustrates
the user’s view of such a parametric search. Some of the fields may assume
ordered values, such as dates; in the example query above, the year 1601 is
one such field value. The search engine may support querying ranges on
such ordered values; to this end, a structure like a B-tree may be used for the
field’s dictionary.

Zones are similar to fields, except the contents of a zone can be arbitraryZONE

free text. Whereas a field may take on a relatively small set of values, a zone
can be thought of as an arbitrary, unbounded amount of text. For instance,
document titles and abstracts are generally treated as zones. We may build a
separate inverted index for each zone of a document, to support queries such
as “find documents with merchant in the title and william in the author list and
the phrase gentle rain in the body”. This has the effect of building an index
that looks like Figure 6.2. Whereas the dictionary for a parametric index
comes from a fixed vocabulary (the set of languages, or the set of dates), the
dictionary for a zone index must structure whatever vocabulary stems from
the text of that zone.

In fact, we can reduce the size of the dictionary by encoding the zone in
which a term occurs in the postings. In Figure 6.3 for instance, we show how
occurrences of william in the title and author zones of various documents are
encoded. Such an encoding is useful when the size of the dictionary is a
concern (because we require the dictionary to fit in main memory). But there
is another important reason why the encoding of Figure 6.3 is useful: the
efficient computation of scores using a technique we will call weighted zoneWEIGHTED ZONE

SCORING scoring.
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◮ Figure 6.1 Parametric search. In this example we have a collection with fields al-
lowing us to select publications by zones such as Author and fields such as Language.

william.author 2 3 5 8

william.title 2 4 8 16

william.abstract 11 121 1441 1729

- - - -

- - - -

- - - -

◮ Figure 6.2 Basic zone index ; zones are encoded as extensions of dictionary en-
tries.

william 2.author,2.title 3.author 4.title 5.author- - - -

◮ Figure 6.3 Zone index in which the zone is encoded in the postings rather than
the dictionary.
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6.1.1 Weighted zone scoring

Thus far in Section 6.1 we have focused on retrieving documents based on
Boolean queries on fields and zones. We now turn to a second application of
zones and fields.

Given a Boolean query q and a document d, weighted zone scoring assigns
to the pair (q, d) a score in the interval [0, 1], by computing a linear combina-
tion of zone scores, where each zone of the document contributes a Boolean
value. More specifically, consider a set of documents each of which has ℓ

zones. Let g1, . . . , gℓ ∈ [0, 1] such that ∑
ℓ
i=1 gi = 1. For 1 ≤ i ≤ ℓ, let si be the

Boolean score denoting a match (or absence thereof) between q and the ith
zone. For instance, the Boolean score from a zone could be 1 if all the query
term(s) occur in that zone, and zero otherwise; indeed, it could be any Boo-
lean function that maps the presence of query terms in a zone to 0, 1. Then,
the weighted zone score is defined to be

ℓ

∑
i=1

gisi.(6.1)

Weighted zone scoring is sometimes referred to also as ranked Boolean re-RANKED BOOLEAN
RETRIEVAL trieval.

✎ Example 6.1: Consider the query shakespeare in a collection in which each doc-
ument has three zones: author, title and body. The Boolean score function for a zone
takes on the value 1 if the query term shakespeare is present in the zone, and zero
otherwise. Weighted zone scoring in such a collection would require three weights
g1, g2 and g3, respectively corresponding to the author, title and body zones. Suppose
we set g1 = 0.2, g2 = 0.3 and g3 = 0.5 (so that the three weights add up to 1); this cor-
responds to an application in which a match in the author zone is least important to
the overall score, the title zone somewhat more, and the body contributes even more.

Thus if the term shakespeare were to appear in the title and body zones but not the
author zone of a document, the score of this document would be 0.8.

How do we implement the computation of weighted zone scores? A sim-
ple approach would be to compute the score for each document in turn,
adding in all the contributions from the various zones. However, we now
show how we may compute weighted zone scores directly from inverted in-
dexes. The algorithm of Figure 6.4 treats the case when the query q is a two-
term query consisting of query terms q1 and q2, and the Boolean function is
AND: 1 if both query terms are present in a zone and 0 otherwise. Following
the description of the algorithm, we describe the extension to more complex
queries and Boolean functions.

The reader may have noticed the close similarity between this algorithm
and that in Figure 1.6. Indeed, they represent the same postings traversal,
except that instead of merely adding a document to the set of results for
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ZONESCORE(q1, q2)
1 float scores[N] = [0]
2 constant g[ℓ]
3 p1 ← postings(q1)
4 p2 ← postings(q2)
5 // scores[] is an array with a score entry for each document, initialized to zero.
6 //p1 and p2 are initialized to point to the beginning of their respective postings.
7 //Assume g[] is initialized to the respective zone weights.
8 while p1 6= NIL and p2 6= NIL

9 do if docID(p1) = docID(p2)
10 then scores[docID(p1)]← WEIGHTEDZONE(p1, p2, g)
11 p1 ← next(p1)
12 p2 ← next(p2)
13 else if docID(p1) < docID(p2)
14 then p1 ← next(p1)
15 else p2 ← next(p2)
16 return scores

◮ Figure 6.4 Algorithm for computing the weighted zone score from two postings
lists. Function WEIGHTEDZONE (not shown here) is assumed to compute the inner
loop of Equation 6.1.

a Boolean AND query, we now compute a score for each such document.
Some literature refers to the array scores[] above as a set of accumulators. TheACCUMULATOR

reason for this will be clear as we consider more complex Boolean functions
than the AND; thus we may assign a non-zero score to a document even if it
does not contain all query terms.

6.1.2 Learning weights

How do we determine the weights gi for weighted zone scoring? These
weights could be specified by an expert (or, in principle, the user); but in-
creasingly, these weights are “learned” using training examples that have
been judged editorially. This latter methodology falls under a general class
of approaches to scoring and ranking in information retrieval, known as
machine-learned relevance. We provide a brief introduction to this topic hereMACHINE-LEARNED

RELEVANCE because weighted zone scoring presents a clean setting for introducing it; a
complete development demands an understanding of machine learning and
is deferred to Chapter 15.

1. We are provided with a set of training examples, each of which is a tu-
ple consisting of a query q and a document d, together with a relevance
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judgment for d on q. In the simplest form, each relevance judgments is ei-
ther Relevant or Non-relevant. More sophisticated implementations of the
methodology make use of more nuanced judgments.

2. The weights gi are then “learned” from these examples, in order that the
learned scores approximate the relevance judgments in the training exam-
ples.

For weighted zone scoring, the process may be viewed as learning a lin-
ear function of the Boolean match scores contributed by the various zones.
The expensive component of this methodology is the labor-intensive assem-
bly of user-generated relevance judgments from which to learn the weights,
especially in a collection that changes frequently (such as the Web). We now
detail a simple example that illustrates how we can reduce the problem of
learning the weights gi to a simple optimization problem.

We now consider a simple case of weighted zone scoring, where each doc-
ument has a title zone and a body zone. Given a query q and a document d, we
use the given Boolean match function to compute Boolean variables sT(d, q)
and sB(d, q), depending on whether the title (respectively, body) zone of d
matches query q. For instance, the algorithm in Figure 6.4 uses an AND of
the query terms for this Boolean function. We will compute a score between
0 and 1 for each (document, query) pair using sT(d, q) and sB(d, q) by using
a constant g ∈ [0, 1], as follows:

score(d, q) = g · sT(d, q) + (1− g)sB(d, q).(6.2)

We now describe how to determine the constant g from a set of training ex-
amples, each of which is a triple of the form Φj = (dj, qj, r(dj, qj)). In each
training example, a given training document dj and a given training query qj

are assessed by a human editor who delivers a relevance judgment r(dj, qj)
that is either Relevant or Non-relevant. This is illustrated in Figure 6.5, where
seven training examples are shown.

For each training example Φj we have Boolean values sT(dj, qj) and sB(dj, qj)
that we use to compute a score from (6.2)

score(dj, qj) = g · sT(dj, qj) + (1− g)sB(dj, qj).(6.3)

We now compare this computed score to the human relevance judgment for
the same document-query pair (dj, qj); to this end, we will quantize each
Relevant judgment as a 1 and each Non-relevant judgment as a 0. Suppose
that we define the error of the scoring function with weight g as

ε(g, Φj) = (r(dj, qj)− score(dj, qj))
2,
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Example DocID Query sT sB Judgment
Φ1 37 linux 1 1 Relevant
Φ2 37 penguin 0 1 Non-relevant
Φ3 238 system 0 1 Relevant
Φ4 238 penguin 0 0 Non-relevant
Φ5 1741 kernel 1 1 Relevant
Φ6 2094 driver 0 1 Relevant
Φ7 3191 driver 1 0 Non-relevant

◮ Figure 6.5 An illustration of training examples.

sT sB Score
0 0 0
0 1 1− g
1 0 g
1 1 1

◮ Figure 6.6 The four possible combinations of sT and sB.

where we have quantized the editorial relevance judgment r(dj, qj) to 0 or 1.
Then, the total error of a set of training examples is given by

∑
j

ε(g, Φj).(6.4)

The problem of learning the constant g from the given training examples
then reduces to picking the value of g that minimizes the total error in (6.4).

Picking the best value of g in (6.4) in the formulation of Section 6.1.3 re-
duces to the problem of minimizing a quadratic function of g over the inter-
val [0, 1]. This reduction is detailed in Section 6.1.3.

✄ 6.1.3 The optimal weight g

We begin by noting that for any training example Φj for which sT(dj, qj) = 0
and sB(dj, qj) = 1, the score computed by Equation (6.2) is 1− g. In similar
fashion, we may write down the score computed by Equation (6.2) for the
three other possible combinations of sT(dj, qj) and sB(dj, qj); this is summa-
rized in Figure 6.6.

Let n01r (respectively, n01n) denote the number of training examples for
which sT(dj, qj) = 0 and sB(dj, qj) = 1 and the editorial judgment is Relevant
(respectively, Non-relevant). Then the contribution to the total error in Equa-
tion (6.4) from training examples for which sT(dj, qj) = 0 and sB(dj, qj) = 1
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is

[1− (1− g)]2n01r + [0− (1− g)]2n01n.

By writing in similar fashion the error contributions from training examples
of the other three combinations of values for sT(dj, qj) and sB(dj, qj) (and
extending the notation in the obvious manner), the total error corresponding
to Equation (6.4) is

(n01r + n10n)g2 + (n10r + n01n)(1− g)2 + n00r + n11n.(6.5)

By differentiating Equation (6.5) with respect to g and setting the result to
zero, it follows that the optimal value of g is

n10r + n01n

n10r + n10n + n01r + n01n
.(6.6)

? Exercise 6.1

When using weighted zone scoring, is it necessary for all zones to use the same Boo-
lean match function?

Exercise 6.2

In Example 6.1 above with weights g1 = 0.2, g2 = 0.31 and g3 = 0.49, what are all the
distinct score values a document may get?

Exercise 6.3

Rewrite the algorithm in Figure 6.4 to the case of more than two query terms.

Exercise 6.4

Write pseudocode for the function WeightedZone for the case of two postings lists in
Figure 6.4.

Exercise 6.5

Apply Equation 6.6 to the sample training set in Figure 6.5 to estimate the best value
of g for this sample.

Exercise 6.6

For the value of g estimated in Exercise 6.5, compute the weighted zone score for each
(query, document) example. How do these scores relate to the relevance judgments
in Figure 6.5 (quantized to 0/1)?

Exercise 6.7

Why does the expression for g in (6.6) not involve training examples in which sT(dt, qt)
and sB(dt, qt) have the same value?
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6.2 Term frequency and weighting

Thus far, scoring has hinged on whether or not a query term is present in
a zone within a document. We take the next logical step: a document or
zone that mentions a query term more often has more to do with that query
and therefore should receive a higher score. To motivate this, we recall the
notion of a free text query introduced in Section 1.4: a query in which the
terms of the query are typed freeform into the search interface, without any
connecting search operators (such as Boolean operators). This query style,
which is extremely popular on the web, views the query as simply a set of
words. A plausible scoring mechanism then is to compute a score that is the
sum, over the query terms, of the match scores between each query term and
the document.

Towards this end, we assign to each term in a document a weight for that
term, that depends on the number of occurrences of the term in the doc-
ument. We would like to compute a score between a query term t and a
document d, based on the weight of t in d. The simplest approach is to assign
the weight to be equal to the number of occurrences of term t in document d.
This weighting scheme is referred to as term frequency and is denoted tft,d,TERM FREQUENCY

with the subscripts denoting the term and the document in order.
For a document d, the set of weights determined by the tf weights above

(or indeed any weighting function that maps the number of occurrences of t
in d to a positive real value) may be viewed as a quantitative digest of that
document. In this view of a document, known in the literature as the bagBAG OF WORDS

of words model, the exact ordering of the terms in a document is ignored but
the number of occurrences of each term is material (in contrast to Boolean
retrieval). We only retain information on the number of occurrences of each
term. Thus, the document “Mary is quicker than John” is, in this view, iden-
tical to the document “John is quicker than Mary”. Nevertheless, it seems
intuitive that two documents with similar bag of words representations are
similar in content. We will develop this intuition further in Section 6.3.

Before doing so we first study the question: are all words in a document
equally important? Clearly not; in Section 2.2.2 (page 27) we looked at the
idea of stop words – words that we decide not to index at all, and therefore do
not contribute in any way to retrieval and scoring.

6.2.1 Inverse document frequency

Raw term frequency as above suffers from a critical problem: all terms are
considered equally important when it comes to assessing relevancy on a
query. In fact certain terms have little or no discriminating power in de-
termining relevance. For instance, a collection of documents on the auto
industry is likely to have the term auto in almost every document. To this
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Word cf df
try 10422 8760
insurance 10440 3997

◮ Figure 6.7 Collection frequency (cf) and document frequency (df) behave differ-
ently, as in this example from the Reuters collection.

end, we introduce a mechanism for attenuating the effect of terms that occur
too often in the collection to be meaningful for relevance determination. An
immediate idea is to scale down the term weights of terms with high collec-
tion frequency, defined to be the total number of occurrences of a term in the
collection. The idea would be to reduce the tf weight of a term by a factor
that grows with its collection frequency.

Instead, it is more commonplace to use for this purpose the document fre-DOCUMENT
FREQUENCY quency dft, defined to be the number of documents in the collection that con-

tain a term t. This is because in trying to discriminate between documents
for the purpose of scoring it is better to use a document-level statistic (such
as the number of documents containing a term) than to use a collection-wide
statistic for the term. The reason to prefer df to cf is illustrated in Figure 6.7,
where a simple example shows that collection frequency (cf) and document
frequency (df) can behave rather differently. In particular, the cf values for
both try and insurance are roughly equal, but their df values differ signifi-
cantly. Intuitively, we want the few documents that contain insurance to get
a higher boost for a query on insurance than the many documents containing
try get from a query on try.

How is the document frequency df of a term used to scale its weight? De-
noting as usual the total number of documents in a collection by N, we define
the inverse document frequency (idf) of a term t as follows:INVERSE DOCUMENT

FREQUENCY

idft = log
N

dft
.(6.7)

Thus the idf of a rare term is high, whereas the idf of a frequent term is
likely to be low. Figure 6.8 gives an example of idf’s in the Reuters collection
of 806,791 documents; in this example logarithms are to the base 10. In fact,
as we will see in Exercise 6.12, the precise base of the logarithm is not material
to ranking. We will give on page 227 a justification of the particular form in
Equation (6.7).

6.2.2 Tf-idf weighting

We now combine the definitions of term frequency and inverse document
frequency, to produce a composite weight for each term in each document.
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term dft idft

car 18,165 1.65
auto 6723 2.08
insurance 19,241 1.62
best 25,235 1.5

◮ Figure 6.8 Example of idf values. Here we give the idf’s of terms with various
frequencies in the Reuters collection of 806,791 documents.

The tf-idf weighting scheme assigns to term t a weight in document d givenTF-IDF

by

tf-idft,d = tft,d × idft.(6.8)

In other words, tf-idft,d assigns to term t a weight in document d that is

1. highest when t occurs many times within a small number of documents
(thus lending high discriminating power to those documents);

2. lower when the term occurs fewer times in a document, or occurs in many
documents (thus offering a less pronounced relevance signal);

3. lowest when the term occurs in virtually all documents.

At this point, we may view each document as a vector with one componentDOCUMENT VECTOR

corresponding to each term in the dictionary, together with a weight for each
component that is given by (6.8). For dictionary terms that do not occur in
a document, this weight is zero. This vector form will prove to be crucial to
scoring and ranking; we will develop these ideas in Section 6.3. As a first
step, we introduce the overlap score measure: the score of a document d is the
sum, over all query terms, of the number of times each of the query terms
occurs in d. We can refine this idea so that we add up not the number of
occurrences of each query term t in d, but instead the tf-idf weight of each
term in d.

Score(q, d) = ∑
t∈q

tf-idft,d.(6.9)

In Section 6.3 we will develop a more rigorous form of Equation (6.9).

? Exercise 6.8

Why is the idf of a term always finite?

Exercise 6.9

What is the idf of a term that occurs in every document? Compare this with the use
of stop word lists.
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Doc1 Doc2 Doc3
car 27 4 24
auto 3 33 0
insurance 0 33 29
best 14 0 17

◮ Figure 6.9 Table of tf values for Exercise 6.10.

Exercise 6.10

Consider the table of term frequencies for 3 documents denoted Doc1, Doc2, Doc3 in
Figure 6.9. Compute the tf-idf weights for the terms car, auto, insurance, best, for each
document, using the idf values from Figure 6.8.

Exercise 6.11

Can the tf-idf weight of a term in a document exceed 1?

Exercise 6.12

How does the base of the logarithm in (6.7) affect the score calculation in (6.9)? How
does the base of the logarithm affect the relative scores of two documents on a given
query?

Exercise 6.13

If the logarithm in (6.7) is computed base 2, suggest a simple approximation to the idf
of a term.

6.3 The vector space model for scoring

In Section 6.2 (page 117) we developed the notion of a document vector that
captures the relative importance of the terms in a document. The representa-
tion of a set of documents as vectors in a common vector space is known as
the vector space model and is fundamental to a host of information retrieval op-VECTOR SPACE MODEL

erations ranging from scoring documents on a query, document classification
and document clustering. We first develop the basic ideas underlying vector
space scoring; a pivotal step in this development is the view (Section 6.3.2)
of queries as vectors in the same vector space as the document collection.

6.3.1 Dot products

We denote by ~V(d) the vector derived from document d, with one com-
ponent in the vector for each dictionary term. Unless otherwise specified,
the reader may assume that the components are computed using the tf-idf
weighting scheme, although the particular weighting scheme is immaterial
to the discussion that follows. The set of documents in a collection then may
be viewed as a set of vectors in a vector space, in which there is one axis for
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0 1
0

1

jealous

gossip

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ

◮ Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations ~V(d1) and ~V(d2)COSINE SIMILARITY

sim(d1, d2) =
~V(d1) · ~V(d2)

|~V(d1)||~V(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors ~V(d1) and ~V(d2), while the denominator is the product of
their Euclidean lengths. The dot product ~x · ~y of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let ~V(d) denote the document vector for d, with M components

~V1(d) . . . ~VM(d). The Euclidean length of d is defined to be
√

∑
M
i=1

~V2
i (d).

The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-
NORMALIZATION the vectors ~V(d1) and ~V(d2) to unit vectors ~v(d1) = ~V(d1)/|~V(d1)| and
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Doc1 Doc2 Doc3
car 0.88 0.09 0.58
auto 0.10 0.71 0
insurance 0 0.71 0.70
best 0.46 0 0.41

◮ Figure 6.11 Euclidean normalized tf values for documents in Figure 6.9.

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

◮ Figure 6.12 Term frequencies in three novels. The novels are Austen’s Sense and
Sensibility, Pride and Prejudice and Brontë’s Wuthering Heights.

~v(d2) = ~V(d2)/|~V(d2)|. We can then rewrite (6.10) as

sim(d1, d2) = ~v(d1) ·~v(d2).(6.11)

✎ Example 6.2: Consider the documents in Figure 6.9. We now apply Euclidean
normalization to the tf values from the table, for each of the three documents in the

table. The quantity
√

∑
M
i=1

~V2
i (d) has the values 30.56, 46.84 and 41.30 respectively

for Doc1, Doc2 and Doc3. The resulting Euclidean normalized tf values for these
documents are shown in Figure 6.11.

Thus, (6.11) can be viewed as the dot product of the normalized versions of
the two document vectors. This measure is the cosine of the angle θ between
the two vectors, shown in Figure 6.10. What use is the similarity measure
sim(d1, d2)? Given a document d (potentially one of the di in the collection),
consider searching for the documents in the collection most similar to d. Such
a search is useful in a system where a user may identify a document and
seek others like it – a feature available in the results lists of search engines
as a more like this feature. We reduce the problem of finding the document(s)
most similar to d to that of finding the di with the highest dot products (sim
values)~v(d) ·~v(di). We could do this by computing the dot products between
~v(d) and each of ~v(d1), . . . ,~v(dN), then picking off the highest resulting sim
values.

✎ Example 6.3: Figure 6.12 shows the number of occurrences of three terms (affection,
jealous and gossip) in each of the following three novels: Jane Austen’s Sense and Sensi-
bility (SaS) and Pride and Prejudice (PaP) and Emily Brontë’s Wuthering Heights (WH).
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term SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0 0.254

◮ Figure 6.13 Term vectors for the three novels of Figure 6.12. These are based on
raw term frequency only and are normalized as if these were the only terms in the
collection. (Since affection and jealous occur in all three documents, their tf-idf weight
would be 0 in most formulations.)

Of course, there are many other terms occurring in each of these novels. In this ex-
ample we represent each of these novels as a unit vector in three dimensions, corre-
sponding to these three terms (only); we use raw term frequencies here, with no idf
multiplier. The resulting weights are as shown in Figure 6.13.

Now consider the cosine similarities between pairs of the resulting three-dimensional
vectors. A simple computation shows that sim(~v(SAS), ~v(PAP)) is 0.999, whereas
sim(~v(SAS), ~v(WH)) is 0.888; thus, the two books authored by Austen (SaS and PaP)
are considerably closer to each other than to Brontë’s Wuthering Heights. In fact, the
similarity between the first two is almost perfect (when restricted to the three terms
we consider). Here we have considered tf weights, but we could of course use other
term weight functions.

Viewing a collection of N documents as a collection of vectors leads to a
natural view of a collection as a term-document matrix: this is an M×N matrixTERM-DOCUMENT

MATRIX whose rows represent the M terms (dimensions) of the N columns, each of
which corresponds to a document. As always, the terms being indexed could
be stemmed before indexing; for instance, jealous and jealousy would under
stemming be considered as a single dimension. This matrix view will prove
to be useful in Chapter 18.

6.3.2 Queries as vectors

There is a far more compelling reason to represent documents as vectors:
we can also view a query as a vector. Consider the query q = jealous gossip.
This query turns into the unit vector ~v(q) = (0, 0.707, 0.707) on the three
coordinates of Figures 6.12 and 6.13. The key idea now: to assign to each
document d a score equal to the dot product

~v(q) ·~v(d).

In the example of Figure 6.13, Wuthering Heights is the top-scoring docu-
ment for this query with a score of 0.509, with Pride and Prejudice a distant
second with a score of 0.085, and Sense and Sensibility last with a score of
0.074. This simple example is somewhat misleading: the number of dimen-
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sions in practice will be far larger than three: it will equal the vocabulary size
M.

To summarize, by viewing a query as a “bag of words”, we are able to
treat it as a very short document. As a consequence, we can use the cosine
similarity between the query vector and a document vector as a measure of
the score of the document for that query. The resulting scores can then be
used to select the top-scoring documents for a query. Thus we have

score(q, d) =
~V(q) · ~V(d)

|~V(q)||~V(d)|
.(6.12)

A document may have a high cosine score for a query even if it does not
contain all query terms. Note that the preceding discussion does not hinge
on any specific weighting of terms in the document vector, although for the
present we may think of them as either tf or tf-idf weights. In fact, a number
of weighting schemes are possible for query as well as document vectors, as
illustrated in Example 6.4 and developed further in Section 6.4.

Computing the cosine similarities between the query vector and each doc-
ument vector in the collection, sorting the resulting scores and selecting the
top K documents can be expensive — a single similarity computation can
entail a dot product in tens of thousands of dimensions, demanding tens of
thousands of arithmetic operations. In Section 7.1 we study how to use an in-
verted index for this purpose, followed by a series of heuristics for improving
on this.

✎ Example 6.4: We now consider the query best car insurance on a fictitious collection
with N = 1,000,000 documents where the document frequencies of auto, best, car and
insurance are respectively 5000, 50000, 10000 and 1000.

term query document product
tf df idf wt,q tf wf wt,d

auto 0 5000 2.3 0 1 1 0.41 0
best 1 50000 1.3 1.3 0 0 0 0
car 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1000 3.0 3.0 2 2 0.82 2.46

In this example the weight of a term in the query is simply the idf (and zero for a
term not in the query, such as auto); this is reflected in the column header wt,q (the en-
try for auto is zero because the query does not contain the termauto). For documents,
we use tf weighting with no use of idf but with Euclidean normalization. The former
is shown under the column headed wf, while the latter is shown under the column
headed wt,d. Invoking (6.9) now gives a net score of 0 + 0 + 0.82 + 2.46 = 3.28.

6.3.3 Computing vector scores

In a typical setting we have a collection of documents each represented by a
vector, a free text query represented by a vector, and a positive integer K. We
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COSINESCORE(q)
1 float Scores[N] = 0
2 Initialize Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d] += wft,d ×wt,q
7 Read the array Length[d]
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]

◮ Figure 6.14 The basic algorithm for computing vector space scores.

seek the K documents of the collection with the highest vector space scores on
the given query. We now initiate the study of determining the K documents
with the highest vector space scores for a query. Typically, we seek these
K top documents in ordered by decreasing score; for instance many search
engines use K = 10 to retrieve and rank-order the first page of the ten best
results. Here we give the basic algorithm for this computation; we develop a
fuller treatment of efficient techniques and approximations in Chapter 7.

Figure 6.14 gives the basic algorithm for computing vector space scores.
The array Length holds the lengths (normalization factors) for each of the N
documents, whereas the array Scores holds the scores for each of the docu-
ments. When the scores are finally computed in Step 9, all that remains in
Step 10 is to pick off the K documents with the highest scores.

The outermost loop beginning Step 3 repeats the updating of Scores, iter-
ating over each query term t in turn. In Step 5 we calculate the weight in
the query vector for term t. Steps 6-8 update the score of each document by
adding in the contribution from term t. This process of adding in contribu-
tions one query term at a time is sometimes known as term-at-a-time scoringTERM-AT-A-TIME

or accumulation, and the N elements of the array Scores are therefore known
as accumulators. For this purpose, it would appear necessary to store, withACCUMULATOR

each postings entry, the weight wft,d of term t in document d (we have thus
far used either tf or tf-idf for this weight, but leave open the possibility of
other functions to be developed in Section 6.4). In fact this is wasteful, since
storing this weight may require a floating point number. Two ideas help alle-
viate this space problem. First, if we are using inverse document frequency,
we need not precompute idft; it suffices to store N/dft at the head of the
postings for t. Second, we store the term frequency tft,d for each postings en-
try. Finally, Step 12 extracts the top K scores – this requires a priority queue
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data structure, often implemented using a heap. Such a heap takes no more
than 2N comparisons to construct, following which each of the K top scores
can be extracted from the heap at a cost of O(log N) comparisons.

Note that the general algorithm of Figure 6.14 does not prescribe a specific
implementation of how we traverse the postings lists of the various query
terms; we may traverse them one term at a time as in the loop beginning
at Step 3, or we could in fact traverse them concurrently as in Figure 1.6. In
such a concurrent postings traversal we compute the scores of one document
at a time, so that it is sometimes called document-at-a-time scoring. We willDOCUMENT-AT-A-TIME

say more about this in Section 7.1.5.

? Exercise 6.14

If we were to stem jealous and jealousy to a common stem before setting up the vector
space, detail how the definitions of tf and idf should be modified.

Exercise 6.15

Recall the tf-idf weights computed in Exercise 6.10. Compute the Euclidean nor-
malized document vectors for each of the documents, where each vector has four
components, one for each of the four terms.

Exercise 6.16

Verify that the sum of the squares of the components of each of the document vectors
in Exercise 6.15 is 1 (to within rounding error). Why is this the case?

Exercise 6.17

With term weights as computed in Exercise 6.15, rank the three documents by com-
puted score for the query car insurance, for each of the following cases of term weight-
ing in the query:

1. The weight of a term is 1 if present in the query, 0 otherwise.

2. Euclidean normalized idf.

6.4 Variant tf-idf functions

For assigning a weight for each term in each document, a number of alterna-
tives to tf and tf-idf have been considered. We discuss some of the principal
ones here; a more complete development is deferred to Chapter 11. We will
summarize these alternatives in Section 6.4.3 (page 128).

6.4.1 Sublinear tf scaling

It seems unlikely that twenty occurrences of a term in a document truly carry
twenty times the significance of a single occurrence. Accordingly, there has
been considerable research into variants of term frequency that go beyond
counting the number of occurrences of a term. A common modification is
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to use instead the logarithm of the term frequency, which assigns a weight
given by

wft,d =

{
1 + log tft,d if tft,d > 0
0 otherwise .(6.13)

In this form, we may replace tf by some other function wf as in (6.13), to
obtain:

wf-idft,d = wft,d × idft.(6.14)

Equation (6.9) can then be modified by replacing tf-idf by wf-idf as defined
in (6.14).

6.4.2 Maximum tf normalization

One well-studied technique is to normalize the tf weights of all terms occur-
ring in a document by the maximum tf in that document. For each document
d, let tfmax(d) = maxτ∈d tfτ,d, where τ ranges over all terms in d. Then, we
compute a normalized term frequency for each term t in document d by

ntft,d = a + (1− a)
tft,d

tfmax(d)
,(6.15)

where a is a value between 0 and 1 and is generally set to 0.4, although some
early work used the value 0.5. The term a in (6.15) is a smoothing term whoseSMOOTHING

role is to damp the contribution of the second term – which may be viewed as
a scaling down of tf by the largest tf value in d. We will encounter smoothing
further in Chapter 13 when discussing classification; the basic idea is to avoid
a large swing in ntft,d from modest changes in tft,d (say from 1 to 2). The main
idea of maximum tf normalization is to mitigate the following anomaly: we
observe higher term frequencies in longer documents, merely because longer
documents tend to repeat the same words over and over again. To appreciate
this, consider the following extreme example: supposed we were to take a
document d and create a new document d′ by simply appending a copy of d
to itself. While d′ should be no more relevant to any query than d is, the use
of (6.9) would assign it twice as high a score as d. Replacing tf-idft,d in (6.9) by
ntf-idft,d eliminates the anomaly in this example. Maximum tf normalization
does suffer from the following issues:

1. The method is unstable in the following sense: a change in the stop word
list can dramatically alter term weightings (and therefore ranking). Thus,
it is hard to tune.

2. A document may contain an outlier term with an unusually large num-
ber of occurrences of that term, not representative of the content of that
document.
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Term frequency Document frequency Normalization
n (natural) tft,d n (no) 1 n (none) 1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine) 1√
w2

1+w2
2+...+w2

M

a (augmented) 0.5 +
0.5×tft,d

maxt(tft,d)
p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u (Section 6.4.4)

b (boolean)
{

1 if tft,d > 0
0 otherwise b (byte size) 1/CharLengthα, α < 1

L (log ave) 1+log(tft,d)
1+log(avet∈d(tft,d))

◮ Figure 6.15 SMART notation for tf-idf variants. Here CharLength is the number
of characters in the document.

3. More generally, a document in which the most frequent term appears
roughly as often as many other terms should be treated differently from
one with a more skewed distribution.

6.4.3 Document and query weighting schemes

Equation (6.12) is fundamental to information retrieval systems that use any
form of vector space scoring. Variations from one vector space scoring method
to another hinge on the specific choices of weights in the vectors ~V(d) and
~V(q). Figure 6.15 lists some of the principal weighting schemes in use for
each of ~V(d) and ~V(q), together with a mnemonic for representing a spe-
cific combination of weights; this system of mnemonics is sometimes called
SMART notation, following the authors of an early text retrieval system. The
mnemonic for representing a combination of weights takes the form ddd.qqq
where the first triplet gives the term weighting of the document vector, while
the second triplet gives the weighting in the query vector. The first letter in
each triplet specifies the term frequency component of the weighting, the
second the document frequency component, and the third the form of nor-
malization used. It is quite common to apply different normalization func-
tions to ~V(d) and ~V(q). For example, a very standard weighting scheme
is lnc.ltc, where the document vector has log-weighted term frequency, no
idf (for both effectiveness and efficiency reasons), and cosine normalization,
while the query vector uses log-weighted term frequency, idf weighting, and
cosine normalization.
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✄ 6.4.4 Pivoted normalized document length

In Section 6.3.1 we normalized each document vector by the Euclidean length
of the vector, so that all document vectors turned into unit vectors. In doing
so, we eliminated all information on the length of the original document;
this masks some subtleties about longer documents. First, longer documents
will – as a result of containing more terms – have higher tf values. Second,
longer documents contain more distinct terms. These factors can conspire to
raise the scores of longer documents, which (at least for some information
needs) is unnatural. Longer documents can broadly be lumped into two cat-
egories: (1) verbose documents that essentially repeat the same content – in
these, the length of the document does not alter the relative weights of dif-
ferent terms; (2) documents covering multiple different topics, in which the
search terms probably match small segments of the document but not all of
it – in this case, the relative weights of terms are quite different from a single
short document that matches the query terms. Compensating for this phe-
nomenon is a form of document length normalization that is independent of
term and document frequencies. To this end, we introduce a form of normal-
izing the vector representations of documents in the collection, so that the
resulting “normalized” documents are not necessarily of unit length. Then,
when we compute the dot product score between a (unit) query vector and
such a normalized document, the score is skewed to account for the effect
of document length on relevance. This form of compensation for document
length is known as pivoted document length normalization.PIVOTED DOCUMENT

LENGTH
NORMALIZATION

Consider a document collection together with an ensemble of queries for
that collection. Suppose that we were given, for each query q and for each
document d, a Boolean judgment of whether or not d is relevant to the query
q; in Chapter 8 we will see how to procure such a set of relevance judgments
for a query ensemble and a document collection. Given this set of relevance
judgments, we may compute a probability of relevance as a function of docu-
ment length, averaged over all queries in the ensemble. The resulting plot
may look like the curve drawn in thick lines in Figure 6.16. To compute this
curve, we bucket documents by length and compute the fraction of relevant
documents in each bucket, then plot this fraction against the median docu-
ment length of each bucket. (Thus even though the “curve” in Figure 6.16
appears to be continuous, it is in fact a histogram of discrete buckets of doc-
ument length.)

On the other hand, the curve in thin lines shows what might happen with
the same documents and query ensemble if we were to use relevance as pre-
scribed by cosine normalization Equation (6.12) – thus, cosine normalization
has a tendency to distort the computed relevance vis-à-vis the true relevance,
at the expense of longer documents. The thin and thick curves crossover at a
point p corresponding to document length ℓp, which we refer to as the pivot
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◮ Figure 6.16 Pivoted document length normalization.

length; dashed lines mark this point on the x− and y− axes. The idea of
pivoted document length normalization would then be to “rotate” the co-
sine normalization curve counter-clockwise about p so that it more closely
matches thick line representing the relevance vs. document length curve.
As mentioned at the beginning of this section, we do so by using in Equa-
tion (6.12) a normalization factor for each document vector ~V(d) that is not
the Euclidean length of that vector, but instead one that is larger than the Eu-
clidean length for documents of length less than ℓp, and smaller for longer
documents.

To this end, we first note that the normalizing term for ~V(d) in the de-
nominator of Equation (6.12) is its Euclidean length, denoted |~V(d)|. In the
simplest implementation of pivoted document length normalization, we use
a normalization factor in the denominator that is linear in |~V(d)|, but one
of slope < 1 as in Figure 6.17. In this figure, the x− axis represents |~V(d)|,
while the y−axis represents possible normalization factors we can use. The
thin line y = x depicts the use of cosine normalization. Notice the following
aspects of the thick line representing pivoted length normalization:

1. It is linear in the document length and has the form

a|~V(d)|+ (1− a)piv,(6.16)
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◮ Figure 6.17 Implementing pivoted document length normalization by linear scal-
ing.

where piv is the cosine normalization value at which the two curves in-
tersect.

2. Its slope is a < 1 and (3) it crosses the y = x line at piv.

It has been argued that in practice, Equation (6.16) is well approximated by

aud + (1− a)piv,

where ud is the number of unique terms in document d.
Of course, pivoted document length normalization is not appropriate for

all applications. For instance, in a collection of answers to frequently asked
questions (say, at a customer service website), relevance may have little to
do with document length. In other cases the dependency may be more com-
plex than can be accounted for by a simple linear pivoted normalization. In
such cases, document length can be used as a feature in the machine learning
based scoring approach of Section 6.1.2.

? Exercise 6.18

One measure of the similarity of two vectors is the Euclidean distance (or L2 distance)EUCLIDEAN DISTANCE
between them:

|~x−~y| =

√√√√ M

∑
i=1

(xi − yi)2
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query document
word tf wf df idf qi = wf-idf tf wf di = normalized wf qi · di

digital 10,000
video 100,000
cameras 50,000

◮ Table 6.1 Cosine computation for Exercise 6.19.

Given a query q and documents d1, d2, . . ., we may rank the documents di in order
of increasing Euclidean distance from q. Show that if q and the di are all normalized
to unit vectors, then the rank ordering produced by Euclidean distance is identical to
that produced by cosine similarities.

Exercise 6.19

Compute the vector space similarity between the query “digital cameras” and the
document “digital cameras and video cameras” by filling out the empty columns in
Table 6.1. Assume N = 10,000,000, logarithmic term weighting (wf columns) for
query and document, idf weighting for the query only and cosine normalization for
the document only. Treat and as a stop word. Enter term counts in the tf columns.
What is the final similarity score?

Exercise 6.20

Show that for the query affection, the relative ordering of the scores of the three doc-
uments in Figure 6.13 is the reverse of the ordering of the scores for the query jealous
gossip.

Exercise 6.21

In turning a query into a unit vector in Figure 6.13, we assigned equal weights to each
of the query terms. What other principled approaches are plausible?

Exercise 6.22

Consider the case of a query term that is not in the set of M indexed terms; thus our
standard construction of the query vector results in ~V(q) not being in the vector space
created from the collection. How would one adapt the vector space representation to
handle this case?

Exercise 6.23

Refer to the tf and idf values for four terms and three documents in Exercise 6.10.
Compute the two top scoring documents on the query best car insurance for each of
the following weighing schemes: (i) nnn.atc ; (ii) ntc.atc .

Exercise 6.24

Suppose that the word coyote does not occur in the collection used in Exercises 6.10
and 6.23. How would one compute ntc.atc scores for the query coyote insurance?
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6.5 References and further reading

Chapter 7 develops the computational aspects of vector space scoring. Luhn
(1957; 1958) describes some of the earliest reported applications of term weight-
ing. His paper dwells on the importance of medium frequency terms (terms
that are neither too commonplace nor too rare) and may be thought of as an-
ticipating tf-idf and related weighting schemes. Spärck Jones (1972) builds
on this intuition through detailed experiments showing the use of inverse
document frequency in term weighting. A series of extensions and theoret-
ical justifications of idf are due to Salton and Buckley (1987) Robertson and
Jones (1976), Croft and Harper (1979) and Papineni (2001). Robertson main-
tains a web page (http://www.soi.city.ac.uk/˜ ser/idf.html) containing the history
of idf, including soft copies of early papers that predated electronic versions
of journal article. Singhal et al. (1996a) develop pivoted document length
normalization. Probabilistic language models (Chapter 11) develop weight-
ing techniques that are more nuanced than tf-idf; the reader will find this
development in Section 11.4.3.

We observed that by assigning a weight for each term in a document, a
document may be viewed as a vector of term weights, one for each term in
the collection. The SMART information retrieval system at Cornell (Salton
1971b) due to Salton and colleagues was perhaps the first to view a doc-
ument as a vector of weights. The basic computation of cosine scores as
described in Section 6.3.3 is due to Zobel and Moffat (2006). The two query
evaluation strategies term-at-a-time and document-at-a-time are discussed
by Turtle and Flood (1995).

The SMART notation for tf-idf term weighting schemes in Figure 6.15 is
presented in (Salton and Buckley 1988, Singhal et al. 1995; 1996b). Not all
versions of the notation are consistent; we most closely follow (Singhal et al.
1996b). A more detailed and exhaustive notation was developed in Moffat
and Zobel (1998), considering a larger palette of schemes for term and doc-
ument frequency weighting. Beyond the notation, Moffat and Zobel (1998)
sought to set up a space of feasible weighting functions through which hill-
climbing approaches could be used to begin with weighting schemes that
performed well, then make local improvements to identify the best combi-
nations. However, they report that such hill-climbing methods failed to lead
to any conclusions on the best weighting schemes.
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7 Computing scores in a complete

search system

Chapter 6 developed the theory underlying term weighting in documents
for the purposes of scoring, leading up to vector space models and the basic
cosine scoring algorithm of Section 6.3.3 (page 124). In this chapter we be-
gin in Section 7.1 with heuristics for speeding up this computation; many of
these heuristics achieve their speed at the risk of not finding quite the top K
documents matching the query. Some of these heuristics generalize beyond
cosine scoring. With Section 7.1 in place, we have essentially all the compo-
nents needed for a complete search engine. We therefore take a step back
from cosine scoring, to the more general problem of computing scores in a
search engine. In Section 7.2 we outline a complete search engine, includ-
ing indexes and structures to support not only cosine scoring but also more
general ranking factors such as query term proximity. We describe how all
of the various pieces fit together in Section 7.2.4. We conclude this chapter
with Section 7.3, where we discuss how the vector space model for free text
queries interacts with common query operators.

7.1 Efficient scoring and ranking

We begin by recapping the algorithm of Figure 6.14. For a query such as q =
jealous gossip, two observations are immediate:

1. The unit vector ~v(q) has only two non-zero components.

2. In the absence of any weighting for query terms, these non-zero compo-
nents are equal – in this case, both equal 0.707.

For the purpose of ranking the documents matching this query, we are
really interested in the relative (rather than absolute) scores of the documents
in the collection. To this end, it suffices to compute the cosine similarity from
each document unit vector ~v(d) to ~V(q) (in which all non-zero components
of the query vector are set to 1), rather than to the unit vector ~v(q). For any
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FASTCOSINESCORE(q)
1 float Scores[N] = 0
2 for each d
3 do Initialize Length[d] to the length of doc d
4 for each query term t
5 do calculate wt,q and fetch postings list for t
6 for each pair(d, tft,d) in postings list
7 do add wft,d to Scores[d]
8 Read the array Length[d]
9 for each d

10 do Divide Scores[d] by Length[d]
11 return Top K components of Scores[]

◮ Figure 7.1 A faster algorithm for vector space scores.

two documents d1, d2

~V(q) ·~v(d1) > ~V(q) ·~v(d2)⇔ ~v(q) ·~v(d1) > ~v(q) ·~v(d2).(7.1)

For any document d, the cosine similarity ~V(q) ·~v(d) is the weighted sum,
over all terms in the query q, of the weights of those terms in d. This in turn
can be computed by a postings intersection exactly as in the algorithm of
Figure 6.14, with line 8 altered since we take wt,q to be 1 so that the multiply-
add in that step becomes just an addition; the result is shown in Figure 7.1.
We walk through the postings in the inverted index for the terms in q, accu-
mulating the total score for each document – very much as in processing a
Boolean query, except we assign a positive score to each document that ap-
pears in any of the postings being traversed. As mentioned in Section 6.3.3
we maintain an idf value for each dictionary term and a tf value for each
postings entry. This scheme computes a score for every document in the
postings of any of the query terms; the total number of such documents may
be considerably smaller than N.

Given these scores, the final step before presenting results to a user is to
pick out the K highest-scoring documents. While one could sort the complete
set of scores, a better approach is to use a heap to retrieve only the top K
documents in order. Where J is the number of documents with non-zero
cosine scores, constructing such a heap can be performed in 2J comparison
steps, following which each of the K highest scoring documents can be “read
off” the heap with log J comparison steps.
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7.1.1 Inexact top K document retrieval

Thus far, we have focused on retrieving precisely the K highest-scoring doc-
uments for a query. We now consider schemes by which we produce K doc-
uments that are likely to be among the K highest scoring documents for a
query. In doing so, we hope to dramatically lower the cost of computing
the K documents we output, without materially altering the user’s perceived
relevance of the top K results. Consequently, in most applications it suffices
to retrieve K documents whose scores are very close to those of the K best.
In the sections that follow we detail schemes that retrieve K such documents
while potentially avoiding computing scores for most of the N documents in
the collection.

Such inexact top-K retrieval is not necessarily, from the user’s perspective,
a bad thing. The top K documents by the cosine measure are in any case not
necessarily the K best for the query: cosine similarity is only a proxy for the
user’s perceived relevance. In Sections 7.1.2–7.1.6 below, we give heuristics
using which we are likely to retrieve K documents with cosine scores close
to those of the top K documents. The principal cost in computing the out-
put stems from computing cosine similarities between the query and a large
number of documents. Having a large number of documents in contention
also increases the selection cost in the final stage of culling the top K docu-
ments from a heap. We now consider a series of ideas designed to eliminate
a large number of documents without computing their cosine scores. The
heuristics have the following two-step scheme:

1. Find a set A of documents that are contenders, where K < |A| ≪ N. A
does not necessarily contain the K top-scoring documents for the query,
but is likely to have many documents with scores near those of the top K.

2. Return the K top-scoring documents in A.

From the descriptions of these ideas it will be clear that many of them require
parameters to be tuned to the collection and application at hand; pointers
to experience in setting these parameters may be found at the end of this
chapter. It should also be noted that most of these heuristics are well-suited
to free text queries, but not for Boolean or phrase queries.

7.1.2 Index elimination

For a multi-term query q, it is clear we only consider documents containing at
least one of the query terms. We can take this a step further using additional
heuristics:

1. We only consider documents containing terms whose idf exceeds a preset
threshold. Thus, in the postings traversal, we only traverse the postings
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for terms with high idf. This has a fairly significant benefit: the post-
ings lists of low-idf terms are generally long; with these removed from
contention, the set of documents for which we compute cosines is greatly
reduced. One way of viewing this heuristic: low-idf terms are treated as
stop words and do not contribute to scoring. For instance, on the query
catcher in the rye, we only traverse the postings for catcher and rye. The
cutoff threshold can of course be adapted in a query-dependent manner.

2. We only consider documents that contain many (and as a special case,
all) of the query terms. This can be accomplished during the postings
traversal; we only compute scores for documents containing all (or many)
of the query terms. A danger of this scheme is that by requiring all (or
even many) query terms to be present in a document before considering
it for cosine computation, we may end up with fewer than K candidate
documents in the output. This issue will discussed further in Section 7.2.1.

7.1.3 Champion lists

The idea of champion lists (sometimes also called fancy lists or top docs) is to
precompute, for each term t in the dictionary, the set of the r documents
with the highest weights for t; the value of r is chosen in advance. For tf-
idf weighting, these would be the r documents with the highest tf values for
term t. We call this set of r documents the champion list for term t.

Now, given a query q we create a set A as follows: we take the union
of the champion lists for each of the terms comprising q. We now restrict
cosine computation to only the documents in A. A critical parameter in this
scheme is the value r, which is highly application dependent. Intuitively, r
should be large compared with K, especially if we use any form of the index
elimination described in Section 7.1.2. One issue here is that the value r is set
at the time of index construction, whereas K is application dependent and
may not be available until the query is received; as a result we may (as in the
case of index elimination) find ourselves with a set A that has fewer than K
documents. There is no reason to have the same value of r for all terms in the
dictionary; it could for instance be set to be higher for rarer terms.

7.1.4 Static quality scores and ordering

We now further develop the idea of champion lists, in the somewhat more
general setting of static quality scores. In many search engines, we have avail-STATIC QUALITY

SCORES able a measure of quality g(d) for each document d that is query-independent
and thus static. This quality measure may be viewed as a number between
zero and one. For instance, in the context of news stories on the web, g(d)
may be derived from the number of favorable reviews of the story by web
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◮ Figure 7.2 A static quality-ordered index. In this example we assume that Doc1,
Doc2 and Doc3 respectively have static quality scores g(1) = 0.25, g(2) = 0.5, g(3) =
1.

surfers. Section 4.6 (page 80) provides further discussion on this topic, as
does Chapter 21 in the context of web search.

The net score for a document d is some combination of g(d) together with
the query-dependent score induced (say) by (6.12). The precise combination
may be determined by the learning methods of Section 6.1.2, to be developed
further in Section 15.4.1; but for the purposes of our exposition here, let us
consider a simple sum:

net-score(q, d) = g(d) +
~V(q) · ~V(d)

|~V(q)||~V(d)|
.(7.2)

In this simple form, the static quality g(d) and the query-dependent score
from (6.10) have equal contributions, assuming each is between 0 and 1.
Other relative weightings are possible; the effectiveness of our heuristics will
depend on the specific relative weighting.

First, consider ordering the documents in the postings list for each term by
decreasing value of g(d). This allows us to perform the postings intersection
algorithm of Figure 1.6. In order to perform the intersection by a single pass
through the postings of each query term, the algorithm of Figure 1.6 relied on
the postings being ordered by document IDs. But in fact, we only required
that all postings be ordered by a single common ordering; here we rely on the
g(d) values to provide this common ordering. This is illustrated in Figure 7.2,
where the postings are ordered in decreasing order of g(d).

The first idea is a direct extension of champion lists: for a well-chosen
value r, we maintain for each term t a global champion list of the r documents
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with the highest values for g(d) + tf-idft,d. The list itself is, like all the post-
ings lists considered so far, sorted by a common order (either by document
IDs or by static quality). Then at query time, we only compute the net scores
(7.2) for documents in the union of these global champion lists. Intuitively,
this has the effect of focusing on documents likely to have large net scores.

We conclude the discussion of global champion lists with one further idea.
We maintain for each term t two postings lists consisting of disjoint sets of
documents, each sorted by g(d) values. The first list, which we call high,
contains the m documents with the highest tf values for t. The second list,
which we call low, contains all other documents containing t. When process-
ing a query, we first scan only the high lists of the query terms, computing
net scores for any document on the high lists of all (or more than a certain
number of) query terms. If we obtain scores for K documents in the process,
we terminate. If not, we continue the scanning into the low lists, scoring doc-
uments in these postings lists. This idea is developed further in Section 7.2.1.

7.1.5 Impact ordering

In all the postings lists described thus far, we order the documents con-
sistently by some common ordering: typically by document ID but in Sec-
tion 7.1.4 by static quality scores. As noted at the end of Section 6.3.3, such a
common ordering supports the concurrent traversal of all of the query terms’
postings lists, computing the score for each document as we encounter it.
Computing scores in this manner is sometimes referred to as document-at-a-
time scoring. We will now introduce a technique for inexact top-K retrieval
in which the postings are not all ordered by a common ordering, thereby
precluding such a concurrent traversal. We will therefore require scores to
be “accumulated” one term at a time as in the scheme of Figure 6.14, so that
we have term-at-a-time scoring.

The idea is to order the documents d in the postings list of term t by
decreasing order of tft,d. Thus, the ordering of documents will vary from
one postings list to another, and we cannot compute scores by a concurrent
traversal of the postings lists of all query terms. Given postings lists ordered
by decreasing order of tft,d, two ideas have been found to significantly lower
the number of documents for which we accumulate scores: (1) when travers-
ing the postings list for a query term t, we stop after considering a prefix
of the postings list – either after a fixed number of documents r have been
seen, or after the value of tft,d has dropped below a threshold; (2) when ac-
cumulating scores in the outer loop of Figure 6.14, we consider the query
terms in decreasing order of idf, so that the query terms likely to contribute
the most to the final scores are considered first. This latter idea too can be
adaptive at the time of processing a query: as we get to query terms with
lower idf, we can determine whether to proceed based on the changes in
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document scores from processing the previous query term. If these changes
are minimal, we may omit accumulation from the remaining query terms, or
alternatively process shorter prefixes of their postings lists.

These ideas form a common generalization of the methods introduced in
Sections 7.1.2–7.1.4. We may also implement a version of static ordering in
which each postings list is ordered by an additive combination of static and
query-dependent scores. We would again lose the consistency of ordering
across postings, thereby having to process query terms one at time accumu-
lating scores for all documents as we go along. Depending on the particular
scoring function, the postings list for a document may be ordered by other
quantities than term frequency; under this more general setting, this idea is
known as impact ordering.

7.1.6 Cluster pruning

In cluster pruning we have a preprocessing step during which we cluster the
document vectors. Then at query time, we consider only documents in a
small number of clusters as candidates for which we compute cosine scores.
Specifically, the preprocessing step is as follows:

1. Pick
√

N documents at random from the collection. Call these leaders.

2. For each document that is not a leader, we compute its nearest leader.

We refer to documents that are not leaders as followers. Intuitively, in the par-
tition of the followers induced by the use of

√
N randomly chosen leaders,

the expected number of followers for each leader is ≈ N/
√

N =
√

N. Next,
query processing proceeds as follows:

1. Given a query q, find the leader L that is closest to q. This entails comput-
ing cosine similarities from q to each of the

√
N leaders.

2. The candidate set A consists of L together with its followers. We compute
the cosine scores for all documents in this candidate set.

The use of randomly chosen leaders for clustering is fast and likely to re-
flect the distribution of the document vectors in the vector space: a region
of the vector space that is dense in documents is likely to produce multi-
ple leaders and thus a finer partition into sub-regions. This illustrated in
Figure 7.3.

Variations of cluster pruning introduce additional parameters b1 and b2,
both of which are positive integers. In the pre-processing step we attach
each follower to its b1 closest leaders, rather than a single closest leader. At
query time we consider the b2 leaders closest to the query q. Clearly, the basic
scheme above corresponds to the case b1 = b2 = 1. Further, increasing b1 or
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◮ Figure 7.3 Cluster pruning.

b2 increases the likelihood of finding K documents that are more likely to be
in the set of true top-scoring K documents, at the expense of more compu-
tation. We reiterate this approach when describing clustering in Chapter 16
(page 354).

? Exercise 7.1

We suggested above (Figure 7.2) that the postings for static quality ordering be in
decreasing order of g(d). Why do we use the decreasing rather than the increasing
order?

Exercise 7.2

When discussing champion lists, we simply used the r documents with the largest tf
values to create the champion list for t. But when considering global champion lists,
we used idf as well, identifying documents with the largest values of g(d) + tf-idft,d.
Why do we differentiate between these two cases?

Exercise 7.3

If we were to only have one-term queries, explain why the use of global champion
lists with r = K suffices for identifying the K highest scoring documents. What is a
simple modification to this idea if we were to only have s-term queries for any fixed
integer s > 1?

Exercise 7.4

Explain how the common global ordering by g(d) values in all high and low lists
helps make the score computation efficient.
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Exercise 7.5

Consider again the data of Exercise 6.23 with nnn.atc for the query-dependent scor-
ing. Suppose that we were given static quality scores of 1 for Doc1 and 2 for Doc2.
Determine under Equation (7.2) what ranges of static quality score for Doc3 result in
it being the first, second or third result for the query best car insurance.

Exercise 7.6

Sketch the frequency-ordered postings for the data in Figure 6.9.

Exercise 7.7

Let the static quality scores for Doc1, Doc2 and Doc3 in Figure 6.11 be respectively
0.25, 0.5 and 1. Sketch the postings for impact ordering when each postings list is
ordered by the sum of the static quality score and the Euclidean normalized tf values
in Figure 6.11.

Exercise 7.8

The nearest-neighbor problem in the plane is the following: given a set of N data
points on the plane, we preprocess them into some data structure such that, given
a query point Q, we seek the point in N that is closest to Q in Euclidean distance.
Clearly cluster pruning can be used as an approach to the nearest-neighbor problem
in the plane, if we wished to avoid computing the distance from Q to every one of
the query points. Devise a simple example on the plane so that with two leaders, the
answer returned by cluster pruning is incorrect (it is not the data point closest to Q).

7.2 Components of an information retrieval system

In this section we combine the ideas developed so far to describe a rudimen-
tary search system that retrieves and scores documents. We first develop
further ideas for scoring, beyond vector spaces. Following this, we will put
together all of these elements to outline a complete system. Because we con-
sider a complete system, we do not restrict ourselves to vector space retrieval
in this section. Indeed, our complete system will have provisions for vector
space as well as other query operators and forms of retrieval. In Section 7.3
we will return to how vector space queries interact with other query opera-
tors.

7.2.1 Tiered indexes

We mentioned in Section 7.1.2 that when using heuristics such as index elim-
ination for inexact top-K retrieval, we may occasionally find ourselves with
a set A of contenders that has fewer than K documents. A common solution
to this issue is the user of tiered indexes, which may be viewed as a gener-TIERED INDEXES

alization of champion lists. We illustrate this idea in Figure 7.4, where we
represent the documents and terms of Figure 6.9. In this example we set a tf
threshold of 20 for tier 1 and 10 for tier 2, meaning that the tier 1 index only
has postings entries with tf values exceeding 20, while the tier 2 index only
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◮ Figure 7.4 Tiered indexes. If we fail to get K results from tier 1, query processing
“falls back” to tier 2, and so on. Within each tier, postings are ordered by document
ID.

has postings entries with tf values exceeding 10. In this example we have
chosen to order the postings entries within a tier by document ID.

7.2.2 Query-term proximity

Especially for free text queries on the web (Chapter 19), users prefer a doc-
ument in which most or all of the query terms appear close to each other,
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because this is evidence that the document has text focused on their query
intent. Consider a query with two or more query terms, t1, t2, . . . , tk. Let ω
be the width of the smallest window in a document d that contains all the
query terms, measured in the number of words in the window. For instance,
if the document were to simply consist of the sentence The quality of mercy
is not strained, the smallest window for the query strained mercy would be 4.
Intuitively, the smaller that ω is, the better that d matches the query. In cases
where the document does not contain all of the query terms, we can set ω
to be some enormous number. We could also consider variants in which
only words that are not stop words are considered in computing ω. Such
proximity-weighted scoring functions are a departure from pure cosine sim-
ilarity and closer to the “soft conjunctive” semantics that Google and other
web search engines evidently use.

How can we design such a proximity-weighted scoring function to dependPROXIMITY WEIGHTING

on ω? The simplest answer relies on a “hand coding” technique we introduce
below in Section 7.2.3. A more scalable approach goes back to Section 6.1.2 –
we treat the integer ω as yet another feature in the scoring function, whose
importance is assigned by machine learning, as will be developed further in
Section 15.4.1.

7.2.3 Designing parsing and scoring functions

Common search interfaces, particularly for consumer-facing search applica-
tions on the web, tend to mask query operators from the end user. The intent
is to hide the complexity of these operators from the largely non-technical au-
dience for such applications, inviting free text queries. Given such interfaces,
how should a search equipped with indexes for various retrieval operators
treat a query such as rising interest rates? More generally, given the various fac-
tors we have studied that could affect the score of a document, how should
we combine these features?

The answer of course depends on the user population, the query distri-
bution and the collection of documents. Typically, a query parser is used to
translate the user-specified keywords into a query with various operators
that is executed against the underlying indexes. Sometimes, this execution
can entail multiple queries against the underlying indexes; for example, the
query parser may issue a stream of queries:

1. Run the user-generated query string as a phrase query. Rank them by
vector space scoring using as query the vector consisting of the 3 terms
rising interest rates.

2. If fewer than ten documents contain the phrase rising interest rates, run the
two 2-term phrase queries rising interest and interest rates; rank these using
vector space scoring, as well.
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3. If we still have fewer than ten results, run the vector space query consist-
ing of the three individual query terms.

Each of these steps (if invoked) may yield a list of scored documents, for
each of which we compute a score. This score must combine contributions
from vector space scoring, static quality, proximity weighting and potentially
other factors – particularly since a document may appear in the lists from
multiple steps. This demands an aggregate scoring function that accumulatesEVIDENCE

ACCUMULATION evidence of a document’s relevance from multiple sources. How do we devise
a query parser and how do we devise the aggregate scoring function?

The answer depends on the setting. In many enterprise settings we have
application builders who make use of a toolkit of available scoring opera-
tors, along with a query parsing layer, with which to manually configure
the scoring function as well as the query parser. Such application builders
make use of the available zones, metadata and knowledge of typical doc-
uments and queries to tune the parsing and scoring. In collections whose
characteristics change infrequently (in an enterprise application, significant
changes in collection and query characteristics typically happen with infre-
quent events such as the introduction of new document formats or document
management systems, or a merger with another company). Web search on
the other hand is faced with a constantly changing document collection with
new characteristics being introduced all the time. It is also a setting in which
the number of scoring factors can run into the hundreds, making hand-tuned
scoring a difficult exercise. To address this, it is becoming increasingly com-
mon to use machine-learned scoring, extending the ideas we introduced in
Section 6.1.2, as will be discussed further in Section 15.4.1.

7.2.4 Putting it all together

We have now studied all the components necessary for a basic search system
that supports free text queries as well as Boolean, zone and field queries. We
briefly review how the various pieces fit together into an overall system; this
is depicted in Figure 7.5.

In this figure, documents stream in from the left for parsing and linguis-
tic processing (language and format detection, tokenization and stemming).
The resulting stream of tokens feeds into two modules. First, we retain a
copy of each parsed document in a document cache. This will enable us
to generate results snippets: snippets of text accompanying each document
in the results list for a query. This snippet tries to give a succinct explana-
tion to the user of why the document matches the query. The automatic
generation of such snippets is the subject of Section 8.7. A second copy
of the tokens is fed to a bank of indexers that create a bank of indexes in-
cluding zone and field indexes that store the metadata for each document,
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◮ Figure 7.5 A complete search system. Data paths are shown primarily for a free
text query.

(tiered) positional indexes, indexes for spelling correction and other tolerant
retrieval, and structures for accelerating inexact top-K retrieval. A free text
user query (top center) is sent down to the indexes both directly and through
a module for generating spelling-correction candidates. As noted in Chap-
ter 3 the latter may optionally be invoked only when the original query fails
to retrieve enough results. Retrieved documents (dark arrow) are passed
to a scoring module that computes scores based on machine-learned rank-
ing (MLR), a technique that builds on Section 6.1.2 (to be further developed
in Section 15.4.1) for scoring and ranking documents. Finally, these ranked
documents are rendered as a results page.

? Exercise 7.9

Explain how the postings intersection algorithm first introduced in Section 1.3 can be
adapted to find the smallest integer ω that contains all query terms.

Exercise 7.10

Adapt this procedure to work when not all query terms are present in a document.

7.3 Vector space scoring and query operator interaction

We introduced the vector space model as a paradigm for free text queries.
We conclude this chapter by discussing how the vector space scoring model
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relates to the query operators we have studied in earlier chapters. The re-
lationship should be viewed at two levels: in terms of the expressiveness
of queries that a sophisticated user may pose, and in terms of the index that
supports the evaluation of the various retrieval methods. In building a search
engine, we may opt to support multiple query operators for an end user. In
doing so we need to understand what components of the index can be shared
for executing various query operators, as well as how to handle user queries
that mix various query operators.

Vector space scoring supports so-called free text retrieval, in which a query
is specified as a set of words without any query operators connecting them. It
allows documents matching the query to be scored and thus ranked, unlike
the Boolean, wildcard and phrase queries studied earlier. Classically, the
interpretation of such free text queries was that at least one of the query terms
be present in any retrieved document. However more recently, web search
engines such as Google have popularized the notion that a set of terms typed
into their query boxes (thus on the face of it, a free text query) carries the
semantics of a conjunctive query that only retrieves documents containing
all or most query terms.

Boolean retrieval

Clearly a vector space index can be used to answer Boolean queries, as long
as the weight of a term t in the document vector for d is non-zero when-
ever t occurs in d. The reverse is not true, since a Boolean index does not by
default maintain term weight information. There is no easy way of combin-
ing vector space and Boolean queries from a user’s standpoint: vector space
queries are fundamentally a form of evidence accumulation, where the pres-
ence of more query terms in a document adds to the score of a document.
Boolean retrieval on the other hand, requires a user to specify a formula
for selecting documents through the presence (or absence) of specific com-
binations of keywords, without inducing any relative ordering among them.
Mathematically, it is in fact possible to invoke so-called p-norms to combine
Boolean and vector space queries, but we know of no system that makes use
of this fact.

Wildcard queries

Wildcard and vector space queries require different indexes, except at the
basic level that both can be implemented using postings and a dictionary
(e.g., a dictionary of trigrams for wildcard queries). If a search engine allows
a user to specify a wildcard operator as part of a free text query (for instance,
the query rom* restaurant), we may interpret the wildcard component of the
query as spawning multiple terms in the vector space (in this example, rome
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and roman would be two such terms) all of which are added to the query
vector. The vector space query is then executed as usual, with matching
documents being scored and ranked; thus a document containing both rome
and roma is likely to be scored higher than another containing only one of
them. The exact score ordering will of course depend on the relative weights
of each term in matching documents.

Phrase queries

The representation of documents as vectors is fundamentally lossy: the rel-
ative order of terms in a document is lost in the encoding of a document as
a vector. Even if we were to try and somehow treat every biword as a term
(and thus an axis in the vector space), the weights on different axes not in-
dependent: for instance the phrase German shepherd gets encoded in the axis
german shepherd, but immediately has a non-zero weight on the axes german
and shepherd. Further, notions such as idf would have to be extended to such
biwords. Thus an index built for vector space retrieval cannot, in general, be
used for phrase queries. Moreover, there is no way of demanding a vector
space score for a phrase query — we only know the relative weights of each
term in a document.

On the query german shepherd, we could use vector space retrieval to iden-
tify documents heavy in these two terms, with no way of prescribing that
they occur consecutively. Phrase retrieval, on the other hand, tells us of the
existence of the phrase german shepherd in a document, without any indi-
cation of the relative frequency or weight of this phrase. While these two
retrieval paradigms (phrase and vector space) consequently have different
implementations in terms of indexes and retrieval algorithms, they can in
some cases be combined usefully, as in the three-step example of query pars-
ing in Section 7.2.3.

7.4 References and further reading

Heuristics for fast query processing with early termination are described by
Anh et al. (2001), Garcia et al. (2004), Anh and Moffat (2006b), Persin et al.
(1996). Cluster pruning is investigated by Singitham et al. (2004) and by
Chierichetti et al. (2007); see also Section 16.6 (page 372). Champion lists are
described in Persin (1994) and (under the name top docs) in Brown (1995),TOP DOCS

and further developed in Brin and Page (1998), Long and Suel (2003). While
these heuristics are well-suited to free text queries that can be viewed as vec-
tors, they complicate phrase queries; see Anh and Moffat (2006c) for an index
structure that supports both weighted and Boolean/phrase searches. Carmel
et al. (2001) Clarke et al. (2000) and Song et al. (2005) treat the use of query
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term proximity in assessing relevance. Pioneering work on learning of rank-
ing functions was done by Fuhr (1989), Fuhr and Pfeifer (1994), Cooper et al.
(1994), Bartell (1994), Bartell et al. (1998) and by Cohen et al. (1998).
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8 Evaluation in information

retrieval

We have seen in the preceding chapters many alternatives in designing an IR
system. How do we know which of these techniques are effective in which
applications? Should we use stop lists? Should we stem? Should we use in-
verse document frequency weighting? Information retrieval has developed
as a highly empirical discipline, requiring careful and thorough evaluation to
demonstrate the superior performance of novel techniques on representative
document collections.

In this chapter we begin with a discussion of measuring the effectiveness
of IR systems (Section 8.1) and the test collections that are most often used
for this purpose (Section 8.2). We then present the straightforward notion of
relevant and nonrelevant documents and the formal evaluation methodol-
ogy that has been developed for evaluating unranked retrieval results (Sec-
tion 8.3). This includes explaining the kinds of evaluation measures that
are standardly used for document retrieval and related tasks like text clas-
sification and why they are appropriate. We then extend these notions and
develop further measures for evaluating ranked retrieval results (Section 8.4)
and discuss developing reliable and informative test collections (Section 8.5).

We then step back to introduce the notion of user utility, and how it is ap-
proximated by the use of document relevance (Section 8.6). The key utility
measure is user happiness. Speed of response and the size of the index are
factors in user happiness. It seems reasonable to assume that relevance of
results is the most important factor: blindingly fast, useless answers do not
make a user happy. However, user perceptions do not always coincide with
system designers’ notions of quality. For example, user happiness commonly
depends very strongly on user interface design issues, including the layout,
clarity, and responsiveness of the user interface, which are independent of
the quality of the results returned. We touch on other measures of the qual-
ity of a system, in particular the generation of high-quality result summary
snippets, which strongly influence user utility, but are not measured in the
basic relevance ranking paradigm (Section 8.7).
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8.1 Information retrieval system evaluation

To measure ad hoc information retrieval effectiveness in the standard way,
we need a test collection consisting of three things:

1. A document collection

2. A test suite of information needs, expressible as queries

3. A set of relevance judgments, standardly a binary assessment of either
relevant or nonrelevant for each query-document pair.

The standard approach to information retrieval system evaluation revolves
around the notion of relevant and nonrelevant documents. With respect to aRELEVANCE

user information need, a document in the test collection is given a binary
classification as either relevant or nonrelevant. This decision is referred to as
the gold standard or ground truth judgment of relevance. The test documentGOLD STANDARD

GROUND TRUTH collection and suite of information needs have to be of a reasonable size:
you need to average performance over fairly large test sets, as results are
highly variable over different documents and information needs. As a rule
of thumb, 50 information needs has usually been found to be a sufficient
minimum.

Relevance is assessed relative to an information need, not a query. ForINFORMATION NEED

example, an information need might be:

Information on whether drinking red wine is more effective at reduc-
ing your risk of heart attacks than white wine.

This might be translated into a query such as:

wine AND red AND white AND heart AND attack AND effective

A document is relevant if it addresses the stated information need, not be-
cause it just happens to contain all the words in the query. This distinction is
often misunderstood in practice, because the information need is not overt.
But, nevertheless, an information need is present. If a user types python into a
web search engine, they might be wanting to know where they can purchase
a pet python. Or they might be wanting information on the programming
language Python. From a one word query, it is very difficult for a system to
know what the information need is. But, nevertheless, the user has one, and
can judge the returned results on the basis of their relevance to it. To evalu-
ate a system, we require an overt expression of an information need, which
can be used for judging returned documents as relevant or nonrelevant. At
this point, we make a simplification: relevance can reasonably be thought
of as a scale, with some documents highly relevant and others marginally
so. But for the moment, we will use just a binary decision of relevance. We
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discuss the reasons for using binary relevance judgments and alternatives in
Section 8.5.1.

Many systems contain various weights (often known as parameters) that
can be adjusted to tune system performance. It is wrong to report results on
a test collection which were obtained by tuning these parameters to maxi-
mize performance on that collection. That is because such tuning overstates
the expected performance of the system, because the weights will be set to
maximize performance on one particular set of queries rather than for a ran-
dom sample of queries. In such cases, the correct procedure is to have one
or more development test collections, and to tune the parameters on the devel-DEVELOPMENT TEST

COLLECTION opment test collection. The tester then runs the system with those weights
on the test collection and reports the results on that collection as an unbiased
estimate of performance.

8.2 Standard test collections

Here is a list of the most standard test collections and evaluation series. We
focus particularly on test collections for ad hoc information retrieval system
evaluation, but also mention a couple of similar test collections for text clas-
sification.

The Cranfield collection. This was the pioneering test collection in allowingCRANFIELD

precise quantitative measures of information retrieval effectiveness, but
is nowadays too small for anything but the most elementary pilot experi-
ments. Collected in the United Kingdom starting in the late 1950s, it con-
tains 1398 abstracts of aerodynamics journal articles, a set of 225 queries,
and exhaustive relevance judgments of all (query, document) pairs.

Text Retrieval Conference (TREC). The U.S. National Institute of StandardsTREC

and Technology (NIST) has run a large IR test bed evaluation series since
1992. Within this framework, there have been many tracks over a range
of different test collections, but the best known test collections are the
ones used for the TREC Ad Hoc track during the first 8 TREC evaluations
between 1992 and 1999. In total, these test collections comprise 6 CDs
containing 1.89 million documents (mainly, but not exclusively, newswire
articles) and relevance judgments for 450 information needs, which are
called topics and specified in detailed text passages. Individual test col-
lections are defined over different subsets of this data. The early TRECs
each consisted of 50 information needs, evaluated over different but over-
lapping sets of documents. TRECs 6–8 provide 150 information needs
over about 528,000 newswire and Foreign Broadcast Information Service
articles. This is probably the best subcollection to use in future work, be-
cause it is the largest and the topics are more consistent. Because the test
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document collections are so large, there are no exhaustive relevance judg-
ments. Rather, NIST assessors’ relevance judgments are available only for
the documents that were among the top k returned for some system which
was entered in the TREC evaluation for which the information need was
developed.

In more recent years, NIST has done evaluations on larger document col-
lections, including the 25 million page GOV2 web page collection. FromGOV2

the beginning, the NIST test document collections were orders of magni-
tude larger than anything available to researchers previously and GOV2
is now the largest Web collection easily available for research purposes.
Nevertheless, the size of GOV2 is still more than 2 orders of magnitude
smaller than the current size of the document collections indexed by the
large web search companies.

NII Test Collections for IR Systems (NTCIR). The NTCIR project has builtNTCIR

various test collections of similar sizes to the TREC collections, focus-
ing on East Asian language and cross-language information retrieval, whereCROSS-LANGUAGE

INFORMATION
RETRIEVAL

queries are made in one language over a document collection containing
documents in one or more other languages. See: http://research.nii.ac.jp/ntcir/data/data-
en.html

Cross Language Evaluation Forum (CLEF). This evaluation series has con-CLEF

centrated on European languages and cross-language information retrieval.
See: http://www.clef-campaign.org/

Reuters-21578 and Reuters-RCV1. For text classification, the most used testREUTERS

collection has been the Reuters-21578 collection of 21578 newswire arti-
cles; see Chapter 13, page 279. More recently, Reuters released the much
larger Reuters Corpus Volume 1 (RCV1), consisting of 806,791 documents;
see Chapter 4, page 69. Its scale and rich annotation makes it a better basis
for future research.

20 Newsgroups. This is another widely used text classification collection,20 NEWSGROUPS

collected by Ken Lang. It consists of 1000 articles from each of 20 Usenet
newsgroups (the newsgroup name being regarded as the category). After
the removal of duplicate articles, as it is usually used, it contains 18941
articles.

8.3 Evaluation of unranked retrieval sets

Given these ingredients, how is system effectiveness measured? The two
most frequent and basic measures for information retrieval effectiveness are
precision and recall. These are first defined for the simple case where an
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IR system returns a set of documents for a query. We will see later how to
extend these notions to ranked retrieval situations.

Precision (P) is the fraction of retrieved documents that are relevantPRECISION

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)(8.1)

Recall (R) is the fraction of relevant documents that are retrievedRECALL

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)(8.2)

These notions can be made clear by examining the following contingency
table:

(8.3)
Relevant Nonrelevant

Retrieved true positives (tp) false positives (fp)
Not retrieved false negatives (fn) true negatives (tn)

Then:

P = tp/(tp + f p)(8.4)

R = tp/(tp + f n)

An obvious alternative that may occur to the reader is to judge an infor-
mation retrieval system by its accuracy, that is, the fraction of its classifica-ACCURACY

tions that are correct. In terms of the contingency table above, accuracy =
(tp + tn)/(tp + f p + f n + tn). This seems plausible, since there are two ac-
tual classes, relevant and nonrelevant, and an information retrieval system
can be thought of as a two-class classifier which attempts to label them as
such (it retrieves the subset of documents which it believes to be relevant).
This is precisely the effectiveness measure often used for evaluating machine
learning classification problems.

There is a good reason why accuracy is not an appropriate measure for
information retrieval problems. In almost all circumstances, the data is ex-
tremely skewed: normally over 99.9% of the documents are in the nonrele-
vant category. A system tuned to maximize accuracy can appear to perform
well by simply deeming all documents nonrelevant to all queries. Even if the
system is quite good, trying to label some documents as relevant will almost
always lead to a high rate of false positives. However, labeling all documents
as nonrelevant is completely unsatisfying to an information retrieval system
user. Users are always going to want to see some documents, and can be



Online edition (c)
2009 Cambridge UP

156 8 Evaluation in information retrieval

assumed to have a certain tolerance for seeing some false positives provid-
ing that they get some useful information. The measures of precision and
recall concentrate the evaluation on the return of true positives, asking what
percentage of the relevant documents have been found and how many false
positives have also been returned.

The advantage of having the two numbers for precision and recall is that
one is more important than the other in many circumstances. Typical web
surfers would like every result on the first page to be relevant (high preci-
sion) but have not the slightest interest in knowing let alone looking at every
document that is relevant. In contrast, various professional searchers such as
paralegals and intelligence analysts are very concerned with trying to get as
high recall as possible, and will tolerate fairly low precision results in order to
get it. Individuals searching their hard disks are also often interested in high
recall searches. Nevertheless, the two quantities clearly trade off against one
another: you can always get a recall of 1 (but very low precision) by retriev-
ing all documents for all queries! Recall is a non-decreasing function of the
number of documents retrieved. On the other hand, in a good system, preci-
sion usually decreases as the number of documents retrieved is increased. In
general we want to get some amount of recall while tolerating only a certain
percentage of false positives.

A single measure that trades off precision versus recall is the F measure,F MEASURE

which is the weighted harmonic mean of precision and recall:

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P + R
where β2 =

1− α

α
(8.5)

where α ∈ [0, 1] and thus β2 ∈ [0, ∞]. The default balanced F measure equally
weights precision and recall, which means making α = 1/2 or β = 1. It is
commonly written as F1, which is short for Fβ=1, even though the formula-
tion in terms of α more transparently exhibits the F measure as a weighted
harmonic mean. When using β = 1, the formula on the right simplifies to:

Fβ=1 =
2PR

P + R
(8.6)

However, using an even weighting is not the only choice. Values of β < 1
emphasize precision, while values of β > 1 emphasize recall. For example, a
value of β = 3 or β = 5 might be used if recall is to be emphasized. Recall,
precision, and the F measure are inherently measures between 0 and 1, but
they are also very commonly written as percentages, on a scale between 0
and 100.

Why do we use a harmonic mean rather than the simpler average (arith-
metic mean)? Recall that we can always get 100% recall by just returning all
documents, and therefore we can always get a 50% arithmetic mean by the
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◮ Figure 8.1 Graph comparing the harmonic mean to other means. The graph
shows a slice through the calculation of various means of precision and recall for
the fixed recall value of 70%. The harmonic mean is always less than either the arith-
metic or geometric mean, and often quite close to the minimum of the two numbers.
When the precision is also 70%, all the measures coincide.

same process. This strongly suggests that the arithmetic mean is an unsuit-
able measure to use. In contrast, if we assume that 1 document in 10,000 is
relevant to the query, the harmonic mean score of this strategy is 0.02%. The
harmonic mean is always less than or equal to the arithmetic mean and the
geometric mean. When the values of two numbers differ greatly, the har-
monic mean is closer to their minimum than to their arithmetic mean; see
Figure 8.1.

? Exercise 8.1 [⋆]

An IR system returns 8 relevant documents, and 10 nonrelevant documents. There
are a total of 20 relevant documents in the collection. What is the precision of the
system on this search, and what is its recall?

Exercise 8.2 [⋆]

The balanced F measure (a.k.a. F1) is defined as the harmonic mean of precision and
recall. What is the advantage of using the harmonic mean rather than “averaging”
(using the arithmetic mean)?
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◮ Figure 8.2 Precision/recall graph.

Exercise 8.3 [⋆⋆]

Derive the equivalence between the two formulas for F measure shown in Equa-
tion (8.5), given that α = 1/(β2 + 1).

8.4 Evaluation of ranked retrieval results

Precision, recall, and the F measure are set-based measures. They are com-
puted using unordered sets of documents. We need to extend these measures
(or to define new measures) if we are to evaluate the ranked retrieval results
that are now standard with search engines. In a ranked retrieval context,
appropriate sets of retrieved documents are naturally given by the top k re-
trieved documents. For each such set, precision and recall values can be
plotted to give a precision-recall curve, such as the one shown in Figure 8.2.PRECISION-RECALL

CURVE Precision-recall curves have a distinctive saw-tooth shape: if the (k + 1)th

document retrieved is nonrelevant then recall is the same as for the top k
documents, but precision has dropped. If it is relevant, then both precision
and recall increase, and the curve jags up and to the right. It is often useful to
remove these jiggles and the standard way to do this is with an interpolated
precision: the interpolated precision pinterp at a certain recall level r is definedINTERPOLATED

PRECISION
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Recall Interp.
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08

◮ Table 8.1 Calculation of 11-point Interpolated Average Precision. This is for the
precision-recall curve shown in Figure 8.2.

as the highest precision found for any recall level r′ ≥ r:

pinterp(r) = max
r′≥r

p(r′)(8.7)

The justification is that almost anyone would be prepared to look at a few
more documents if it would increase the percentage of the viewed set that
were relevant (that is, if the precision of the larger set is higher). Interpolated
precision is shown by a thinner line in Figure 8.2. With this definition, the
interpolated precision at a recall of 0 is well-defined (Exercise 8.4).

Examining the entire precision-recall curve is very informative, but there
is often a desire to boil this information down to a few numbers, or perhaps
even a single number. The traditional way of doing this (used for instance
in the first 8 TREC Ad Hoc evaluations) is the 11-point interpolated average11-POINT

INTERPOLATED
AVERAGE PRECISION

precision. For each information need, the interpolated precision is measured
at the 11 recall levels of 0.0, 0.1, 0.2, . . . , 1.0. For the precision-recall curve in
Figure 8.2, these 11 values are shown in Table 8.1. For each recall level, we
then calculate the arithmetic mean of the interpolated precision at that recall
level for each information need in the test collection. A composite precision-
recall curve showing 11 points can then be graphed. Figure 8.3 shows an
example graph of such results from a representative good system at TREC 8.

In recent years, other measures have become more common. Most stan-
dard among the TREC community is Mean Average Precision (MAP), whichMEAN AVERAGE

PRECISION provides a single-figure measure of quality across recall levels. Among eval-
uation measures, MAP has been shown to have especially good discrimina-
tion and stability. For a single information need, Average Precision is the
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◮ Figure 8.3 Averaged 11-point precision/recall graph across 50 queries for a rep-
resentative TREC system. The Mean Average Precision for this system is 0.2553.

average of the precision value obtained for the set of top k documents exist-
ing after each relevant document is retrieved, and this value is then averaged
over information needs. That is, if the set of relevant documents for an in-
formation need qj ∈ Q is {d1, . . . dmj

} and Rjk is the set of ranked retrieval
results from the top result until you get to document dk, then

MAP(Q) =
1
|Q|

|Q|
∑
j=1

1
mj

mj

∑
k=1

Precision(Rjk)(8.8)

When a relevant document is not retrieved at all,1 the precision value in the
above equation is taken to be 0. For a single information need, the average
precision approximates the area under the uninterpolated precision-recall
curve, and so the MAP is roughly the average area under the precision-recall
curve for a set of queries.

Using MAP, fixed recall levels are not chosen, and there is no interpola-
tion. The MAP value for a test collection is the arithmetic mean of average

1. A system may not fully order all documents in the collection in response to a query or at
any rate an evaluation exercise may be based on submitting only the top k results for each
information need.
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precision values for individual information needs. (This has the effect of
weighting each information need equally in the final reported number, even
if many documents are relevant to some queries whereas very few are rele-
vant to other queries.) Calculated MAP scores normally vary widely across
information needs when measured within a single system, for instance, be-
tween 0.1 and 0.7. Indeed, there is normally more agreement in MAP for
an individual information need across systems than for MAP scores for dif-
ferent information needs for the same system. This means that a set of test
information needs must be large and diverse enough to be representative of
system effectiveness across different queries.

The above measures factor in precision at all recall levels. For many promi-PRECISION AT k

nent applications, particularly web search, this may not be germane to users.
What matters is rather how many good results there are on the first page or
the first three pages. This leads to measuring precision at fixed low levels of
retrieved results, such as 10 or 30 documents. This is referred to as “Precision
at k”, for example “Precision at 10”. It has the advantage of not requiring any
estimate of the size of the set of relevant documents but the disadvantages
that it is the least stable of the commonly used evaluation measures and that
it does not average well, since the total number of relevant documents for a
query has a strong influence on precision at k.

An alternative, which alleviates this problem, is R-precision. It requiresR-PRECISION

having a set of known relevant documents Rel, from which we calculate the
precision of the top Rel documents returned. (The set Rel may be incomplete,
such as when Rel is formed by creating relevance judgments for the pooled
top k results of particular systems in a set of experiments.) R-precision ad-
justs for the size of the set of relevant documents: A perfect system could
score 1 on this metric for each query, whereas, even a perfect system could
only achieve a precision at 20 of 0.4 if there were only 8 documents in the
collection relevant to an information need. Averaging this measure across
queries thus makes more sense. This measure is harder to explain to naive
users than Precision at k but easier to explain than MAP. If there are |Rel|
relevant documents for a query, we examine the top |Rel| results of a sys-
tem, and find that r are relevant, then by definition, not only is the precision
(and hence R-precision) r/|Rel|, but the recall of this result set is also r/|Rel|.
Thus, R-precision turns out to be identical to the break-even point, anotherBREAK-EVEN POINT

measure which is sometimes used, defined in terms of this equality relation-
ship holding. Like Precision at k, R-precision describes only one point on
the precision-recall curve, rather than attempting to summarize effectiveness
across the curve, and it is somewhat unclear why you should be interested
in the break-even point rather than either the best point on the curve (the
point with maximal F-measure) or a retrieval level of interest to a particular
application (Precision at k). Nevertheless, R-precision turns out to be highly
correlated with MAP empirically, despite measuring only a single point on
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◮ Figure 8.4 The ROC curve corresponding to the precision-recall curve in Fig-
ure 8.2.

.

the curve.
Another concept sometimes used in evaluation is an ROC curve. (“ROC”ROC CURVE

stands for “Receiver Operating Characteristics”, but knowing that doesn’t
help most people.) An ROC curve plots the true positive rate or sensitiv-
ity against the false positive rate or (1− specificity). Here, sensitivity is justSENSITIVITY

another term for recall. The false positive rate is given by f p/( f p + tn). Fig-
ure 8.4 shows the ROC curve corresponding to the precision-recall curve in
Figure 8.2. An ROC curve always goes from the bottom left to the top right of
the graph. For a good system, the graph climbs steeply on the left side. For
unranked result sets, specificity, given by tn/( f p + tn), was not seen as a verySPECIFICITY

useful notion. Because the set of true negatives is always so large, its value
would be almost 1 for all information needs (and, correspondingly, the value
of the false positive rate would be almost 0). That is, the “interesting” part of
Figure 8.2 is 0 < recall < 0.4, a part which is compressed to a small corner
of Figure 8.4. But an ROC curve could make sense when looking over the
full retrieval spectrum, and it provides another way of looking at the data.
In many fields, a common aggregate measure is to report the area under the
ROC curve, which is the ROC analog of MAP. Precision-recall curves are
sometimes loosely referred to as ROC curves. This is understandable, but
not accurate.

A final approach that has seen increasing adoption, especially when em-
ployed with machine learning approaches to ranking (see Section 15.4, page 341)
is measures of cumulative gain, and in particular normalized discounted cumu-CUMULATIVE GAIN

NORMALIZED
DISCOUNTED

CUMULATIVE GAIN
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lative gain (NDCG). NDCG is designed for situations of non-binary notionsNDCG

of relevance (cf. Section 8.5.1). Like precision at k, it is evaluated over some
number k of top search results. For a set of queries Q, let R(j, d) be the rele-
vance score assessors gave to document d for query j. Then,

NDCG(Q, k) =
1
|Q|

|Q|
∑
j=1

Zkj

k

∑
m=1

2R(j,m)− 1
log2(1 + m)

,(8.9)

where Zkj is a normalization factor calculated to make it so that a perfect
ranking’s NDCG at k for query j is 1. For queries for which k′ < k documents
are retrieved, the last summation is done up to k′.

? Exercise 8.4 [⋆]

What are the possible values for interpolated precision at a recall level of 0?

Exercise 8.5 [⋆⋆]

Must there always be a break-even point between precision and recall? Either show
there must be or give a counter-example.

Exercise 8.6 [⋆⋆]

What is the relationship between the value of F1 and the break-even point?

Exercise 8.7 [⋆⋆]

The Dice coefficient of two sets is a measure of their intersection scaled by their sizeDICE COEFFICIENT
(giving a value in the range 0 to 1):

Dice(X, Y) =
2|X ∩ Y|
|X|+ |Y|

Show that the balanced F-measure (F1) is equal to the Dice coefficient of the retrieved
and relevant document sets.

Exercise 8.8 [⋆]

Consider an information need for which there are 4 relevant documents in the collec-
tion. Contrast two systems run on this collection. Their top 10 results are judged for
relevance as follows (the leftmost item is the top ranked search result):

System 1 R N R N N N N N R R

System 2 N R N N R R R N N N

a. What is the MAP of each system? Which has a higher MAP?

b. Does this result intuitively make sense? What does it say about what is important
in getting a good MAP score?

c. What is the R-precision of each system? (Does it rank the systems the same as
MAP?)
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Exercise 8.9 [⋆⋆]
The following list of Rs and Ns represents relevant (R) and nonrelevant (N) returned
documents in a ranked list of 20 documents retrieved in response to a query from a
collection of 10,000 documents. The top of the ranked list (the document the system
thinks is most likely to be relevant) is on the left of the list. This list shows 6 relevant
documents. Assume that there are 8 relevant documents in total in the collection.

R R N N N N N N R N R N N N R N N N N R

a. What is the precision of the system on the top 20?
b. What is the F1 on the top 20?
c. What is the uninterpolated precision of the system at 25% recall?
d. What is the interpolated precision at 33% recall?
e. Assume that these 20 documents are the complete result set of the system. What

is the MAP for the query?

Assume, now, instead, that the system returned the entire 10,000 documents in a
ranked list, and these are the first 20 results returned.

f. What is the largest possible MAP that this system could have?
g. What is the smallest possible MAP that this system could have?
h. In a set of experiments, only the top 20 results are evaluated by hand. The result

in (e) is used to approximate the range (f)–(g). For this example, how large (in
absolute terms) can the error for the MAP be by calculating (e) instead of (f) and
(g) for this query?

8.5 Assessing relevance

To properly evaluate a system, your test information needs must be germane
to the documents in the test document collection, and appropriate for pre-
dicted usage of the system. These information needs are best designed by
domain experts. Using random combinations of query terms as an informa-
tion need is generally not a good idea because typically they will not resem-
ble the actual distribution of information needs.

Given information needs and documents, you need to collect relevance
assessments. This is a time-consuming and expensive process involving hu-
man beings. For tiny collections like Cranfield, exhaustive judgments of rel-
evance for each query and document pair were obtained. For large modern
collections, it is usual for relevance to be assessed only for a subset of the
documents for each query. The most standard approach is pooling, where rel-POOLING

evance is assessed over a subset of the collection that is formed from the top
k documents returned by a number of different IR systems (usually the ones
to be evaluated), and perhaps other sources such as the results of Boolean
keyword searches or documents found by expert searchers in an interactive
process.
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Judge 2 Relevance
Yes No Total

Judge 1 Yes 300 20 320
Relevance No 10 70 80

Total 310 90 400

Observed proportion of the times the judges agreed
P(A) = (300 + 70)/400 = 370/400 = 0.925
Pooled marginals
P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125
P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878
Probability that the two judges agreed by chance
P(E) = P(nonrelevant)2 + P(relevant)2 = 0.21252 + 0.78782 = 0.665
Kappa statistic
κ = (P(A)− P(E))/(1− P(E)) = (0.925− 0.665)/(1− 0.665) = 0.776

◮ Table 8.2 Calculating the kappa statistic.

A human is not a device that reliably reports a gold standard judgment
of relevance of a document to a query. Rather, humans and their relevance
judgments are quite idiosyncratic and variable. But this is not a problem
to be solved: in the final analysis, the success of an IR system depends on
how good it is at satisfying the needs of these idiosyncratic humans, one
information need at a time.

Nevertheless, it is interesting to consider and measure how much agree-
ment between judges there is on relevance judgments. In the social sciences,
a common measure for agreement between judges is the kappa statistic. It isKAPPA STATISTIC

designed for categorical judgments and corrects a simple agreement rate for
the rate of chance agreement.

kappa =
P(A)− P(E)

1− P(E)
(8.10)

where P(A) is the proportion of the times the judges agreed, and P(E) is the
proportion of the times they would be expected to agree by chance. There
are choices in how the latter is estimated: if we simply say we are making
a two-class decision and assume nothing more, then the expected chance
agreement rate is 0.5. However, normally the class distribution assigned is
skewed, and it is usual to use marginal statistics to calculate expected agree-MARGINAL

ment.2 There are still two ways to do it depending on whether one pools

2. For a contingency table, as in Table 8.2, a marginal statistic is formed by summing a row or
column. The marginal ai.k = ∑j aijk.
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the marginal distribution across judges or uses the marginals for each judge
separately; both forms have been used, but we present the pooled version
because it is more conservative in the presence of systematic differences in as-
sessments across judges. The calculations are shown in Table 8.2. The kappa
value will be 1 if two judges always agree, 0 if they agree only at the rate
given by chance, and negative if they are worse than random. If there are
more than two judges, it is normal to calculate an average pairwise kappa
value. As a rule of thumb, a kappa value above 0.8 is taken as good agree-
ment, a kappa value between 0.67 and 0.8 is taken as fair agreement, and
agreement below 0.67 is seen as data providing a dubious basis for an evalu-
ation, though the precise cutoffs depend on the purposes for which the data
will be used.

Interjudge agreement of relevance has been measured within the TREC
evaluations and for medical IR collections. Using the above rules of thumb,
the level of agreement normally falls in the range of “fair” (0.67–0.8). The fact
that human agreement on a binary relevance judgment is quite modest is one
reason for not requiring more fine-grained relevance labeling from the test
set creator. To answer the question of whether IR evaluation results are valid
despite the variation of individual assessors’ judgments, people have exper-
imented with evaluations taking one or the other of two judges’ opinions as
the gold standard. The choice can make a considerable absolute difference to
reported scores, but has in general been found to have little impact on the rel-
ative effectiveness ranking of either different systems or variants of a single
system which are being compared for effectiveness.

8.5.1 Critiques and justifications of the concept of relevance

The advantage of system evaluation, as enabled by the standard model of
relevant and nonrelevant documents, is that we have a fixed setting in which
we can vary IR systems and system parameters to carry out comparative ex-
periments. Such formal testing is much less expensive and allows clearer
diagnosis of the effect of changing system parameters than doing user stud-
ies of retrieval effectiveness. Indeed, once we have a formal measure that
we have confidence in, we can proceed to optimize effectiveness by machine
learning methods, rather than tuning parameters by hand. Of course, if the
formal measure poorly describes what users actually want, doing this will
not be effective in improving user satisfaction. Our perspective is that, in
practice, the standard formal measures for IR evaluation, although a simpli-
fication, are good enough, and recent work in optimizing formal evaluation
measures in IR has succeeded brilliantly. There are numerous examples of
techniques developed in formal evaluation settings, which improve effec-
tiveness in operational settings, such as the development of document length
normalization methods within the context of TREC (Sections 6.4.4 and 11.4.3)
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and machine learning methods for adjusting parameter weights in scoring
(Section 6.1.2).

That is not to say that there are not problems latent within the abstrac-
tions used. The relevance of one document is treated as independent of the
relevance of other documents in the collection. (This assumption is actually
built into most retrieval systems – documents are scored against queries, not
against each other – as well as being assumed in the evaluation methods.)
Assessments are binary: there aren’t any nuanced assessments of relevance.
Relevance of a document to an information need is treated as an absolute,
objective decision. But judgments of relevance are subjective, varying across
people, as we discussed above. In practice, human assessors are also imper-
fect measuring instruments, susceptible to failures of understanding and at-
tention. We also have to assume that users’ information needs do not change
as they start looking at retrieval results. Any results based on one collection
are heavily skewed by the choice of collection, queries, and relevance judg-
ment set: the results may not translate from one domain to another or to a
different user population.

Some of these problems may be fixable. A number of recent evaluations,
including INEX, some TREC tracks, and NTCIR have adopted an ordinal
notion of relevance with documents divided into 3 or 4 classes, distinguish-
ing slightly relevant documents from highly relevant documents. See Sec-
tion 10.4 (page 210) for a detailed discussion of how this is implemented in
the INEX evaluations.

One clear problem with the relevance-based assessment that we have pre-
sented is the distinction between relevance and marginal relevance: whetherMARGINAL RELEVANCE

a document still has distinctive usefulness after the user has looked at cer-
tain other documents (Carbonell and Goldstein 1998). Even if a document
is highly relevant, its information can be completely redundant with other
documents which have already been examined. The most extreme case of
this is documents that are duplicates – a phenomenon that is actually very
common on the World Wide Web – but it can also easily occur when sev-
eral documents provide a similar precis of an event. In such circumstances,
marginal relevance is clearly a better measure of utility to the user. Maximiz-
ing marginal relevance requires returning documents that exhibit diversity
and novelty. One way to approach measuring this is by using distinct facts
or entities as evaluation units. This perhaps more directly measures true
utility to the user but doing this makes it harder to create a test collection.

? Exercise 8.10 [⋆⋆]

Below is a table showing how two human judges rated the relevance of a set of 12
documents to a particular information need (0 = nonrelevant, 1 = relevant). Let us as-
sume that you’ve written an IR system that for this query returns the set of documents
{4, 5, 6, 7, 8}.
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docID Judge 1 Judge 2
1 0 0
2 0 0
3 1 1
4 1 1
5 1 0
6 1 0
7 1 0
8 1 0
9 0 1

10 0 1
11 0 1
12 0 1

a. Calculate the kappa measure between the two judges.

b. Calculate precision, recall, and F1 of your system if a document is considered rel-
evant only if the two judges agree.

c. Calculate precision, recall, and F1 of your system if a document is considered rel-
evant if either judge thinks it is relevant.

8.6 A broader perspective: System quality and user utility

Formal evaluation measures are at some distance from our ultimate interest
in measures of human utility: how satisfied is each user with the results the
system gives for each information need that they pose? The standard way to
measure human satisfaction is by various kinds of user studies. These might
include quantitative measures, both objective, such as time to complete a
task, as well as subjective, such as a score for satisfaction with the search
engine, and qualitative measures, such as user comments on the search in-
terface. In this section we will touch on other system aspects that allow quan-
titative evaluation and the issue of user utility.

8.6.1 System issues

There are many practical benchmarks on which to rate an information re-
trieval system beyond its retrieval quality. These include:

• How fast does it index, that is, how many documents per hour does it
index for a certain distribution over document lengths? (cf. Chapter 4)

• How fast does it search, that is, what is its latency as a function of index
size?

• How expressive is its query language? How fast is it on complex queries?
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• How large is its document collection, in terms of the number of doc-
uments or the collection having information distributed across a broad
range of topics?

All these criteria apart from query language expressiveness are straightfor-
wardly measurable: we can quantify the speed or size. Various kinds of fea-
ture checklists can make query language expressiveness semi-precise.

8.6.2 User utility

What we would really like is a way of quantifying aggregate user happiness,
based on the relevance, speed, and user interface of a system. One part of
this is understanding the distribution of people we wish to make happy, and
this depends entirely on the setting. For a web search engine, happy search
users are those who find what they want. One indirect measure of such users
is that they tend to return to the same engine. Measuring the rate of return
of users is thus an effective metric, which would of course be more effective
if you could also measure how much these users used other search engines.
But advertisers are also users of modern web search engines. They are happy
if customers click through to their sites and then make purchases. On an
eCommerce web site, a user is likely to be wanting to purchase something.
Thus, we can measure the time to purchase, or the fraction of searchers who
become buyers. On a shopfront web site, perhaps both the user’s and the
store owner’s needs are satisfied if a purchase is made. Nevertheless, in
general, we need to decide whether it is the end user’s or the eCommerce
site owner’s happiness that we are trying to optimize. Usually, it is the store
owner who is paying us.

For an “enterprise” (company, government, or academic) intranet search
engine, the relevant metric is more likely to be user productivity: how much
time do users spend looking for information that they need. There are also
many other practical criteria concerning such matters as information secu-
rity, which we mentioned in Section 4.6 (page 80).

User happiness is elusive to measure, and this is part of why the standard
methodology uses the proxy of relevance of search results. The standard
direct way to get at user satisfaction is to run user studies, where people en-
gage in tasks, and usually various metrics are measured, the participants are
observed, and ethnographic interview techniques are used to get qualitative
information on satisfaction. User studies are very useful in system design,
but they are time consuming and expensive to do. They are also difficult to
do well, and expertise is required to design the studies and to interpret the
results. We will not discuss the details of human usability testing here.
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8.6.3 Refining a deployed system

If an IR system has been built and is being used by a large number of users,
the system’s builders can evaluate possible changes by deploying variant
versions of the system and recording measures that are indicative of user
satisfaction with one variant vs. others as they are being used. This method
is frequently used by web search engines.

The most common version of this is A/B testing, a term borrowed from theA/B TEST

advertising industry. For such a test, precisely one thing is changed between
the current system and a proposed system, and a small proportion of traf-
fic (say, 1–10% of users) is randomly directed to the variant system, while
most users use the current system. For example, if we wish to investigate a
change to the ranking algorithm, we redirect a random sample of users to
a variant system and evaluate measures such as the frequency with which
people click on the top result, or any result on the first page. (This particular
analysis method is referred to as clickthrough log analysis or clickstream min-CLICKTHROUGH LOG

ANALYSIS
CLICKSTREAM MINING

ing. It is further discussed as a method of implicit feedback in Section 9.1.7
(page 187).)

The basis of A/B testing is running a bunch of single variable tests (either
in sequence or in parallel): for each test only one parameter is varied from the
control (the current live system). It is therefore easy to see whether varying
each parameter has a positive or negative effect. Such testing of a live system
can easily and cheaply gauge the effect of a change on users, and, with a
large enough user base, it is practical to measure even very small positive
and negative effects. In principle, more analytic power can be achieved by
varying multiple things at once in an uncorrelated (random) way, and doing
standard multivariate statistical analysis, such as multiple linear regression.
In practice, though, A/B testing is widely used, because A/B tests are easy
to deploy, easy to understand, and easy to explain to management.

8.7 Results snippets

Having chosen or ranked the documents matching a query, we wish to pre-
sent a results list that will be informative to the user. In many cases the
user will not want to examine all the returned documents and so we want
to make the results list informative enough that the user can do a final rank-
ing of the documents for themselves based on relevance to their information
need.3 The standard way of doing this is to provide a snippet, a short sum-SNIPPET

mary of the document, which is designed so as to allow the user to decide
its relevance. Typically, the snippet consists of the document title and a short

3. There are exceptions, in domains where recall is emphasized. For instance, in many legal
disclosure cases, a legal associate will review every document that matches a keyword search.
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summary, which is automatically extracted. The question is how to design
the summary so as to maximize its usefulness to the user.

The two basic kinds of summaries are static, which are always the sameSTATIC SUMMARY

regardless of the query, and dynamic (or query-dependent), which are cus-DYNAMIC SUMMARY

tomized according to the user’s information need as deduced from a query.
Dynamic summaries attempt to explain why a particular document was re-
trieved for the query at hand.

A static summary is generally comprised of either or both a subset of the
document and metadata associated with the document. The simplest form
of summary takes the first two sentences or 50 words of a document, or ex-
tracts particular zones of a document, such as the title and author. Instead of
zones of a document, the summary can instead use metadata associated with
the document. This may be an alternative way to provide an author or date,
or may include elements which are designed to give a summary, such as the
description metadata which can appear in the meta element of a web
HTML page. This summary is typically extracted and cached at indexing
time, in such a way that it can be retrieved and presented quickly when dis-
playing search results, whereas having to access the actual document content
might be a relatively expensive operation.

There has been extensive work within natural language processing (NLP)
on better ways to do text summarization. Most such work still aims only toTEXT SUMMARIZATION

choose sentences from the original document to present and concentrates on
how to select good sentences. The models typically combine positional fac-
tors, favoring the first and last paragraphs of documents and the first and last
sentences of paragraphs, with content factors, emphasizing sentences with
key terms, which have low document frequency in the collection as a whole,
but high frequency and good distribution across the particular document
being returned. In sophisticated NLP approaches, the system synthesizes
sentences for a summary, either by doing full text generation or by editing
and perhaps combining sentences used in the document. For example, it
might delete a relative clause or replace a pronoun with the noun phrase
that it refers to. This last class of methods remains in the realm of research
and is seldom used for search results: it is easier, safer, and often even better
to just use sentences from the original document.

Dynamic summaries display one or more “windows” on the document,
aiming to present the pieces that have the most utility to the user in evalu-
ating the document with respect to their information need. Usually these
windows contain one or several of the query terms, and so are often re-
ferred to as keyword-in-context (KWIC) snippets, though sometimes they mayKEYWORD-IN-CONTEXT

still be pieces of the text such as the title that are selected for their query-
independent information value just as in the case of static summarization.
Dynamic summaries are generated in conjunction with scoring. If the query
is found as a phrase, occurrences of the phrase in the document will be
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. . . In recent years, Papua New Guinea has faced severe economic
difficulties and economic growth has slowed, partly as a result of weak
governance and civil war, and partly as a result of external factors such as
the Bougainville civil war which led to the closure in 1989 of the Panguna
mine (at that time the most important foreign exchange earner and
contributor to Government finances), the Asian financial crisis, a decline in
the prices of gold and copper, and a fall in the production of oil. PNG’s
economic development record over the past few years is evidence that
governance issues underly many of the country’s problems. Good
governance, which may be defined as the transparent and accountable
management of human, natural, economic and financial resources for the
purposes of equitable and sustainable development, flows from proper
public sector management, efficient fiscal and accounting mechanisms, and
a willingness to make service delivery a priority in practice. . . .

◮ Figure 8.5 An example of selecting text for a dynamic snippet. This snippet was
generated for a document in response to the query new guinea economic development.
The figure shows in bold italic where the selected snippet text occurred in the original
document.

shown as the summary. If not, windows within the document that contain
multiple query terms will be selected. Commonly these windows may just
stretch some number of words to the left and right of the query terms. This is
a place where NLP techniques can usefully be employed: users prefer snip-
pets that read well because they contain complete phrases.

Dynamic summaries are generally regarded as greatly improving the us-
ability of IR systems, but they present a complication for IR system design. A
dynamic summary cannot be precomputed, but, on the other hand, if a sys-
tem has only a positional index, then it cannot easily reconstruct the context
surrounding search engine hits in order to generate such a dynamic sum-
mary. This is one reason for using static summaries. The standard solution
to this in a world of large and cheap disk drives is to locally cache all the
documents at index time (notwithstanding that this approach raises various
legal, information security and control issues that are far from resolved) as
shown in Figure 7.5 (page 147). Then, a system can simply scan a document
which is about to appear in a displayed results list to find snippets containing
the query words. Beyond simply access to the text, producing a good KWIC
snippet requires some care. Given a variety of keyword occurrences in a
document, the goal is to choose fragments which are: (i) maximally informa-
tive about the discussion of those terms in the document, (ii) self-contained
enough to be easy to read, and (iii) short enough to fit within the normally
strict constraints on the space available for summaries.
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Generating snippets must be fast since the system is typically generating
many snippets for each query that it handles. Rather than caching an entire
document, it is common to cache only a generous but fixed size prefix of
the document, such as perhaps 10,000 characters. For most common, short
documents, the entire document is thus cached, but huge amounts of local
storage will not be wasted on potentially vast documents. Summaries of
documents whose length exceeds the prefix size will be based on material
in the prefix only, which is in general a useful zone in which to look for a
document summary anyway.

If a document has been updated since it was last processed by a crawler
and indexer, these changes will be neither in the cache nor in the index. In
these circumstances, neither the index nor the summary will accurately re-
flect the current contents of the document, but it is the differences between
the summary and the actual document content that will be more glaringly
obvious to the end user.

8.8 References and further reading

Definition and implementation of the notion of relevance to a query got off
to a rocky start in 1953. Swanson (1988) reports that in an evaluation in that
year between two teams, they agreed that 1390 documents were variously
relevant to a set of 98 questions, but disagreed on a further 1577 documents,
and the disagreements were never resolved.

Rigorous formal testing of IR systems was first completed in the Cranfield
experiments, beginning in the late 1950s. A retrospective discussion of the
Cranfield test collection and experimentation with it can be found in (Clever-
don 1991). The other seminal series of early IR experiments were those on the
SMART system by Gerard Salton and colleagues (Salton 1971b; 1991). The
TREC evaluations are described in detail by Voorhees and Harman (2005).
Online information is available at http://trec.nist.gov/. Initially, few researchers
computed the statistical significance of their experimental results, but the IR
community increasingly demands this (Hull 1993). User studies of IR system
effectiveness began more recently (Saracevic and Kantor 1988; 1996).

The notions of recall and precision were first used by Kent et al. (1955),
although the term precision did not appear until later. The F measure (or,F MEASURE

rather its complement E = 1− F) was introduced by van Rijsbergen (1979).
He provides an extensive theoretical discussion, which shows how adopting
a principle of decreasing marginal relevance (at some point a user will be
unwilling to sacrifice a unit of precision for an added unit of recall) leads to
the harmonic mean being the appropriate method for combining precision
and recall (and hence to its adoption rather than the minimum or geometric
mean).
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Buckley and Voorhees (2000) compare several evaluation measures, in-
cluding precision at k, MAP, and R-precision, and evaluate the error rate of
each measure. R-precision was adopted as the official evaluation metric inR-PRECISION

the TREC HARD track (Allan 2005). Aslam and Yilmaz (2005) examine its
surprisingly close correlation to MAP, which had been noted in earlier stud-
ies (Tague-Sutcliffe and Blustein 1995, Buckley and Voorhees 2000). A stan-
dard program for evaluating IR systems which computes many measures of
ranked retrieval effectiveness is Chris Buckley’s trec_eval program used
in the TREC evaluations. It can be downloaded from: http://trec.nist.gov/trec_eval/.

Kekäläinen and Järvelin (2002) argue for the superiority of graded rele-
vance judgments when dealing with very large document collections, and
Järvelin and Kekäläinen (2002) introduce cumulated gain-based methods for
IR system evaluation in this context. Sakai (2007) does a study of the stabil-
ity and sensitivity of evaluation measures based on graded relevance judg-
ments from NTCIR tasks, and concludes that NDCG is best for evaluating
document ranking.

Schamber et al. (1990) examine the concept of relevance, stressing its multi-
dimensional and context-specific nature, but also arguing that it can be mea-
sured effectively. (Voorhees 2000) is the standard article for examining vari-
ation in relevance judgments and their effects on retrieval system scores and
ranking for the TREC Ad Hoc task. Voorhees concludes that although the
numbers change, the rankings are quite stable. Hersh et al. (1994) present
similar analysis for a medical IR collection. In contrast, Kekäläinen (2005)
analyze some of the later TRECs, exploring a 4-way relevance judgment and
the notion of cumulative gain, arguing that the relevance measure used does
substantially affect system rankings. See also Harter (1998). Zobel (1998)
studies whether the pooling method used by TREC to collect a subset of doc-
uments that will be evaluated for relevance is reliable and fair, and concludes
that it is.

The kappa statistic and its use for language-related purposes is discussedKAPPA STATISTIC

by Carletta (1996). Many standard sources (e.g., Siegel and Castellan 1988)
present pooled calculation of the expected agreement, but Di Eugenio and
Glass (2004) argue for preferring the unpooled agreement (though perhaps
presenting multiple measures). For further discussion of alternative mea-
sures of agreement, which may in fact be better, see Lombard et al. (2002)
and Krippendorff (2003).

Text summarization has been actively explored for many years. Modern
work on sentence selection was initiated by Kupiec et al. (1995). More recent
work includes (Barzilay and Elhadad 1997) and (Jing 2000), together with
a broad selection of work appearing at the yearly DUC conferences and at
other NLP venues. Tombros and Sanderson (1998) demonstrate the advan-
tages of dynamic summaries in the IR context. Turpin et al. (2007) address
how to generate snippets efficiently.
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Clickthrough log analysis is studied in (Joachims 2002b, Joachims et al.
2005).

In a series of papers, Hersh, Turpin and colleagues show how improve-
ments in formal retrieval effectiveness, as evaluated in batch experiments, do
not always translate into an improved system for users (Hersh et al. 2000a;b;
2001, Turpin and Hersh 2001; 2002).

User interfaces for IR and human factors such as models of human infor-
mation seeking and usability testing are outside the scope of what we cover
in this book. More information on these topics can be found in other text-
books, including (Baeza-Yates and Ribeiro-Neto 1999, ch. 10) and (Korfhage
1997), and collections focused on cognitive aspects (Spink and Cole 2005).
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9 Relevance feedback and query

expansion

In most collections, the same concept may be referred to using different
words. This issue, known as synonymy, has an impact on the recall of mostSYNONYMY

information retrieval systems. For example, you would want a search for
aircraft to match plane (but only for references to an airplane, not a woodwork-
ing plane), and for a search on thermodynamics to match references to heat in
appropriate discussions. Users often attempt to address this problem them-
selves by manually refining a query, as was discussed in Section 1.4; in this
chapter we discuss ways in which a system can help with query refinement,
either fully automatically or with the user in the loop.

The methods for tackling this problem split into two major classes: global
methods and local methods. Global methods are techniques for expanding
or reformulating query terms independent of the query and results returned
from it, so that changes in the query wording will cause the new query to
match other semantically similar terms. Global methods include:

• Query expansion/reformulation with a thesaurus or WordNet (Section 9.2.2)

• Query expansion via automatic thesaurus generation (Section 9.2.3)

• Techniques like spelling correction (discussed in Chapter 3)

Local methods adjust a query relative to the documents that initially appear
to match the query. The basic methods here are:

• Relevance feedback (Section 9.1)

• Pseudo relevance feedback, also known as Blind relevance feedback (Sec-
tion 9.1.6)

• (Global) indirect relevance feedback (Section 9.1.7)

In this chapter, we will mention all of these approaches, but we will concen-
trate on relevance feedback, which is one of the most used and most success-
ful approaches.
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9.1 Relevance feedback and pseudo relevance feedback

The idea of relevance feedback (RF) is to involve the user in the retrieval processRELEVANCE FEEDBACK

so as to improve the final result set. In particular, the user gives feedback on
the relevance of documents in an initial set of results. The basic procedure is:

• The user issues a (short, simple) query.

• The system returns an initial set of retrieval results.

• The user marks some returned documents as relevant or nonrelevant.

• The system computes a better representation of the information need based
on the user feedback.

• The system displays a revised set of retrieval results.

Relevance feedback can go through one or more iterations of this sort. The
process exploits the idea that it may be difficult to formulate a good query
when you don’t know the collection well, but it is easy to judge particular
documents, and so it makes sense to engage in iterative query refinement
of this sort. In such a scenario, relevance feedback can also be effective in
tracking a user’s evolving information need: seeing some documents may
lead users to refine their understanding of the information they are seeking.

Image search provides a good example of relevance feedback. Not only is
it easy to see the results at work, but this is a domain where a user can easily
have difficulty formulating what they want in words, but can easily indicate
relevant or nonrelevant images. After the user enters an initial query for bike
on the demonstration system at:

http://nayana.ece.ucsb.edu/imsearch/imsearch.html

the initial results (in this case, images) are returned. In Figure 9.1 (a), the
user has selected some of them as relevant. These will be used to refine the
query, while other displayed results have no effect on the reformulation. Fig-
ure 9.1 (b) then shows the new top-ranked results calculated after this round
of relevance feedback.

Figure 9.2 shows a textual IR example where the user wishes to find out
about new applications of space satellites.

9.1.1 The Rocchio algorithm for relevance feedback

The Rocchio Algorithm is the classic algorithm for implementing relevance
feedback. It models a way of incorporating relevance feedback information
into the vector space model of Section 6.3.
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(a)

(b)

◮ Figure 9.1 Relevance feedback searching over images. (a) The user views the
initial query results for a query of bike, selects the first, third and fourth result in
the top row and the fourth result in the bottom row as relevant, and submits this
feedback. (b) The users sees the revised result set. Precision is greatly improved.
From http://nayana.ece.ucsb.edu/imsearch/imsearch.html (Newsam et al. 2001).
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(a) Query: New space satellite applications

(b) + 1. 0.539, 08/13/91, NASA Hasn’t Scrapped Imaging Spectrometer
+ 2. 0.533, 07/09/91, NASA Scratches Environment Gear From Satel-

lite Plan
3. 0.528, 04/04/90, Science Panel Backs NASA Satellite Plan, But
Urges Launches of Smaller Probes
4. 0.526, 09/09/91, A NASA Satellite Project Accomplishes Incredi-
ble Feat: Staying Within Budget
5. 0.525, 07/24/90, Scientist Who Exposed Global Warming Pro-
poses Satellites for Climate Research
6. 0.524, 08/22/90, Report Provides Support for the Critics Of Using
Big Satellites to Study Climate
7. 0.516, 04/13/87, Arianespace Receives Satellite Launch Pact
From Telesat Canada

+ 8. 0.509, 12/02/87, Telecommunications Tale of Two Companies

(c) 2.074 new 15.106 space
30.816 satellite 5.660 application
5.991 nasa 5.196 eos
4.196 launch 3.972 aster
3.516 instrument 3.446 arianespace
3.004 bundespost 2.806 ss
2.790 rocket 2.053 scientist
2.003 broadcast 1.172 earth
0.836 oil 0.646 measure

(d) * 1. 0.513, 07/09/91, NASA Scratches Environment Gear From Satel-
lite Plan

* 2. 0.500, 08/13/91, NASA Hasn’t Scrapped Imaging Spectrometer
3. 0.493, 08/07/89, When the Pentagon Launches a Secret Satellite,
Space Sleuths Do Some Spy Work of Their Own
4. 0.493, 07/31/89, NASA Uses ‘Warm’ Superconductors For Fast
Circuit

* 5. 0.492, 12/02/87, Telecommunications Tale of Two Companies
6. 0.491, 07/09/91, Soviets May Adapt Parts of SS-20 Missile For
Commercial Use
7. 0.490, 07/12/88, Gaping Gap: Pentagon Lags in Race To Match
the Soviets In Rocket Launchers
8. 0.490, 06/14/90, Rescue of Satellite By Space Agency To Cost $90
Million

◮ Figure 9.2 Example of relevance feedback on a text collection. (a) The initial query
(a). (b) The user marks some relevant documents (shown with a plus sign). (c) The
query is then expanded by 18 terms with weights as shown. (d) The revised top
results are then shown. A * marks the documents which were judged relevant in the
relevance feedback phase.
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◮ Figure 9.3 The Rocchio optimal query for separating relevant and nonrelevant
documents.

The underlying theory. We want to find a query vector, denoted as ~q, that
maximizes similarity with relevant documents while minimizing similarity
with nonrelevant documents. If Cr is the set of relevant documents and Cnr

is the set of nonrelevant documents, then we wish to find:1

~qopt = arg max
~q

[sim(~q, Cr)− sim(~q, Cnr)],(9.1)

where sim is defined as in Equation 6.10. Under cosine similarity, the optimal
query vector~qopt for separating the relevant and nonrelevant documents is:

~qopt =
1
|Cr | ∑

~d j∈Cr

~dj −
1
|Cnr| ∑

~d j∈Cnr

~dj(9.2)

That is, the optimal query is the vector difference between the centroids of the
relevant and nonrelevant documents; see Figure 9.3. However, this observa-
tion is not terribly useful, precisely because the full set of relevant documents
is not known: it is what we want to find.

The Rocchio (1971) algorithm. This was the relevance feedback mecha-ROCCHIO ALGORITHM

1. In the equation, arg maxx f (x) returns a value of x which maximizes the value of the function
f (x). Similarly, arg minx f (x) returns a value of x which minimizes the value of the function
f (x).
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◮ Figure 9.4 An application of Rocchio’s algorithm. Some documents have been
labeled as relevant and nonrelevant and the initial query vector is moved in response
to this feedback.

nism introduced in and popularized by Salton’s SMART system around 1970.
In a real IR query context, we have a user query and partial knowledge of
known relevant and nonrelevant documents. The algorithm proposes using
the modified query ~qm:

~qm = α~q0 + β
1
|Dr| ∑

~d j∈Dr

~dj − γ
1
|Dnr| ∑

~d j∈Dnr

~dj(9.3)

where q0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and α, β, and γ are weights
attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher β and γ. Starting from q0, the new query moves you
some distance toward the centroid of the relevant documents and some dis-
tance away from the centroid of the nonrelevant documents. This new query
can be used for retrieval in the standard vector space model (see Section 6.3).
We can easily leave the positive quadrant of the vector space by subtracting
off a nonrelevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0. Figure 9.4 shows the
effect of applying relevance feedback.

Relevance feedback can improve both recall and precision. But, in prac-
tice, it has been shown to be most useful for increasing recall in situations
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where recall is important. This is partly because the technique expands the
query, but it is also partly an effect of the use case: when they want high
recall, users can be expected to take time to review results and to iterate on
the search. Positive feedback also turns out to be much more valuable than
negative feedback, and so most IR systems set γ < β. Reasonable values
might be α = 1, β = 0.75, and γ = 0.15. In fact, many systems, such as
the image search system in Figure 9.1, allow only positive feedback, which
is equivalent to setting γ = 0. Another alternative is to use only the marked
nonrelevant document which received the highest ranking from the IR sys-
tem as negative feedback (here, |Dnr| = 1 in Equation (9.3)). While many of
the experimental results comparing various relevance feedback variants are
rather inconclusive, some studies have suggested that this variant, called IdeIDE DEC-HI

dec-hi is the most effective or at least the most consistent performer.

✄ 9.1.2 Probabilistic relevance feedback

Rather than reweighting the query in a vector space, if a user has told us
some relevant and nonrelevant documents, then we can proceed to build a
classifier. One way of doing this is with a Naive Bayes probabilistic model.
If R is a Boolean indicator variable expressing the relevance of a document,
then we can estimate P(xt = 1|R), the probability of a term t appearing in a
document, depending on whether it is relevant or not, as:

P̂(xt = 1|R = 1) = |VRt|/|VR|(9.4)

P̂(xt = 1|R = 0) = (d ft − |VRt|)/(N − |VR|)
where N is the total number of documents, d ft is the number that contain
t, VR is the set of known relevant documents, and VRt is the subset of this
set containing t. Even though the set of known relevant documents is a per-
haps small subset of the true set of relevant documents, if we assume that
the set of relevant documents is a small subset of the set of all documents
then the estimates given above will be reasonable. This gives a basis for
another way of changing the query term weights. We will discuss such prob-
abilistic approaches more in Chapters 11 and 13, and in particular outline
the application to relevance feedback in Section 11.3.4 (page 228). For the
moment, observe that using just Equation (9.4) as a basis for term-weighting
is likely insufficient. The equations use only collection statistics and infor-
mation about the term distribution within the documents judged relevant.
They preserve no memory of the original query.

9.1.3 When does relevance feedback work?

The success of relevance feedback depends on certain assumptions. Firstly,
the user has to have sufficient knowledge to be able to make an initial query
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which is at least somewhere close to the documents they desire. This is
needed anyhow for successful information retrieval in the basic case, but
it is important to see the kinds of problems that relevance feedback cannot
solve alone. Cases where relevance feedback alone is not sufficient include:

• Misspellings. If the user spells a term in a different way to the way it
is spelled in any document in the collection, then relevance feedback is
unlikely to be effective. This can be addressed by the spelling correction
techniques of Chapter 3.

• Cross-language information retrieval. Documents in another language
are not nearby in a vector space based on term distribution. Rather, docu-
ments in the same language cluster more closely together.

• Mismatch of searcher’s vocabulary versus collection vocabulary. If the
user searches for laptop but all the documents use the term notebook com-
puter, then the query will fail, and relevance feedback is again most likely
ineffective.

Secondly, the relevance feedback approach requires relevant documents to
be similar to each other. That is, they should cluster. Ideally, the term dis-
tribution in all relevant documents will be similar to that in the documents
marked by the users, while the term distribution in all nonrelevant docu-
ments will be different from those in relevant documents. Things will work
well if all relevant documents are tightly clustered around a single proto-
type, or, at least, if there are different prototypes, if the relevant documents
have significant vocabulary overlap, while similarities between relevant and
nonrelevant documents are small. Implicitly, the Rocchio relevance feedback
model treats relevant documents as a single cluster, which it models via the
centroid of the cluster. This approach does not work as well if the relevant
documents are a multimodal class, that is, they consist of several clusters of
documents within the vector space. This can happen with:

• Subsets of the documents using different vocabulary, such as Burma vs.
Myanmar

• A query for which the answer set is inherently disjunctive, such as Pop
stars who once worked at Burger King.

• Instances of a general concept, which often appear as a disjunction of
more specific concepts, for example, felines.

Good editorial content in the collection can often provide a solution to this
problem. For example, an article on the attitudes of different groups to the
situation in Burma could introduce the terminology used by different parties,
thus linking the document clusters.
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Relevance feedback is not necessarily popular with users. Users are often
reluctant to provide explicit feedback, or in general do not wish to prolong
the search interaction. Furthermore, it is often harder to understand why a
particular document was retrieved after relevance feedback is applied.

Relevance feedback can also have practical problems. The long queries
that are generated by straightforward application of relevance feedback tech-
niques are inefficient for a typical IR system. This results in a high computing
cost for the retrieval and potentially long response times for the user. A par-
tial solution to this is to only reweight certain prominent terms in the relevant
documents, such as perhaps the top 20 terms by term frequency. Some ex-
perimental results have also suggested that using a limited number of terms
like this may give better results (Harman 1992) though other work has sug-
gested that using more terms is better in terms of retrieved document quality
(Buckley et al. 1994b).

9.1.4 Relevance feedback on the web

Some web search engines offer a similar/related pages feature: the user in-
dicates a document in the results set as exemplary from the standpoint of
meeting his information need and requests more documents like it. This can
be viewed as a particular simple form of relevance feedback. However, in
general relevance feedback has been little used in web search. One exception
was the Excite web search engine, which initially provided full relevance
feedback. However, the feature was in time dropped, due to lack of use. On
the web, few people use advanced search interfaces and most would like to
complete their search in a single interaction. But the lack of uptake also prob-
ably reflects two other factors: relevance feedback is hard to explain to the
average user, and relevance feedback is mainly a recall enhancing strategy,
and web search users are only rarely concerned with getting sufficient recall.

Spink et al. (2000) present results from the use of relevance feedback in
the Excite search engine. Only about 4% of user query sessions used the
relevance feedback option, and these were usually exploiting the “More like
this” link next to each result. About 70% of users only looked at the first
page of results and did not pursue things any further. For people who used
relevance feedback, results were improved about two thirds of the time.

An important more recent thread of work is the use of clickstream data
(what links a user clicks on) to provide indirect relevance feedback. Use
of this data is studied in detail in (Joachims 2002b, Joachims et al. 2005).
The very successful use of web link structure (see Chapter 21) can also be
viewed as implicit feedback, but provided by page authors rather than read-
ers (though in practice most authors are also readers).
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? Exercise 9.1

In Rocchio’s algorithm, what weight setting for α/β/γ does a “Find pages like this
one” search correspond to?

Exercise 9.2 [⋆]

Give three reasons why relevance feedback has been little used in web search.

9.1.5 Evaluation of relevance feedback strategies

Interactive relevance feedback can give very substantial gains in retrieval
performance. Empirically, one round of relevance feedback is often very
useful. Two rounds is sometimes marginally more useful. Successful use of
relevance feedback requires enough judged documents, otherwise the pro-
cess is unstable in that it may drift away from the user’s information need.
Accordingly, having at least five judged documents is recommended.

There is some subtlety to evaluating the effectiveness of relevance feed-
back in a sound and enlightening way. The obvious first strategy is to start
with an initial query q0 and to compute a precision-recall graph. Following
one round of feedback from the user, we compute the modified query qm

and again compute a precision-recall graph. Here, in both rounds we assess
performance over all documents in the collection, which makes comparisons
straightforward. If we do this, we find spectacular gains from relevance feed-
back: gains on the order of 50% in mean average precision. But unfortunately
it is cheating. The gains are partly due to the fact that known relevant doc-
uments (judged by the user) are now ranked higher. Fairness demands that
we should only evaluate with respect to documents not seen by the user.

A second idea is to use documents in the residual collection (the set of doc-
uments minus those assessed relevant) for the second round of evaluation.
This seems like a more realistic evaluation. Unfortunately, the measured per-
formance can then often be lower than for the original query. This is partic-
ularly the case if there are few relevant documents, and so a fair proportion
of them have been judged by the user in the first round. The relative per-
formance of variant relevance feedback methods can be validly compared,
but it is difficult to validly compare performance with and without relevance
feedback because the collection size and the number of relevant documents
changes from before the feedback to after it.

Thus neither of these methods is fully satisfactory. A third method is to
have two collections, one which is used for the initial query and relevance
judgments, and the second that is then used for comparative evaluation. The
performance of both q0 and qm can be validly compared on the second col-
lection.

Perhaps the best evaluation of the utility of relevance feedback is to do user
studies of its effectiveness, in particular by doing a time-based comparison:
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Precision at k = 50
Term weighting no RF pseudo RF
lnc.ltc 64.2% 72.7%
Lnu.ltu 74.2% 87.0%

◮ Figure 9.5 Results showing pseudo relevance feedback greatly improving perfor-
mance. These results are taken from the Cornell SMART system at TREC 4 (Buckley
et al. 1995), and also contrast the use of two different length normalization schemes
(L vs. l); cf. Figure 6.15 (page 128). Pseudo relevance feedback consisted of adding 20
terms to each query.

how fast does a user find relevant documents with relevance feedback vs.
another strategy (such as query reformulation), or alternatively, how many
relevant documents does a user find in a certain amount of time. Such no-
tions of user utility are fairest and closest to real system usage.

9.1.6 Pseudo relevance feedback

Pseudo relevance feedback, also known as blind relevance feedback, provides aPSEUDO RELEVANCE
FEEDBACK

BLIND RELEVANCE
FEEDBACK

method for automatic local analysis. It automates the manual part of rele-
vance feedback, so that the user gets improved retrieval performance with-
out an extended interaction. The method is to do normal retrieval to find an
initial set of most relevant documents, to then assume that the top k ranked
documents are relevant, and finally to do relevance feedback as before under
this assumption.

This automatic technique mostly works. Evidence suggests that it tends
to work better than global analysis (Section 9.2). It has been found to im-
prove performance in the TREC ad hoc task. See for example the results in
Figure 9.5. But it is not without the dangers of an automatic process. For
example, if the query is about copper mines and the top several documents
are all about mines in Chile, then there may be query drift in the direction of
documents on Chile.

9.1.7 Indirect relevance feedback

We can also use indirect sources of evidence rather than explicit feedback on
relevance as the basis for relevance feedback. This is often called implicit (rel-IMPLICIT RELEVANCE

FEEDBACK evance) feedback. Implicit feedback is less reliable than explicit feedback, but is
more useful than pseudo relevance feedback, which contains no evidence of
user judgments. Moreover, while users are often reluctant to provide explicit
feedback, it is easy to collect implicit feedback in large quantities for a high
volume system, such as a web search engine.
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On the web, DirectHit introduced the idea of ranking more highly docu-
ments that users chose to look at more often. In other words, clicks on links
were assumed to indicate that the page was likely relevant to the query. This
approach makes various assumptions, such as that the document summaries
displayed in results lists (on whose basis users choose which documents to
click on) are indicative of the relevance of these documents. In the original
DirectHit search engine, the data about the click rates on pages was gathered
globally, rather than being user or query specific. This is one form of the gen-
eral area of clickstream mining. Today, a closely related approach is used inCLICKSTREAM MINING

ranking the advertisements that match a web search query (Chapter 19).

9.1.8 Summary

Relevance feedback has been shown to be very effective at improving rele-
vance of results. Its successful use requires queries for which the set of rele-
vant documents is medium to large. Full relevance feedback is often onerous
for the user, and its implementation is not very efficient in most IR systems.
In many cases, other types of interactive retrieval may improve relevance by
about as much with less work.

Beyond the core ad hoc retrieval scenario, other uses of relevance feedback
include:

• Following a changing information need (e.g., names of car models of in-
terest change over time)

• Maintaining an information filter (e.g., for a news feed). Such filters are
discussed further in Chapter 13.

• Active learning (deciding which examples it is most useful to know the
class of to reduce annotation costs).

? Exercise 9.3

Under what conditions would the modified query qm in Equation 9.3 be the same as
the original query q0? In all other cases, is qm closer than q0 to the centroid of the
relevant documents?

Exercise 9.4

Why is positive feedback likely to be more useful than negative feedback to an IR
system? Why might only using one nonrelevant document be more effective than
using several?

Exercise 9.5

Suppose that a user’s initial query is cheap CDs cheap DVDs extremely cheap CDs. The
user examines two documents, d1 and d2. She judges d1, with the content CDs cheap
software cheap CDs relevant and d2 with content cheap thrills DVDs nonrelevant. As-
sume that we are using direct term frequency (with no scaling and no document
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frequency). There is no need to length-normalize vectors. Using Rocchio relevance
feedback as in Equation (9.3) what would the revised query vector be after relevance
feedback? Assume α = 1, β = 0.75, γ = 0.25.

Exercise 9.6 [⋆]

Omar has implemented a relevance feedback web search system, where he is going
to do relevance feedback based only on words in the title text returned for a page (for
efficiency). The user is going to rank 3 results. The first user, Jinxing, queries for:

banana slug

and the top three titles returned are:

banana slug Ariolimax columbianus
Santa Cruz mountains banana slug
Santa Cruz Campus Mascot

Jinxing judges the first two documents relevant, and the third nonrelevant. Assume
that Omar’s search engine uses term frequency but no length normalization nor IDF.
Assume that he is using the Rocchio relevance feedback mechanism, with α = β =
γ = 1. Show the final revised query that would be run. (Please list the vector elements
in alphabetical order.)

9.2 Global methods for query reformulation

In this section we more briefly discuss three global methods for expanding a
query: by simply aiding the user in doing so, by using a manual thesaurus,
and through building a thesaurus automatically.

9.2.1 Vocabulary tools for query reformulation

Various user supports in the search process can help the user see how their
searches are or are not working. This includes information about words that
were omitted from the query because they were on stop lists, what words
were stemmed to, the number of hits on each term or phrase, and whether
words were dynamically turned into phrases. The IR system might also sug-
gest search terms by means of a thesaurus or a controlled vocabulary. A user
can also be allowed to browse lists of the terms that are in the inverted index,
and thus find good terms that appear in the collection.

9.2.2 Query expansion

In relevance feedback, users give additional input on documents (by mark-
ing documents in the results set as relevant or not), and this input is used
to reweight the terms in the query for documents. In query expansion on theQUERY EXPANSION

other hand, users give additional input on query words or phrases, possibly
suggesting additional query terms. Some search engines (especially on the
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◮ Figure 9.6 An example of query expansion in the interface of the Yahoo! web
search engine in 2006. The expanded query suggestions appear just below the “Search
Results” bar.

web) suggest related queries in response to a query; the users then opt to use
one of these alternative query suggestions. Figure 9.6 shows an example of
query suggestion options being presented in the Yahoo! web search engine.
The central question in this form of query expansion is how to generate al-
ternative or expanded queries for the user. The most common form of query
expansion is global analysis, using some form of thesaurus. For each term
t in a query, the query can be automatically expanded with synonyms and
related words of t from the thesaurus. Use of a thesaurus can be combined
with ideas of term weighting: for instance, one might weight added terms
less than original query terms.

Methods for building a thesaurus for query expansion include:

• Use of a controlled vocabulary that is maintained by human editors. Here,
there is a canonical term for each concept. The subject headings of tra-
ditional library subject indexes, such as the Library of Congress Subject
Headings, or the Dewey Decimal system are examples of a controlled
vocabulary. Use of a controlled vocabulary is quite common for well-
resourced domains. A well-known example is the Unified Medical Lan-
guage System (UMLS) used with MedLine for querying the biomedical
research literature. For example, in Figure 9.7, neoplasms was added to a
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• User query: cancer

• PubMed query: (“neoplasms”[TIAB] NOT Medline[SB]) OR “neoplasms”[MeSH
Terms] OR cancer[Text Word]

• User query: skin itch

• PubMed query: (“skin”[MeSH Terms] OR (“integumentary system”[TIAB] NOT
Medline[SB]) OR “integumentary system”[MeSH Terms] OR skin[Text Word]) AND
((“pruritus”[TIAB] NOT Medline[SB]) OR “pruritus”[MeSH Terms] OR itch[Text
Word])

◮ Figure 9.7 Examples of query expansion via the PubMed thesaurus. When a user
issues a query on the PubMed interface to Medline at http://www.ncbi.nlm.nih.gov/entrez/,
their query is mapped on to the Medline vocabulary as shown.

search for cancer. This Medline query expansion also contrasts with the
Yahoo! example. The Yahoo! interface is a case of interactive query expan-
sion, whereas PubMed does automatic query expansion. Unless the user
chooses to examine the submitted query, they may not even realize that
query expansion has occurred.

• A manual thesaurus. Here, human editors have built up sets of synony-
mous names for concepts, without designating a canonical term. The
UMLS metathesaurus is one example of a thesaurus. Statistics Canada
maintains a thesaurus of preferred terms, synonyms, broader terms, and
narrower terms for matters on which the government collects statistics,
such as goods and services. This thesaurus is also bilingual English and
French.

• An automatically derived thesaurus. Here, word co-occurrence statistics
over a collection of documents in a domain are used to automatically in-
duce a thesaurus; see Section 9.2.3.

• Query reformulations based on query log mining. Here, we exploit the
manual query reformulations of other users to make suggestions to a new
user. This requires a huge query volume, and is thus particularly appro-
priate to web search.

Thesaurus-based query expansion has the advantage of not requiring any
user input. Use of query expansion generally increases recall and is widely
used in many science and engineering fields. As well as such global analysis
techniques, it is also possible to do query expansion by local analysis, for
instance, by analyzing the documents in the result set. User input is now
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Word Nearest neighbors
absolutely absurd, whatsoever, totally, exactly, nothing
bottomed dip, copper, drops, topped, slide, trimmed
captivating shimmer, stunningly, superbly, plucky, witty
doghouse dog, porch, crawling, beside, downstairs
makeup repellent, lotion, glossy, sunscreen, skin, gel
mediating reconciliation, negotiate, case, conciliation
keeping hoping, bring, wiping, could, some, would
lithographs drawings, Picasso, Dali, sculptures, Gauguin
pathogens toxins, bacteria, organisms, bacterial, parasite
senses grasp, psyche, truly, clumsy, naive, innate

◮ Figure 9.8 An example of an automatically generated thesaurus. This example
is based on the work in Schütze (1998), which employs latent semantic indexing (see
Chapter 18).

usually required, but a distinction remains as to whether the user is giving
feedback on documents or on query terms.

9.2.3 Automatic thesaurus generation

As an alternative to the cost of a manual thesaurus, we could attempt to
generate a thesaurus automatically by analyzing a collection of documents.
There are two main approaches. One is simply to exploit word cooccurrence.
We say that words co-occurring in a document or paragraph are likely to be
in some sense similar or related in meaning, and simply count text statistics
to find the most similar words. The other approach is to use a shallow gram-
matical analysis of the text and to exploit grammatical relations or grammat-
ical dependencies. For example, we say that entities that are grown, cooked,
eaten, and digested, are more likely to be food items. Simply using word
cooccurrence is more robust (it cannot be misled by parser errors), but using
grammatical relations is more accurate.

The simplest way to compute a co-occurrence thesaurus is based on term-
term similarities. We begin with a term-document matrix A, where each cell
At,d is a weighted count wt,d for term t and document d, with weighting so
A has length-normalized rows. If we then calculate C = AAT , then Cu,v is
a similarity score between terms u and v, with a larger number being better.
Figure 9.8 shows an example of a thesaurus derived in basically this manner,
but with an extra step of dimensionality reduction via Latent Semantic In-
dexing, which we discuss in Chapter 18. While some of the thesaurus terms
are good or at least suggestive, others are marginal or bad. The quality of the
associations is typically a problem. Term ambiguity easily introduces irrel-
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evant statistically correlated terms. For example, a query for Apple computer
may expand to Apple red fruit computer. In general these thesauri suffer from
both false positives and false negatives. Moreover, since the terms in the au-
tomatic thesaurus are highly correlated in documents anyway (and often the
collection used to derive the thesaurus is the same as the one being indexed),
this form of query expansion may not retrieve many additional documents.

Query expansion is often effective in increasing recall. However, there is
a high cost to manually producing a thesaurus and then updating it for sci-
entific and terminological developments within a field. In general a domain-
specific thesaurus is required: general thesauri and dictionaries give far too
little coverage of the rich domain-particular vocabularies of most scientific
fields. However, query expansion may also significantly decrease precision,
particularly when the query contains ambiguous terms. For example, if the
user searches for interest rate, expanding the query to interest rate fascinate eval-
uate is unlikely to be useful. Overall, query expansion is less successful than
relevance feedback, though it may be as good as pseudo relevance feedback.
It does, however, have the advantage of being much more understandable to
the system user.

? Exercise 9.7

If A is simply a Boolean cooccurrence matrix, then what do you get as the entries in
C?

9.3 References and further reading

Work in information retrieval quickly confronted the problem of variant ex-
pression which meant that the words in a query might not appear in a doc-
ument, despite it being relevant to the query. An early experiment about
1960 cited by Swanson (1988) found that only 11 out of 23 documents prop-
erly indexed under the subject toxicity had any use of a word containing the
stem toxi. There is also the issue of translation, of users knowing what terms
a document will use. Blair and Maron (1985) conclude that “it is impossibly
difficult for users to predict the exact words, word combinations, and phrases
that are used by all (or most) relevant documents and only (or primarily) by
those documents”.

The main initial papers on relevance feedback using vector space models
all appear in Salton (1971b), including the presentation of the Rocchio al-
gorithm (Rocchio 1971) and the Ide dec-hi variant along with evaluation of
several variants (Ide 1971). Another variant is to regard all documents in
the collection apart from those judged relevant as nonrelevant, rather than
only ones that are explicitly judged nonrelevant. However, Schütze et al.
(1995) and Singhal et al. (1997) show that better results are obtained for rout-
ing by using only documents close to the query of interest rather than all
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documents. Other later work includes Salton and Buckley (1990), Riezler
et al. (2007) (a statistical NLP approach to RF) and the recent survey paper
Ruthven and Lalmas (2003).

The effectiveness of interactive relevance feedback systems is discussed in
(Salton 1989, Harman 1992, Buckley et al. 1994b). Koenemann and Belkin
(1996) do user studies of the effectiveness of relevance feedback.

Traditionally Roget’s thesaurus has been the best known English language
thesaurus (Roget 1946). In recent computational work, people almost always
use WordNet (Fellbaum 1998), not only because it is free, but also because of
its rich link structure. It is available at: http://wordnet.princeton.edu.

Qiu and Frei (1993) and Schütze (1998) discuss automatic thesaurus gener-
ation. Xu and Croft (1996) explore using both local and global query expan-
sion.
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10 XML retrieval

Information retrieval systems are often contrasted with relational databases.
Traditionally, IR systems have retrieved information from unstructured text
– by which we mean “raw” text without markup. Databases are designed
for querying relational data: sets of records that have values for predefined
attributes such as employee number, title and salary. There are fundamental
differences between information retrieval and database systems in terms of
retrieval model, data structures and query language as shown in Table 10.1.1

Some highly structured text search problems are most efficiently handled
by a relational database, for example, if the employee table contains an at-
tribute for short textual job descriptions and you want to find all employees
who are involved with invoicing. In this case, the SQL query:

select lastname from employees where job_desc like ’invoic %’;

may be sufficient to satisfy your information need with high precision and
recall.

However, many structured data sources containing text are best modeled
as structured documents rather than relational data. We call the search over
such structured documents structured retrieval. Queries in structured retrievalSTRUCTURED

RETRIEVAL can be either structured or unstructured, but we will assume in this chap-
ter that the collection consists only of structured documents. Applications
of structured retrieval include digital libraries, patent databases, blogs, text
in which entities like persons and locations have been tagged (in a process
called named entity tagging) and output from office suites like OpenOffice
that save documents as marked up text. In all of these applications, we want
to be able to run queries that combine textual criteria with structural criteria.
Examples of such queries are give me a full-length article on fast fourier transforms
(digital libraries), give me patents whose claims mention RSA public key encryption

1. In most modern database systems, one can enable full-text search for text columns. This
usually means that an inverted index is created and Boolean or vector space search enabled,
effectively combining core database with information retrieval technologies.
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RDB search unstructured retrieval structured retrieval
objects records unstructured documents trees with text at leaves
model relational model vector space & others ?
main data structure table inverted index ?
queries SQL free text queries ?

◮ Table 10.1 RDB (relational database) search, unstructured information retrieval
and structured information retrieval. There is no consensus yet as to which methods
work best for structured retrieval although many researchers believe that XQuery
(page 215) will become the standard for structured queries.

and that cite US patent 4,405,829 (patents), or give me articles about sightseeing
tours of the Vatican and the Coliseum (entity-tagged text). These three queries
are structured queries that cannot be answered well by an unranked retrieval
system. As we argued in Example 1.1 (page 15) unranked retrieval models
like the Boolean model suffer from low recall. For instance, an unranked
system would return a potentially large number of articles that mention the
Vatican, the Coliseum and sightseeing tours without ranking the ones that
are most relevant for the query first. Most users are also notoriously bad at
precisely stating structural constraints. For instance, users may not know
for which structured elements the search system supports search. In our ex-
ample, the user may be unsure whether to issue the query as sightseeing AND

(COUNTRY:Vatican OR LANDMARK:Coliseum) , as sightseeing AND (STATE:Vatican OR

BUILDING:Coliseum) or in some other form. Users may also be completely un-
familiar with structured search and advanced search interfaces or unwilling
to use them. In this chapter, we look at how ranked retrieval methods can be
adapted to structured documents to address these problems.

We will only look at one standard for encoding structured documents: Ex-
tensible Markup Language or XML, which is currently the most widely usedXML

such standard. We will not cover the specifics that distinguish XML from
other types of markup such as HTML and SGML. But most of what we say
in this chapter is applicable to markup languages in general.

In the context of information retrieval, we are only interested in XML as
a language for encoding text and documents. A perhaps more widespread
use of XML is to encode non-text data. For example, we may want to export
data in XML format from an enterprise resource planning system and then
read them into an analytics program to produce graphs for a presentation.
This type of application of XML is called data-centric because numerical andDATA-CENTRIC XML

non-text attribute-value data dominate and text is usually a small fraction of
the overall data. Most data-centric XML is stored in databases – in contrast
to the inverted index-based methods for text-centric XML that we present in
this chapter.
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We call XML retrieval structured retrieval in this chapter. Some researchers
prefer the term semistructured retrieval to distinguish XML retrieval from databaseSEMISTRUCTURED

RETRIEVAL querying. We have adopted the terminology that is widespread in the XML
retrieval community. For instance, the standard way of referring to XML
queries is structured queries, not semistructured queries. The term structured
retrieval is rarely used for database querying and it always refers to XML
retrieval in this book.

There is a second type of information retrieval problem that is intermediate
between unstructured retrieval and querying a relational database: paramet-
ric and zone search, which we discussed in Section 6.1 (page 110). In the
data model of parametric and zone search, there are parametric fields (re-
lational attributes like date or file-size) and zones – text attributes that each
take a chunk of unstructured text as value, e.g., author and title in Figure 6.1
(page 111). The data model is flat, that is, there is no nesting of attributes.
The number of attributes is small. In contrast, XML documents have the
more complex tree structure that we see in Figure 10.2 in which attributes
are nested. The number of attributes and nodes is greater than in parametric
and zone search.

After presenting the basic concepts of XML in Section 10.1, this chapter
first discusses the challenges we face in XML retrieval (Section 10.2). Next we
describe a vector space model for XML retrieval (Section 10.3). Section 10.4
presents INEX, a shared task evaluation that has been held for a number of
years and currently is the most important venue for XML retrieval research.
We discuss the differences between data-centric and text-centric approaches
to XML in Section 10.5.

10.1 Basic XML concepts

An XML document is an ordered, labeled tree. Each node of the tree is an
XML element and is written with an opening and closing tag. An element canXML ELEMENT

have one or more XML attributes. In the XML document in Figure 10.1, theXML ATTRIBUTE

scene element is enclosed by the two tags <scene ...> and </scene> . It
has an attribute number with value vii and two child elements, title and verse.

Figure 10.2 shows Figure 10.1 as a tree. The leaf nodes of the tree consist of
text, e.g., Shakespeare, Macbeth, and Macbeth’s castle. The tree’s internal nodes
encode either the structure of the document (title, act, and scene) or metadata
functions (author).

The standard for accessing and processing XML documents is the XML
Document Object Model or DOM. The DOM represents elements, attributesXML DOM

and text within elements as nodes in a tree. Figure 10.2 is a simplified DOM
representation of the XML document in Figure 10.1.2 With a DOM API, we

2. The representation is simplified in a number of respects. For example, we do not show the
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<play>
<author>Shakespeare</author>
<title>Macbeth</title>
<act number="I">
<scene number="vii">
<title>Macbeth’s castle</title>
<verse>Will I with wine and wassail ...</verse>
</scene>
</act>
</play>

◮ Figure 10.1 An XML document.

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle

◮ Figure 10.2 The XML document in Figure 10.1 as a simplified DOM object.
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//article
[.//yr = 2001 or .//yr = 2002]
//section
[about(.,summer holidays)]

holidayssummer

section

article

◮ Figure 10.3 An XML query in NEXI format and its partial representation as a tree.

can process an XML document by starting at the root element and then de-
scending down the tree from parents to children.

XPath is a standard for enumerating paths in an XML document collection.XPATH

We will also refer to paths as XML contexts or simply contexts in this chapter.XML CONTEXT

Only a small subset of XPath is needed for our purposes. The XPath expres-
sion node selects all nodes of that name. Successive elements of a path are
separated by slashes, so act/scene selects all scene elements whose par-
ent is an act element. Double slashes indicate that an arbitrary number of
elements can intervene on a path: play//scene selects all scene elements
occurring in a play element. In Figure 10.2 this set consists of a single scene el-
ement, which is accessible via the path play, act, scene from the top. An initial
slash starts the path at the root element. /play/title selects the play’s ti-
tle in Figure 10.1, /play//title selects a set with two members (the play’s
title and the scene’s title), and /scene/title selects no elements. For no-
tational convenience, we allow the final element of a path to be a vocabulary
term and separate it from the element path by the symbol #, even though this
does not conform to the XPath standard. For example, title#"Macbeth"
selects all titles containing the term Macbeth.

We also need the concept of schema in this chapter. A schema puts con-SCHEMA

straints on the structure of allowable XML documents for a particular ap-
plication. A schema for Shakespeare’s plays may stipulate that scenes can
only occur as children of acts and that only acts and scenes have the num-
ber attribute. Two standards for schemas for XML documents are XML DTDXML DTD

(document type definition) and XML Schema. Users can only write structuredXML SCHEMA

queries for an XML retrieval system if they have some minimal knowledge
about the schema of the collection.

root node and text is not embedded in text nodes. See http://www.w3.org/DOM/.
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M’s castle

title

Will I . . .

verse

scene

Julius Caesar

title

book

Gallic war

title

Julius Caesar

author

book

d1 q1 q2

◮ Figure 10.4 Tree representation of XML documents and queries.

A common format for XML queries is NEXI (Narrowed Extended XPathNEXI

I). We give an example in Figure 10.3. We display the query on four lines for
typographical convenience, but it is intended to be read as one unit without
line breaks. In particular, //section is embedded under //article .

The query in Figure 10.3 specifies a search for sections about the sum-
mer holidays that are part of articles from 2001 or 2002. As in XPath dou-
ble slashes indicate that an arbitrary number of elements can intervene on
a path. The dot in a clause in square brackets refers to the element the
clause modifies. The clause [.//yr = 2001 or .//yr = 2002] mod-
ifies //article . Thus, the dot refers to //article in this case. Similarly,
the dot in [about(., summer holidays)] refers to the section that the
clause modifies.

The two yr conditions are relational attribute constraints. Only articles
whose yr attribute is 2001 or 2002 (or that contain an element whose yr
attribute is 2001 or 2002) are to be considered. The about clause is a ranking
constraint: Sections that occur in the right type of article are to be ranked
according to how relevant they are to the topic summer holidays.

We usually handle relational attribute constraints by prefiltering or post-
filtering: We simply exclude all elements from the result set that do not meet
the relational attribute constraints. In this chapter, we will not address how
to do this efficiently and instead focus on the core information retrieval prob-
lem in XML retrieval, namely how to rank documents according to the rele-
vance criteria expressed in the about conditions of the NEXI query.

If we discard relational attributes, we can represent documents as trees
with only one type of node: element nodes. In other words, we remove
all attribute nodes from the XML document, such as the number attribute in
Figure 10.1. Figure 10.4 shows a subtree of the document in Figure 10.1 as an
element-node tree (labeled d1).
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We can represent queries as trees in the same way. This is a query-by-
example approach to query language design because users pose queries by
creating objects that satisfy the same formal description as documents. In
Figure 10.4, q1 is a search for books whose titles score highly for the keywords
Julius Caesar. q2 is a search for books whose author elements score highly for
Julius Caesar and whose title elements score highly for Gallic war.3

10.2 Challenges in XML retrieval

In this section, we discuss a number of challenges that make structured re-
trieval more difficult than unstructured retrieval. Recall from page 195 the
basic setting we assume in structured retrieval: the collection consists of
structured documents and queries are either structured (as in Figure 10.3)
or unstructured (e.g., summer holidays).

The first challenge in structured retrieval is that users want us to return
parts of documents (i.e., XML elements), not entire documents as IR systems
usually do in unstructured retrieval. If we query Shakespeare’s plays for
Macbeth’s castle, should we return the scene, the act or the entire play in Fig-
ure 10.2? In this case, the user is probably looking for the scene. On the other
hand, an otherwise unspecified search for Macbeth should return the play of
this name, not a subunit.

One criterion for selecting the most appropriate part of a document is the
structured document retrieval principle:STRUCTURED

DOCUMENT RETRIEVAL
PRINCIPLE Structured document retrieval principle. A system should always re-

trieve the most specific part of a document answering the query.

This principle motivates a retrieval strategy that returns the smallest unit
that contains the information sought, but does not go below this level. How-
ever, it can be hard to implement this principle algorithmically. Consider the
query title#"Macbeth" applied to Figure 10.2. The title of the tragedy,
Macbeth, and the title of Act I, Scene vii, Macbeth’s castle, are both good hits
because they contain the matching term Macbeth. But in this case, the title of
the tragedy, the higher node, is preferred. Deciding which level of the tree is
right for answering a query is difficult.

Parallel to the issue of which parts of a document to return to the user is
the issue of which parts of a document to index. In Section 2.1.2 (page 20), we
discussed the need for a document unit or indexing unit in indexing and re-INDEXING UNIT

trieval. In unstructured retrieval, it is usually clear what the right document

3. To represent the semantics of NEXI queries fully we would also need to designate one node
in the tree as a “target node”, for example, the section in the tree in Figure 10.3. Without the
designation of a target node, the tree in Figure 10.3 is not a search for sections embedded in
articles (as specified by NEXI), but a search for articles that contain sections.
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◮ Figure 10.5 Partitioning an XML document into non-overlapping indexing units.

unit is: files on your desktop, email messages, web pages on the web etc. In
structured retrieval, there are a number of different approaches to defining
the indexing unit.

One approach is to group nodes into non-overlapping pseudodocuments
as shown in Figure 10.5. In the example, books, chapters and sections have
been designated to be indexing units, but without overlap. For example, the
leftmost dashed indexing unit contains only those parts of the tree domi-
nated by book that are not already part of other indexing units. The disad-
vantage of this approach is that pseudodocuments may not make sense to
the user because they are not coherent units. For instance, the leftmost in-
dexing unit in Figure 10.5 merges three disparate elements, the class, author
and title elements.

We can also use one of the largest elements as the indexing unit, for exam-
ple, the book element in a collection of books or the play element for Shake-
speare’s works. We can then postprocess search results to find for each book
or play the subelement that is the best hit. For example, the query Macbeth’s
castle may return the play Macbeth, which we can then postprocess to identify
act I, scene vii as the best-matching subelement. Unfortunately, this two-
stage retrieval process fails to return the best subelement for many queries
because the relevance of a whole book is often not a good predictor of the
relevance of small subelements within it.

Instead of retrieving large units and identifying subelements (top down),
we can also search all leaves, select the most relevant ones and then extend
them to larger units in postprocessing (bottom up). For the query Macbeth’s
castle in Figure 10.1, we would retrieve the title Macbeth’s castle in the first
pass and then decide in a postprocessing step whether to return the title, the
scene, the act or the play. This approach has a similar problem as the last one:
The relevance of a leaf element is often not a good predictor of the relevance
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of elements it is contained in.
The least restrictive approach is to index all elements. This is also prob-

lematic. Many XML elements are not meaningful search results, e.g., typo-
graphical elements like <b>definitely</b> or an ISBN number which
cannot be interpreted without context. Also, indexing all elements means
that search results will be highly redundant. For the query Macbeth’s castle
and the document in Figure 10.1, we would return all of the play, act, scene
and title elements on the path between the root node and Macbeth’s castle.
The leaf node would then occur four times in the result set, once directly and
three times as part of other elements. We call elements that are contained
within each other nested. Returning redundant nested elements in a list ofNESTED ELEMENTS

returned hits is not very user-friendly.
Because of the redundancy caused by nested elements it is common to re-

strict the set of elements that are eligible to be returned. Restriction strategies
include:

• discard all small elements

• discard all element types that users do not look at (this requires a working
XML retrieval system that logs this information)

• discard all element types that assessors generally do not judge to be rele-
vant (if relevance assessments are available)

• only keep element types that a system designer or librarian has deemed
to be useful search results

In most of these approaches, result sets will still contain nested elements.
Thus, we may want to remove some elements in a postprocessing step to re-
duce redundancy. Alternatively, we can collapse several nested elements in
the results list and use highlighting of query terms to draw the user’s atten-
tion to the relevant passages. If query terms are highlighted, then scanning a
medium-sized element (e.g., a section) takes little more time than scanning a
small subelement (e.g., a paragraph). Thus, if the section and the paragraph
both occur in the results list, it is sufficient to show the section. An additional
advantage of this approach is that the paragraph is presented together with
its context (i.e., the embedding section). This context may be helpful in in-
terpreting the paragraph (e.g., the source of the information reported) even
if the paragraph on its own satisfies the query.

If the user knows the schema of the collection and is able to specify the
desired type of element, then the problem of redundancy is alleviated as few
nested elements have the same type. But as we discussed in the introduction,
users often don’t know what the name of an element in the collection is (Is the
Vatican a country or a city?) or they may not know how to compose structured
queries at all.
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◮ Figure 10.6 Schema heterogeneity: intervening nodes and mismatched names.

A challenge in XML retrieval related to nesting is that we may need to
distinguish different contexts of a term when we compute term statistics for
ranking, in particular inverse document frequency (idf) statistics as defined
in Section 6.2.1 (page 117). For example, the term Gates under the node author
is unrelated to an occurrence under a content node like section if used to refer
to the plural of gate. It makes little sense to compute a single document
frequency for Gates in this example.

One solution is to compute idf for XML-context/term pairs, e.g., to com-
pute different idf weights for author#"Gates" and section#"Gates" .
Unfortunately, this scheme will run into sparse data problems – that is, many
XML-context pairs occur too rarely to reliably estimate df (see Section 13.2,
page 260, for a discussion of sparseness). A compromise is only to con-
sider the parent node x of the term and not the rest of the path from the
root to x to distinguish contexts. There are still conflations of contexts that
are harmful in this scheme. For instance, we do not distinguish names of
authors and names of corporations if both have the parent node name. But
most important distinctions, like the example contrast author#"Gates" vs.
section#"Gates" , will be respected.

In many cases, several different XML schemas occur in a collection since
the XML documents in an IR application often come from more than one
source. This phenomenon is called schema heterogeneity or schema diversitySCHEMA

HETEROGENEITY and presents yet another challenge. As illustrated in Figure 10.6 comparable
elements may have different names: creator in d2 vs. author in d3. In other
cases, the structural organization of the schemas may be different: Author
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names are direct descendants of the node author in q3, but there are the in-
tervening nodes firstname and lastname in d3. If we employ strict matching
of trees, then q3 will retrieve neither d2 nor d3 although both documents are
relevant. Some form of approximate matching of element names in combina-
tion with semi-automatic matching of different document structures can help
here. Human editing of correspondences of elements in different schemas
will usually do better than automatic methods.

Schema heterogeneity is one reason for query-document mismatches like
q3/d2 and q3/d3. Another reason is that users often are not familiar with the
element names and the structure of the schemas of collections they search
as mentioned. This poses a challenge for interface design in XML retrieval.
Ideally, the user interface should expose the tree structure of the collection
and allow users to specify the elements they are querying. If we take this
approach, then designing the query interface in structured retrieval is more
complex than a search box for keyword queries in unstructured retrieval.

We can also support the user by interpreting all parent-child relationships
in queries as descendant relationships with any number of intervening nodes
allowed. We call such queries extended queries. The tree in Figure 10.3 and q4EXTENDED QUERY

in Figure 10.6 are examples of extended queries. We show edges that are
interpreted as descendant relationships as dashed arrows. In q4, a dashed
arrow connects book and Gates. As a pseudo-XPath notation for q4, we adopt
book//#"Gates" : a book that somewhere in its structure contains the word
Gates where the path from the book node to Gates can be arbitrarily long.
The pseudo-XPath notation for the extended query that in addition specifies
that Gates occurs in a section of the book is book//section//#"Gates" .
It is convenient for users to be able to issue such extended queries without
having to specify the exact structural configuration in which a query term
should occur – either because they do not care about the exact configuration
or because they do not know enough about the schema of the collection to be
able to specify it.

In Figure 10.7, the user is looking for a chapter entitled FFT (q5). Sup-
pose there is no such chapter in the collection, but that there are references to
books on FFT (d4). A reference to a book on FFT is not exactly what the user
is looking for, but it is better than returning nothing. Extended queries do not
help here. The extended query q6 also returns nothing. This is a case where
we may want to interpret the structural constraints specified in the query as
hints as opposed to as strict conditions. As we will discuss in Section 10.4,
users prefer a relaxed interpretation of structural constraints: Elements that
do not meet structural constraints perfectly should be ranked lower, but they
should not be omitted from search results.
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◮ Figure 10.7 A structural mismatch between two queries and a document.

10.3 A vector space model for XML retrieval

In this section, we present a simple vector space model for XML retrieval.
It is not intended to be a complete description of a state-of-the-art system.
Instead, we want to give the reader a flavor of how documents can be repre-
sented and retrieved in XML retrieval.

To take account of structure in retrieval in Figure 10.4, we want a book
entitled Julius Caesar to be a match for q1 and no match (or a lower weighted
match) for q2. In unstructured retrieval, there would be a single dimension
of the vector space for Caesar. In XML retrieval, we must separate the title
word Caesar from the author name Caesar. One way of doing this is to have
each dimension of the vector space encode a word together with its position
within the XML tree.

Figure 10.8 illustrates this representation. We first take each text node
(which in our setup is always a leaf) and break it into multiple nodes, one for
each word. So the leaf node Bill Gates is split into two leaves Bill and Gates.
Next we define the dimensions of the vector space to be lexicalized subtrees
of documents – subtrees that contain at least one vocabulary term. A sub-
set of these possible lexicalized subtrees is shown in the figure, but there are
others – e.g., the subtree corresponding to the whole document with the leaf
node Gates removed. We can now represent queries and documents as vec-
tors in this space of lexicalized subtrees and compute matches between them.
This means that we can use the vector space formalism from Chapter 6 for
XML retrieval. The main difference is that the dimensions of vector space
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◮ Figure 10.8 A mapping of an XML document (left) to a set of lexicalized subtrees
(right).

in unstructured retrieval are vocabulary terms whereas they are lexicalized
subtrees in XML retrieval.

There is a tradeoff between the dimensionality of the space and accuracy
of query results. If we trivially restrict dimensions to vocabulary terms, then
we have a standard vector space retrieval system that will retrieve many
documents that do not match the structure of the query (e.g., Gates in the
title as opposed to the author element). If we create a separate dimension
for each lexicalized subtree occurring in the collection, the dimensionality of
the space becomes too large. A compromise is to index all paths that end
in a single vocabulary term, in other words, all XML-context/term pairs.
We call such an XML-context/term pair a structural term and denote it bySTRUCTURAL TERM

〈c, t〉: a pair of XML-context c and vocabulary term t. The document in
Figure 10.8 has nine structural terms. Seven are shown (e.g., "Bill" and
Author#"Bill" ) and two are not shown: /Book/Author#"Bill" and
/Book/Author#"Gates" . The tree with the leaves Bill and Gates is a lexical-
ized subtree that is not a structural term. We use the previously introduced
pseudo-XPath notation for structural terms.

As we discussed in the last section users are bad at remembering details
about the schema and at constructing queries that comply with the schema.
We will therefore interpret all queries as extended queries – that is, there can
be an arbitrary number of intervening nodes in the document for any parent-
child node pair in the query. For example, we interpret q5 in Figure 10.7 as
q6.

But we still prefer documents that match the query structure closely by
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inserting fewer additional nodes. We ensure that retrieval results respect this
preference by computing a weight for each match. A simple measure of the
similarity of a path cq in a query and a path cd in a document is the following
context resemblance function CR:CONTEXT

RESEMBLANCE

CR(cq, cd) =

{
1+|cq|
1+|cd| if cq matches cd

0 if cq does not match cd

(10.1)

where |cq| and |cd| are the number of nodes in the query path and document
path, respectively, and cq matches cd iff we can transform cq into cd by in-
serting additional nodes. Two examples from Figure 10.6 are CR(cq4 , cd2

) =
3/4 = 0.75 and CR(cq4 , cd3) = 3/5 = 0.6 where cq4 , cd2 and cd3 are the rele-
vant paths from top to leaf node in q4, d2 and d3, respectively. The value of
CR(cq, cd) is 1.0 if q and d are identical.

The final score for a document is computed as a variant of the cosine mea-
sure (Equation (6.10), page 121), which we call SIMNOMERGE for reasons
that will become clear shortly. SIMNOMERGE is defined as follows:

SIMNOMERGE(q, d) = ∑
ck∈B

∑
cl∈B

CR(ck, cl) ∑
t∈V

weight(q, t, ck)
weight(d, t, cl)√

∑c∈B,t∈V weight2(d, t, c)
(10.2)

where V is the vocabulary of non-structural terms; B is the set of all XML con-
texts; and weight(q, t, c) and weight(d, t, c) are the weights of term t in XML
context c in query q and document d, respectively. We compute the weights
using one of the weightings from Chapter 6, such as idft ·wft,d. The inverse
document frequency idft depends on which elements we use to compute
dft as discussed in Section 10.2. The similarity measure SIMNOMERGE(q, d)
is not a true cosine measure since its value can be larger than 1.0 (Exer-

cise 10.11). We divide by
√

∑c∈B,t∈V weight2(d, t, c) to normalize for doc-
ument length (Section 6.3.1, page 121). We have omitted query length nor-
malization to simplify the formula. It has no effect on ranking since, for

a given query, the normalizer
√

∑c∈B,t∈V weight2(q, t, c) is the same for all
documents.

The algorithm for computing SIMNOMERGE for all documents in the col-
lection is shown in Figure 10.9. The array normalizer in Figure 10.9 contains√

∑c∈B,t∈V weight2(d, t, c) from Equation (10.2) for each document.
We give an example of how SIMNOMERGE computes query-document

similarities in Figure 10.10. 〈c1, t〉 is one of the structural terms in the query.
We successively retrieve all postings lists for structural terms 〈c′, t〉 with the
same vocabulary term t. Three example postings lists are shown. For the
first one, we have CR(c1, c1) = 1.0 since the two contexts are identical. The
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SCOREDOCUMENTSWITHSIMNOMERGE(q, B, V, N, normalizer)
1 for n← 1 to N
2 do score[n] ← 0
3 for each 〈cq, t〉 ∈ q
4 do wq ← WEIGHT(q, t, cq)
5 for each c ∈ B
6 do if CR(cq, c) > 0
7 then postings← GETPOSTINGS(〈c, t〉)
8 for each posting ∈ postings
9 do x ← CR(cq, c) ∗ wq ∗ weight(posting)

10 score[docID(posting)] += x
11 for n← 1 to N
12 do score[n] ← score[n]/normalizer[n]
13 return score

◮ Figure 10.9 The algorithm for scoring documents with SIMNOMERGE.

query
〈c1, t〉

CR(c1, c1)=1.0

CR(c1, c2)=0

CR(c1, c3)=0.63

inverted index

〈c1, t〉 −→ 〈d1, 0.5〉 〈d4, 0.1〉 〈d9, 0.2〉 . . .

〈c2, t〉 −→ 〈d2, 0.25〉 〈d3, 0.1〉 〈d12, 0.9〉 . . .

〈c3, t〉 −→ 〈d3, 0.7〉 〈d6, 0.8〉 〈d9, 0.6〉 . . .

◮ Figure 10.10 Scoring of a query with one structural term in SIMNOMERGE.

next context has no context resemblance with c1: CR(c1, c2) = 0 and the cor-
responding postings list is ignored. The context match of c1 with c3 is 0.63>0
and it will be processed. In this example, the highest ranking document is d9
with a similarity of 1.0× 0.2 + 0.63× 0.6 = 0.578. To simplify the figure, the
query weight of 〈c1, t〉 is assumed to be 1.0.

The query-document similarity function in Figure 10.9 is called SIMNOMERGE

because different XML contexts are kept separate for the purpose of weight-
ing. An alternative similarity function is SIMMERGE which relaxes the match-
ing conditions of query and document further in the following three ways.
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• We collect the statistics used for computing weight(q, t, c) and weight(d, t, c)
from all contexts that have a non-zero resemblance to c (as opposed to just
from c as in SIMNOMERGE). For instance, for computing the document
frequency of the structural term atl#"recognition" , we also count
occurrences of recognition in XML contexts fm/atl , article//atl etc.

• We modify Equation (10.2) by merging all structural terms in the docu-
ment that have a non-zero context resemblance to a given query struc-
tural term. For example, the contexts /play/act/scene/title and
/play/title in the document will be merged when matching against
the query term /play/title#"Macbeth" .

• The context resemblance function is further relaxed: Contexts have a non-
zero resemblance in many cases where the definition of CR in Equation (10.1)
returns 0.

See the references in Section 10.6 for details.
These three changes alleviate the problem of sparse term statistics dis-

cussed in Section 10.2 and increase the robustness of the matching function
against poorly posed structural queries. The evaluation of SIMNOMERGE

and SIMMERGE in the next section shows that the relaxed matching condi-
tions of SIMMERGE increase the effectiveness of XML retrieval.

? Exercise 10.1

Consider computing df for a structural term as the number of times that the structural
term occurs under a particular parent node. Assume the following: the structural
term 〈c, t〉 = author#"Herbert" occurs once as the child of the node squib; there are
10 squib nodes in the collection; 〈c, t〉 occurs 1000 times as the child of article; there are
1,000,000 article nodes in the collection. The idf weight of 〈c, t〉 then is log2 10/1 ≈ 3.3
when occurring as the child of squib and log2 1,000,000/1000 ≈ 10.0 when occurring
as the child of article. (i) Explain why this is not an appropriate weighting for 〈c, t〉.
Why should 〈c, t〉 not receive a weight that is three times higher in articles than in
squibs? (ii) Suggest a better way of computing idf.

Exercise 10.2

Write down all the structural terms occurring in the XML document in Figure 10.8.

Exercise 10.3

How many structural terms does the document in Figure 10.1 yield?

10.4 Evaluation of XML retrieval

The premier venue for research on XML retrieval is the INEX (INitiative forINEX

the Evaluation of XML retrieval) program, a collaborative effort that has pro-
duced reference collections, sets of queries, and relevance judgments. A
yearly INEX meeting is held to present and discuss research results. The
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12,107 number of documents
494 MB size
1995–2002 time of publication of articles
1,532 average number of XML nodes per document
6.9 average depth of a node
30 number of CAS topics
30 number of CO topics

◮ Table 10.2 INEX 2002 collection statistics.

IEEE Transac-
tion on Pat-
tern Analysis

journal title

Activity
recognition

article title

This work fo-
cuses on . . .

paragraph

Introduction

title

front matter section

body

article

◮ Figure 10.11 Simplified schema of the documents in the INEX collection.

INEX 2002 collection consisted of about 12,000 articles from IEEE journals.
We give collection statistics in Table 10.2 and show part of the schema of
the collection in Figure 10.11. The IEEE journal collection was expanded in
2005. Since 2006 INEX uses the much larger English Wikipedia as a test col-
lection. The relevance of documents is judged by human assessors using the
methodology introduced in Section 8.1 (page 152), appropriately modified
for structured documents as we will discuss shortly.

Two types of information needs or topics in INEX are content-only or CO
topics and content-and-structure (CAS) topics. CO topics are regular key-CO TOPICS

word queries as in unstructured information retrieval. CAS topics have struc-CAS TOPICS

tural constraints in addition to keywords. We already encountered an exam-
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ple of a CAS topic in Figure 10.3. The keywords in this case are summer and
holidays and the structural constraints specify that the keywords occur in a
section that in turn is part of an article and that this article has an embedded
year attribute with value 2001 or 2002.

Since CAS queries have both structural and content criteria, relevance as-
sessments are more complicated than in unstructured retrieval. INEX 2002
defined component coverage and topical relevance as orthogonal dimen-
sions of relevance. The component coverage dimension evaluates whether theCOMPONENT

COVERAGE element retrieved is “structurally” correct, i.e., neither too low nor too high
in the tree. We distinguish four cases:

• Exact coverage (E). The information sought is the main topic of the com-
ponent and the component is a meaningful unit of information.

• Too small (S). The information sought is the main topic of the component,
but the component is not a meaningful (self-contained) unit of informa-
tion.

• Too large (L). The information sought is present in the component, but is
not the main topic.

• No coverage (N). The information sought is not a topic of the component.

The topical relevance dimension also has four levels: highly relevant (3),TOPICAL RELEVANCE

fairly relevant (2), marginally relevant (1) and nonrelevant (0). Components
are judged on both dimensions and the judgments are then combined into
a digit-letter code. 2S is a fairly relevant component that is too small and
3E is a highly relevant component that has exact coverage. In theory, there
are 16 combinations of coverage and relevance, but many cannot occur. For
example, a nonrelevant component cannot have exact coverage, so the com-
bination 3N is not possible.

The relevance-coverage combinations are quantized as follows:

Q(rel, cov) =





1.00 if (rel, cov) = 3E
0.75 if (rel, cov) ∈ {2E, 3L}
0.50 if (rel, cov) ∈ {1E, 2L, 2S}
0.25 if (rel, cov) ∈ {1S, 1L}
0.00 if (rel, cov) = 0N

This evaluation scheme takes account of the fact that binary relevance judg-
ments, which are standard in unstructured information retrieval (Section 8.5.1,
page 166), are not appropriate for XML retrieval. A 2S component provides
incomplete information and may be difficult to interpret without more con-
text, but it does answer the query partially. The quantization function Q
does not impose a binary choice relevant/nonrelevant and instead allows us
to grade the component as partially relevant.
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algorithm average precision
SIMNOMERGE 0.242
SIMMERGE 0.271

◮ Table 10.3 INEX 2002 results of the vector space model in Section 10.3 for content-
and-structure (CAS) queries and the quantization function Q.

The number of relevant components in a retrieved set A of components
can then be computed as:

#(relevant items retrieved) = ∑
c∈A

Q(rel(c), cov(c))

As an approximation, the standard definitions of precision, recall and F from
Chapter 8 can be applied to this modified definition of relevant items re-
trieved, with some subtleties because we sum graded as opposed to binary
relevance assessments. See the references on focused retrieval in Section 10.6
for further discussion.

One flaw of measuring relevance this way is that overlap is not accounted
for. We discussed the concept of marginal relevance in the context of un-
structured retrieval in Section 8.5.1 (page 166). This problem is worse in
XML retrieval because of the problem of multiple nested elements occur-
ring in a search result as we discussed on page 203. Much of the recent focus
at INEX has been on developing algorithms and evaluation measures that
return non-redundant results lists and evaluate them properly. See the refer-
ences in Section 10.6.

Table 10.3 shows two INEX 2002 runs of the vector space system we de-
scribed in Section 10.3. The better run is the SIMMERGE run, which incor-
porates few structural constraints and mostly relies on keyword matching.
SIMMERGE’s median average precision (where the median is with respect to
average precision numbers over topics) is only 0.147. Effectiveness in XML
retrieval is often lower than in unstructured retrieval since XML retrieval is
harder. Instead of just finding a document, we have to find the subpart of a
document that is most relevant to the query. Also, XML retrieval effective-
ness – when evaluated as described here – can be lower than unstructured
retrieval effectiveness on a standard evaluation because graded judgments
lower measured performance. Consider a system that returns a document
with graded relevance 0.6 and binary relevance 1 at the top of the retrieved
list. Then, interpolated precision at 0.00 recall (cf. page 158) is 1.0 on a binary
evaluation, but can be as low as 0.6 on a graded evaluation.

Table 10.3 gives us a sense of the typical performance of XML retrieval,
but it does not compare structured with unstructured retrieval. Table 10.4
directly shows the effect of using structure in retrieval. The results are for a
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content only full structure improvement
precision at 5 0.2000 0.3265 63.3%
precision at 10 0.1820 0.2531 39.1%
precision at 20 0.1700 0.1796 5.6%
precision at 30 0.1527 0.1531 0.3%

◮ Table 10.4 A comparison of content-only and full-structure search in INEX
2003/2004.

language-model-based system (cf. Chapter 12) that is evaluated on a subset
of CAS topics from INEX 2003 and 2004. The evaluation metric is precision
at k as defined in Chapter 8 (page 161). The discretization function used for
the evaluation maps highly relevant elements (roughly corresponding to the
3E elements defined for Q) to 1 and all other elements to 0. The content-
only system treats queries and documents as unstructured bags of words.
The full-structure model ranks elements that satisfy structural constraints
higher than elements that do not. For instance, for the query in Figure 10.3
an element that contains the phrase summer holidays in a section will be rated
higher than one that contains it in an abstract.

The table shows that structure helps increase precision at the top of the
results list. There is a large increase of precision at k = 5 and at k = 10. There
is almost no improvement at k = 30. These results demonstrate the benefits
of structured retrieval. Structured retrieval imposes additional constraints on
what to return and documents that pass the structural filter are more likely
to be relevant. Recall may suffer because some relevant documents will be
filtered out, but for precision-oriented tasks structured retrieval is superior.

10.5 Text-centric vs. data-centric XML retrieval

In the type of structured retrieval we cover in this chapter, XML structure
serves as a framework within which we match the text of the query with the
text of the XML documents. This exemplifies a system that is optimized for
text-centric XML. While both text and structure are important, we give higherTEXT-CENTRIC XML

priority to text. We do this by adapting unstructured retrieval methods to
handling additional structural constraints. The premise of our approach is
that XML document retrieval is characterized by (i) long text fields (e.g., sec-
tions of a document), (ii) inexact matching, and (iii) relevance-ranked results.
Relational databases do not deal well with this use case.

In contrast, data-centric XML mainly encodes numerical and non-text attribute-DATA-CENTRIC XML

value data. When querying data-centric XML, we want to impose exact
match conditions in most cases. This puts the emphasis on the structural
aspects of XML documents and queries. An example is:



Online edition (c)
2009 Cambridge UP

10.5 Text-centric vs. data-centric XML retrieval 215

Find employees whose salary is the same this month as it was 12 months
ago.

This query requires no ranking. It is purely structural and an exact matching
of the salaries in the two time periods is probably sufficient to meet the user’s
information need.

Text-centric approaches are appropriate for data that are essentially text
documents, marked up as XML to capture document structure. This is be-
coming a de facto standard for publishing text databases since most text
documents have some form of interesting structure – paragraphs, sections,
footnotes etc. Examples include assembly manuals, issues of journals, Shake-
speare’s collected works and newswire articles.

Data-centric approaches are commonly used for data collections with com-
plex structures that mainly contain non-text data. A text-centric retrieval
engine will have a hard time with proteomic data in bioinformatics or with
the representation of a city map that (together with street names and other
textual descriptions) forms a navigational database.

Two other types of queries that are difficult to handle in a text-centric struc-
tured retrieval model are joins and ordering constraints. The query for em-
ployees with unchanged salary requires a join. The following query imposes
an ordering constraint:

Retrieve the chapter of the book Introduction to algorithms that follows
the chapter Binomial heaps.

This query relies on the ordering of elements in XML – in this case the order-
ing of chapter elements underneath the book node. There are powerful query
languages for XML that can handle numerical attributes, joins and ordering
constraints. The best known of these is XQuery, a language proposed for
standardization by the W3C. It is designed to be broadly applicable in all ar-
eas where XML is used. Due to its complexity, it is challenging to implement
an XQuery-based ranked retrieval system with the performance characteris-
tics that users have come to expect in information retrieval. This is currently
one of the most active areas of research in XML retrieval.

Relational databases are better equipped to handle many structural con-
straints, particularly joins (but ordering is also difficult in a database frame-
work – the tuples of a relation in the relational calculus are not ordered). For
this reason, most data-centric XML retrieval systems are extensions of rela-
tional databases (see the references in Section 10.6). If text fields are short,
exact matching meets user needs and retrieval results in form of unordered
sets are acceptable, then using a relational database for XML retrieval is ap-
propriate.
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10.6 References and further reading

There are many good introductions to XML, including (Harold and Means
2004). Table 10.1 is inspired by a similar table in (van Rijsbergen 1979). Sec-
tion 10.4 follows the overview of INEX 2002 by Gövert and Kazai (2003),
published in the proceedings of the meeting (Fuhr et al. 2003a). The pro-
ceedings of the four following INEX meetings were published as Fuhr et al.
(2003b), Fuhr et al. (2005), Fuhr et al. (2006), and Fuhr et al. (2007). An up-
todate overview article is Fuhr and Lalmas (2007). The results in Table 10.4
are from (Kamps et al. 2006). Chu-Carroll et al. (2006) also present evidence
that XML queries increase precision compared with unstructured queries.
Instead of coverage and relevance, INEX now evaluates on the related but
different dimensions of exhaustivity and specificity (Lalmas and Tombros
2007). Trotman et al. (2006) relate the tasks investigated at INEX to real world
uses of structured retrieval such as structured book search on internet book-
store sites.

The structured document retrieval principle is due to Chiaramella et al.
(1996). Figure 10.5 is from (Fuhr and Großjohann 2004). Rahm and Bernstein
(2001) give a survey of automatic schema matching that is applicable to XML.
The vector-space based XML retrieval method in Section 10.3 is essentially
IBM Haifa’s JuruXML system as presented by Mass et al. (2003) and Carmel
et al. (2003). Schlieder and Meuss (2002) and Grabs and Schek (2002) describe
similar approaches. Carmel et al. (2003) represent queries as XML fragments.XML FRAGMENT

The trees that represent XML queries in this chapter are all XML fragments,
but XML fragments also permit the operators +, − and phrase on content
nodes.

We chose to present the vector space model for XML retrieval because it
is simple and a natural extension of the unstructured vector space model
in Chapter 6. But many other unstructured retrieval methods have been
applied to XML retrieval with at least as much success as the vector space
model. These methods include language models (cf. Chapter 12, e.g., Kamps
et al. (2004), List et al. (2005), Ogilvie and Callan (2005)), systems that use
a relational database as a backend (Mihajlović et al. 2005, Theobald et al.
2005; 2008), probabilistic weighting (Lu et al. 2007), and fusion (Larson 2005).
There is currently no consensus as to what the best approach to XML retrieval
is.

Most early work on XML retrieval accomplished relevance ranking by fo-
cusing on individual terms, including their structural contexts, in query and
document. As in unstructured information retrieval, there is a trend in more
recent work to model relevance ranking as combining evidence from dis-
parate measurements about the query, the document and their match. The
combination function can be tuned manually (Arvola et al. 2005, Sigurbjörns-
son et al. 2004) or trained using machine learning methods (Vittaut and Gal-
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linari (2006), cf. Section 15.4.1, page 341).
An active area of XML retrieval research is focused retrieval (Trotman et al.FOCUSED RETRIEVAL

2007), which aims to avoid returning nested elements that share one or more
common subelements (cf. discussion in Section 10.2, page 203). There is ev-
idence that users dislike redundancy caused by nested elements (Betsi et al.
2006). Focused retrieval requires evaluation measures that penalize redun-
dant results lists (Kazai and Lalmas 2006, Lalmas et al. 2007). Trotman and
Geva (2006) argue that XML retrieval is a form of passage retrieval. In passagePASSAGE RETRIEVAL

retrieval (Salton et al. 1993, Hearst and Plaunt 1993, Zobel et al. 1995, Hearst
1997, Kaszkiel and Zobel 1997), the retrieval system returns short passages
instead of documents in response to a user query. While element bound-
aries in XML documents are cues for identifying good segment boundaries
between passages, the most relevant passage often does not coincide with an
XML element.

In the last several years, the query format at INEX has been the NEXI stan-
dard proposed by Trotman and Sigurbjörnsson (2004). Figure 10.3 is from
their paper. O’Keefe and Trotman (2004) give evidence that users cannot reli-
ably distinguish the child and descendant axes. This justifies only permitting
descendant axes in NEXI (and XML fragments). These structural constraints
were only treated as “hints” in recent INEXes. Assessors can judge an ele-
ment highly relevant even though it violates one of the structural constraints
specified in a NEXI query.

An alternative to structured query languages like NEXI is a more sophisti-
cated user interface for query formulation (Tannier and Geva 2005, van Zwol
et al. 2006, Woodley and Geva 2006).

A broad overview of XML retrieval that covers database as well as IR ap-
proaches is given by Amer-Yahia and Lalmas (2006) and an extensive refer-
ence list on the topic can be found in (Amer-Yahia et al. 2005). Chapter 6
of Grossman and Frieder (2004) is a good introduction to structured text re-
trieval from a database perspective. The proposed standard for XQuery is
available at http://www.w3.org/TR/xquery/ including an extension for full-text
queries (Amer-Yahia et al. 2006): http://www.w3.org/TR/xquery-full-text/. Work
that has looked at combining the relational database and the unstructured
information retrieval approaches includes (Fuhr and Rölleke 1997), (Navarro
and Baeza-Yates 1997), (Cohen 1998), and (Chaudhuri et al. 2006).

10.7 Exercises

? Exercise 10.4

Find a reasonably sized XML document collection (or a collection using a markup lan-
guage different from XML like HTML) on the web and download it. Jon Bosak’s XML
edition of Shakespeare and of various religious works at http://www.ibiblio.org/bosak/ or
the first 10,000 documents of the Wikipedia are good choices. Create three CAS topics
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of the type shown in Figure 10.3 that you would expect to do better than analogous
CO topics. Explain why an XML retrieval system would be able to exploit the XML
structure of the documents to achieve better retrieval results on the topics than an
unstructured retrieval system.

Exercise 10.5

For the collection and the topics in Exercise 10.4, (i) are there pairs of elements e1 and
e2, with e2 a subelement of e1 such that both answer one of the topics? Find one case
each where (ii) e1 (iii) e2 is the better answer to the query.

Exercise 10.6

Implement the (i) SIMMERGE (ii) SIMNOMERGE algorithm in Section 10.3 and run it
for the collection and the topics in Exercise 10.4. (iii) Evaluate the results by assigning
binary relevance judgments to the first five documents of the three retrieved lists for
each algorithm. Which algorithm performs better?

Exercise 10.7

Are all of the elements in Exercise 10.4 appropriate to be returned as hits to a user or
are there elements (as in the example <b>definitely</b> on page 203) that you
would exclude?

Exercise 10.8

We discussed the tradeoff between accuracy of results and dimensionality of the vec-
tor space on page 207. Give an example of an information need that we can answer
correctly if we index all lexicalized subtrees, but cannot answer if we only index struc-
tural terms.

Exercise 10.9

If we index all structural terms, what is the size of the index as a function of text size?

Exercise 10.10

If we index all lexicalized subtrees, what is the size of the index as a function of text
size?

Exercise 10.11

Give an example of a query-document pair for which SIMNOMERGE(q, d) is larger
than 1.0.
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11 Probabilistic information

retrieval

During the discussion of relevance feedback in Section 9.1.2, we observed
that if we have some known relevant and nonrelevant documents, then we
can straightforwardly start to estimate the probability of a term t appearing
in a relevant document P(t|R = 1), and that this could be the basis of a
classifier that decides whether documents are relevant or not. In this chapter,
we more systematically introduce this probabilistic approach to IR, which
provides a different formal basis for a retrieval model and results in different
techniques for setting term weights.

Users start with information needs, which they translate into query repre-
sentations. Similarly, there are documents, which are converted into document
representations (the latter differing at least by how text is tokenized, but per-
haps containing fundamentally less information, as when a non-positional
index is used). Based on these two representations, a system tries to de-
termine how well documents satisfy information needs. In the Boolean or
vector space models of IR, matching is done in a formally defined but seman-
tically imprecise calculus of index terms. Given only a query, an IR system
has an uncertain understanding of the information need. Given the query
and document representations, a system has an uncertain guess of whether
a document has content relevant to the information need. Probability theory
provides a principled foundation for such reasoning under uncertainty. This
chapter provides one answer as to how to exploit this foundation to estimate
how likely it is that a document is relevant to an information need.

There is more than one possible retrieval model which has a probabilistic
basis. Here, we will introduce probability theory and the Probability Rank-
ing Principle (Sections 11.1–11.2), and then concentrate on the Binary Inde-
pendence Model (Section 11.3), which is the original and still most influential
probabilistic retrieval model. Finally, we will introduce related but extended
methods which use term counts, including the empirically successful Okapi
BM25 weighting scheme, and Bayesian Network models for IR (Section 11.4).
In Chapter 12, we then present the alternative probabilistic language model-
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ing approach to IR, which has been developed with considerable success in
recent years.

11.1 Review of basic probability theory

We hope that the reader has seen a little basic probability theory previously.
We will give a very quick review; some references for further reading appear
at the end of the chapter. A variable A represents an event (a subset of the
space of possible outcomes). Equivalently, we can represent the subset via a
random variable, which is a function from outcomes to real numbers; the sub-RANDOM VARIABLE

set is the domain over which the random variable A has a particular value.
Often we will not know with certainty whether an event is true in the world.
We can ask the probability of the event 0 ≤ P(A) ≤ 1. For two events A and
B, the joint event of both events occurring is described by the joint probabil-
ity P(A, B). The conditional probability P(A|B) expresses the probability of
event A given that event B occurred. The fundamental relationship between
joint and conditional probabilities is given by the chain rule:CHAIN RULE

P(A, B) = P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)(11.1)

Without making any assumptions, the probability of a joint event equals the
probability of one of the events multiplied by the probability of the other
event conditioned on knowing the first event happened.

Writing P(A) for the complement of an event, we similarly have:

P(A, B) = P(B|A)P(A)(11.2)

Probability theory also has a partition rule, which says that if an event B canPARTITION RULE

be divided into an exhaustive set of disjoint subcases, then the probability of
B is the sum of the probabilities of the subcases. A special case of this rule
gives that:

P(B) = P(A, B) + P(A, B)(11.3)

From these we can derive Bayes’ Rule for inverting conditional probabili-BAYES’ RULE

ties:

P(A|B) =
P(B|A)P(A)

P(B)
=

[
P(B|A)

∑X∈{A,A} P(B|X)P(X)

]
P(A)(11.4)

This equation can also be thought of as a way of updating probabilities. We
start off with an initial estimate of how likely the event A is when we do
not have any other information; this is the prior probability P(A). Bayes’ rulePRIOR PROBABILITY

lets us derive a posterior probability P(A|B) after having seen the evidence B,POSTERIOR
PROBABILITY



Online edition (c)
2009 Cambridge UP

11.2 The Probability Ranking Principle 221

based on the likelihood of B occurring in the two cases that A does or does not
hold.1

Finally, it is often useful to talk about the odds of an event, which provideODDS

a kind of multiplier for how probabilities change:

Odds: O(A) =
P(A)

P(A)
=

P(A)

1− P(A)
(11.5)

11.2 The Probability Ranking Principle

11.2.1 The 1/0 loss case

We assume a ranked retrieval setup as in Section 6.3, where there is a collec-
tion of documents, the user issues a query, and an ordered list of documents
is returned. We also assume a binary notion of relevance as in Chapter 8. For
a query q and a document d in the collection, let Rd,q be an indicator random
variable that says whether d is relevant with respect to a given query q. That
is, it takes on a value of 1 when the document is relevant and 0 otherwise. In
context we will often write just R for Rd,q.

Using a probabilistic model, the obvious order in which to present doc-
uments to the user is to rank documents by their estimated probability of
relevance with respect to the information need: P(R = 1|d, q). This is the ba-
sis of the Probability Ranking Principle (PRP) (van Rijsbergen 1979, 113–114):PROBABILITY

RANKING PRINCIPLE

“If a reference retrieval system’s response to each request is a ranking
of the documents in the collection in order of decreasing probability
of relevance to the user who submitted the request, where the prob-
abilities are estimated as accurately as possible on the basis of what-
ever data have been made available to the system for this purpose, the
overall effectiveness of the system to its user will be the best that is
obtainable on the basis of those data.”

In the simplest case of the PRP, there are no retrieval costs or other utility
concerns that would differentially weight actions or errors. You lose a point
for either returning a nonrelevant document or failing to return a relevant
document (such a binary situation where you are evaluated on your accuracy
is called 1/0 loss). The goal is to return the best possible results as the top k1/0 LOSS

documents, for any value of k the user chooses to examine. The PRP then
says to simply rank all documents in decreasing order of P(R = 1|d, q). If
a set of retrieval results is to be returned, rather than an ordering, the BayesBAYES OPTIMAL

DECISION RULE

1. The term likelihood is just a synonym of probability. It is the probability of an event or data
according to a model. The term is usually used when people are thinking of holding the data
fixed, while varying the model.
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Optimal Decision Rule, the decision which minimizes the risk of loss, is to
simply return documents that are more likely relevant than nonrelevant:

d is relevant iff P(R = 1|d, q) > P(R = 0|d, q)(11.6)

Theorem 11.1. The PRP is optimal, in the sense that it minimizes the expected loss
(also known as the Bayes risk) under 1/0 loss.BAYES RISK

The proof can be found in Ripley (1996). However, it requires that all proba-
bilities are known correctly. This is never the case in practice. Nevertheless,
the PRP still provides a very useful foundation for developing models of IR.

11.2.2 The PRP with retrieval costs

Suppose, instead, that we assume a model of retrieval costs. Let C1 be the
cost of not retrieving a relevant document and C0 the cost of retrieval of a
nonrelevant document. Then the Probability Ranking Principle says that if
for a specific document d and for all documents d′ not yet retrieved

C0 · P(R = 0|d)− C1 · P(R = 1|d) ≤ C0 · P(R = 0|d′)− C1 · P(R = 1|d′)(11.7)

then d is the next document to be retrieved. Such a model gives a formal
framework where we can model differential costs of false positives and false
negatives and even system performance issues at the modeling stage, rather
than simply at the evaluation stage, as we did in Section 8.6 (page 168). How-
ever, we will not further consider loss/utility models in this chapter.

11.3 The Binary Independence Model

The Binary Independence Model (BIM) we present in this section is the modelBINARY
INDEPENDENCE

MODEL
that has traditionally been used with the PRP. It introduces some simple as-
sumptions, which make estimating the probability function P(R|d, q) prac-
tical. Here, “binary” is equivalent to Boolean: documents and queries are
both represented as binary term incidence vectors. That is, a document d
is represented by the vector ~x = (x1, . . . , xM) where xt = 1 if term t is
present in document d and xt = 0 if t is not present in d. With this rep-
resentation, many possible documents have the same vector representation.
Similarly, we represent q by the incidence vector ~q (the distinction between
q and ~q is less central since commonly q is in the form of a set of words).
“Independence” means that terms are modeled as occurring in documents
independently. The model recognizes no association between terms. This
assumption is far from correct, but it nevertheless often gives satisfactory
results in practice; it is the “naive” assumption of Naive Bayes models, dis-
cussed further in Section 13.4 (page 265). Indeed, the Binary Independence
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Model is exactly the same as the multivariate Bernoulli Naive Bayes model
presented in Section 13.3 (page 263). In a sense this assumption is equivalent
to an assumption of the vector space model, where each term is a dimension
that is orthogonal to all other terms.

We will first present a model which assumes that the user has a single
step information need. As discussed in Chapter 9, seeing a range of results
might let the user refine their information need. Fortunately, as mentioned
there, it is straightforward to extend the Binary Independence Model so as to
provide a framework for relevance feedback, and we present this model in
Section 11.3.4.

To make a probabilistic retrieval strategy precise, we need to estimate how
terms in documents contribute to relevance, specifically, we wish to know
how term frequency, document frequency, document length, and other statis-
tics that we can compute influence judgments about document relevance,
and how they can be reasonably combined to estimate the probability of doc-
ument relevance. We then order documents by decreasing estimated proba-
bility of relevance.

We assume here that the relevance of each document is independent of the
relevance of other documents. As we noted in Section 8.5.1 (page 166), this
is incorrect: the assumption is especially harmful in practice if it allows a
system to return duplicate or near duplicate documents. Under the BIM, we
model the probability P(R|d, q) that a document is relevant via the probabil-
ity in terms of term incidence vectors P(R|~x,~q). Then, using Bayes rule, we
have:

P(R = 1|~x,~q) =
P(~x|R = 1,~q)P(R = 1|~q)

P(~x|~q)(11.8)

P(R = 0|~x,~q) =
P(~x|R = 0,~q)P(R = 0|~q)

P(~x|~q)

Here, P(~x|R = 1,~q) and P(~x|R = 0,~q) are the probability that if a relevant or
nonrelevant, respectively, document is retrieved, then that document’s rep-
resentation is ~x. You should think of this quantity as defined with respect to
a space of possible documents in a domain. How do we compute all these
probabilities? We never know the exact probabilities, and so we have to use
estimates: Statistics about the actual document collection are used to estimate
these probabilities. P(R = 1|~q) and P(R = 0|~q) indicate the prior probability
of retrieving a relevant or nonrelevant document respectively for a query ~q.
Again, if we knew the percentage of relevant documents in the collection,
then we could use this number to estimate P(R = 1|~q) and P(R = 0|~q). Since
a document is either relevant or nonrelevant to a query, we must have that:

P(R = 1|~x,~q) + P(R = 0|~x,~q) = 1(11.9)
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11.3.1 Deriving a ranking function for query terms

Given a query q, we wish to order returned documents by descending P(R =
1|d, q). Under the BIM, this is modeled as ordering by P(R = 1|~x,~q). Rather
than estimating this probability directly, because we are interested only in the
ranking of documents, we work with some other quantities which are easier
to compute and which give the same ordering of documents. In particular,
we can rank documents by their odds of relevance (as the odds of relevance
is monotonic with the probability of relevance). This makes things easier,
because we can ignore the common denominator in (11.8), giving:

O(R|~x,~q) =
P(R = 1|~x,~q)
P(R = 0|~x,~q)

=

P(R=1|~q)P(~x|R=1,~q)
P(~x|~q)

P(R=0|~q)P(~x|R=0,~q)
P(~x|~q)

=
P(R = 1|~q)
P(R = 0|~q) ·

P(~x|R = 1,~q)
P(~x|R = 0,~q)

(11.10)

The left term in the rightmost expression of Equation (11.10) is a constant for
a given query. Since we are only ranking documents, there is thus no need
for us to estimate it. The right-hand term does, however, require estimation,
and this initially appears to be difficult: How can we accurately estimate the
probability of an entire term incidence vector occurring? It is at this point that
we make the Naive Bayes conditional independence assumption that the presenceNAIVE BAYES

ASSUMPTION or absence of a word in a document is independent of the presence or absence
of any other word (given the query):

P(~x|R = 1,~q)
P(~x|R = 0,~q)

=
M

∏
t=1

P(xt|R = 1,~q)
P(xt|R = 0,~q)

(11.11)

So:

O(R|~x,~q) = O(R|~q) ·
M

∏
t=1

P(xt|R = 1,~q)
P(xt|R = 0,~q)

(11.12)

Since each xt is either 0 or 1, we can separate the terms to give:

O(R|~x,~q) = O(R|~q) · ∏
t:xt=1

P(xt = 1|R = 1,~q)
P(xt = 1|R = 0,~q)

· ∏
t:xt=0

P(xt = 0|R = 1,~q)
P(xt = 0|R = 0,~q)

(11.13)

Henceforth, let pt = P(xt = 1|R = 1,~q) be the probability of a term appear-
ing in a document relevant to the query, and ut = P(xt = 1|R = 0,~q) be the
probability of a term appearing in a nonrelevant document. These quantities
can be visualized in the following contingency table where the columns add
to 1:

(11.14)
document relevant (R = 1) nonrelevant (R = 0)

Term present xt = 1 pt ut

Term absent xt = 0 1− pt 1− ut
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Let us make an additional simplifying assumption that terms not occur-
ring in the query are equally likely to occur in relevant and nonrelevant doc-
uments: that is, if qt = 0 then pt = ut. (This assumption can be changed,
as when doing relevance feedback in Section 11.3.4.) Then we need only
consider terms in the products that appear in the query, and so,

O(R|~q,~x) = O(R|~q) · ∏
t:xt=qt=1

pt

ut
· ∏

t:xt=0,qt=1

1− pt

1− ut
(11.15)

The left product is over query terms found in the document and the right
product is over query terms not found in the document.

We can manipulate this expression by including the query terms found in
the document into the right product, but simultaneously dividing through
by them in the left product, so the value is unchanged. Then we have:

O(R|~q,~x) = O(R|~q) · ∏
t:xt=qt=1

pt(1− ut)

ut(1− pt)
· ∏

t:qt=1

1− pt

1− ut
(11.16)

The left product is still over query terms found in the document, but the right
product is now over all query terms. That means that this right product is a
constant for a particular query, just like the odds O(R|~q). So the only quantity
that needs to be estimated to rank documents for relevance to a query is the
left product. We can equally rank documents by the logarithm of this term,
since log is a monotonic function. The resulting quantity used for ranking is
called the Retrieval Status Value (RSV) in this model:RETRIEVAL STATUS

VALUE

RSVd = log ∏
t:xt=qt=1

pt(1− ut)

ut(1− pt)
= ∑

t:xt=qt=1
log

pt(1− ut)

ut(1− pt)
(11.17)

So everything comes down to computing the RSV. Define ct:

ct = log
pt(1− ut)

ut(1− pt)
= log

pt

(1− pt)
+ log

1− ut

ut
(11.18)

The ct terms are log odds ratios for the terms in the query. We have the
odds of the term appearing if the document is relevant (pt/(1− pt)) and the
odds of the term appearing if the document is nonrelevant (ut/(1− ut)). The
odds ratio is the ratio of two such odds, and then we finally take the log of thatODDS RATIO

quantity. The value will be 0 if a term has equal odds of appearing in relevant
and nonrelevant documents, and positive if it is more likely to appear in
relevant documents. The ct quantities function as term weights in the model,
and the document score for a query is RSVd = ∑xt=qt=1 ct. Operationally, we
sum them in accumulators for query terms appearing in documents, just as
for the vector space model calculations discussed in Section 7.1 (page 135).
We now turn to how we estimate these ct quantities for a particular collection
and query.
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11.3.2 Probability estimates in theory

For each term t, what would these ct numbers look like for the whole collec-
tion? (11.19) gives a contingency table of counts of documents in the collec-
tion, where dft is the number of documents that contain term t:

(11.19)
documents relevant nonrelevant Total

Term present xt = 1 s dft − s dft

Term absent xt = 0 S− s (N − dft)− (S− s) N − dft

Total S N − S N

Using this, pt = s/S and ut = (dft − s)/(N − S) and

ct = K(N, dft, S, s) = log
s/(S− s)

(dft − s)/((N − dft)− (S− s))
(11.20)

To avoid the possibility of zeroes (such as if every or no relevant document
has a particular term) it is fairly standard to add 1

2 to each of the quantities
in the center 4 terms of (11.19), and then to adjust the marginal counts (the
totals) accordingly (so, the bottom right cell totals N + 2). Then we have:

ĉt = K(N, dft, S, s) = log
(s + 1

2 )/(S− s + 1
2 )

(dft − s + 1
2 )/(N − dft − S + s + 1

2 )
(11.21)

Adding 1
2 in this way is a simple form of smoothing. For trials with cat-

egorical outcomes (such as noting the presence or absence of a term), one
way to estimate the probability of an event from data is simply to count the
number of times an event occurred divided by the total number of trials.
This is referred to as the relative frequency of the event. Estimating the prob-RELATIVE FREQUENCY

ability as the relative frequency is the maximum likelihood estimate (or MLE),MAXIMUM LIKELIHOOD
ESTIMATE

MLE
because this value makes the observed data maximally likely. However, if
we simply use the MLE, then the probability given to events we happened to
see is usually too high, whereas other events may be completely unseen and
giving them as a probability estimate their relative frequency of 0 is both an
underestimate, and normally breaks our models, since anything multiplied
by 0 is 0. Simultaneously decreasing the estimated probability of seen events
and increasing the probability of unseen events is referred to as smoothing.SMOOTHING

One simple way of smoothing is to add a number α to each of the observed
counts. These pseudocounts correspond to the use of a uniform distributionPSEUDOCOUNTS

over the vocabulary as a Bayesian prior, following Equation (11.4). We ini-BAYESIAN PRIOR

tially assume a uniform distribution over events, where the size of α denotes
the strength of our belief in uniformity, and we then update the probability
based on observed events. Since our belief in uniformity is weak, we use
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α = 1
2 . This is a form of maximum a posteriori (MAP) estimation, where weMAXIMUM A

POSTERIORI

MAP
choose the most likely point value for probabilities based on the prior and
the observed evidence, following Equation (11.4). We will further discuss
methods of smoothing estimated counts to give probability models in Sec-
tion 12.2.2 (page 243); the simple method of adding 1

2 to each observed count
will do for now.

11.3.3 Probability estimates in practice

Under the assumption that relevant documents are a very small percentage
of the collection, it is plausible to approximate statistics for nonrelevant doc-
uments by statistics from the whole collection. Under this assumption, ut

(the probability of term occurrence in nonrelevant documents for a query) is
dft/N and

log[(1− ut)/ut] = log[(N − dft)/dft] ≈ log N/dft(11.22)

In other words, we can provide a theoretical justification for the most fre-
quently used form of idf weighting, which we saw in Section 6.2.1.

The approximation technique in Equation (11.22) cannot easily be extended
to relevant documents. The quantity pt can be estimated in various ways:

1. We can use the frequency of term occurrence in known relevant docu-
ments (if we know some). This is the basis of probabilistic approaches to
relevance feedback weighting in a feedback loop, discussed in the next
subsection.

2. Croft and Harper (1979) proposed using a constant in their combination
match model. For instance, we might assume that pt is constant over all
terms xt in the query and that pt = 0.5. This means that each term has
even odds of appearing in a relevant document, and so the pt and (1− pt)
factors cancel out in the expression for RSV. Such an estimate is weak, but
doesn’t disagree violently with our hopes for the search terms appearing
in many but not all relevant documents. Combining this method with our
earlier approximation for ut, the document ranking is determined simply
by which query terms occur in documents scaled by their idf weighting.
For short documents (titles or abstracts) in situations in which iterative
searching is undesirable, using this weighting term alone can be quite
satisfactory, although in many other circumstances we would like to do
better.

3. Greiff (1998) argues that the constant estimate of pt in the Croft and Harper
(1979) model is theoretically problematic and not observed empirically: as
might be expected, pt is shown to rise with dft. Based on his data analysis,
a plausible proposal would be to use the estimate pt = 1

3 + 2
3 dft/N.
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Iterative methods of estimation, which combine some of the above ideas,
are discussed in the next subsection.

11.3.4 Probabilistic approaches to relevance feedback

We can use (pseudo-)relevance feedback, perhaps in an iterative process of
estimation, to get a more accurate estimate of pt. The probabilistic approach
to relevance feedback works as follows:

1. Guess initial estimates of pt and ut. This can be done using the probability
estimates of the previous section. For instance, we can assume that pt is
constant over all xt in the query, in particular, perhaps taking pt = 1

2 .

2. Use the current estimates of pt and ut to determine a best guess at the set
of relevant documents R = {d : Rd,q = 1}. Use this model to retrieve a set
of candidate relevant documents, which we present to the user.

3. We interact with the user to refine the model of R. We do this by learn-
ing from the user relevance judgments for some subset of documents V.
Based on relevance judgments, V is partitioned into two subsets: VR =
{d ∈ V, Rd,q = 1} ⊂ R and VNR = {d ∈ V, Rd,q = 0}, which is disjoint
from R.

4. We reestimate pt and ut on the basis of known relevant and nonrelevant
documents. If the sets VR and VNR are large enough, we may be able
to estimate these quantities directly from these documents as maximum
likelihood estimates:

pt = |VRt|/|VR|(11.23)

(where VRt is the set of documents in VR containing xt). In practice,
we usually need to smooth these estimates. We can do this by adding
1
2 to both the count |VRt| and to the number of relevant documents not
containing the term, giving:

pt =
|VRt|+ 1

2
|VR|+ 1

(11.24)

However, the set of documents judged by the user (V) is usually very
small, and so the resulting statistical estimate is quite unreliable (noisy),
even if the estimate is smoothed. So it is often better to combine the new
information with the original guess in a process of Bayesian updating. In
this case we have:

p
(k+1)
t =

|VRt|+ κp
(k)
t

|VR|+ κ
(11.25)
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Here p
(k)
t is the kth estimate for pt in an iterative updating process and

is used as a Bayesian prior in the next iteration with a weighting of κ.
Relating this equation back to Equation (11.4) requires a bit more proba-
bility theory than we have presented here (we need to use a beta distribu-
tion prior, conjugate to the Bernoulli random variable Xt). But the form
of the resulting equation is quite straightforward: rather than uniformly
distributing pseudocounts, we now distribute a total of κ pseudocounts
according to the previous estimate, which acts as the prior distribution.
In the absence of other evidence (and assuming that the user is perhaps
indicating roughly 5 relevant or nonrelevant documents) then a value
of around κ = 5 is perhaps appropriate. That is, the prior is strongly
weighted so that the estimate does not change too much from the evi-
dence provided by a very small number of documents.

5. Repeat the above process from step 2, generating a succession of approxi-
mations to R and hence pt, until the user is satisfied.

It is also straightforward to derive a pseudo-relevance feedback version of
this algorithm, where we simply pretend that VR = V. More briefly:

1. Assume initial estimates for pt and ut as above.

2. Determine a guess for the size of the relevant document set. If unsure, a
conservative (too small) guess is likely to be best. This motivates use of a
fixed size set V of highest ranked documents.

3. Improve our guesses for pt and ut. We choose from the methods of Equa-
tions (11.23) and (11.25) for re-estimating pt, except now based on the set
V instead of VR. If we let Vt be the subset of documents in V containing
xt and use add 1

2 smoothing, we get:

pt =
|Vt|+ 1

2
|V|+ 1

(11.26)

and if we assume that documents that are not retrieved are nonrelevant
then we can update our ut estimates as:

ut =
dft − |Vt|+ 1

2
N − |V|+ 1

(11.27)

4. Go to step 2 until the ranking of the returned results converges.

Once we have a real estimate for pt then the ct weights used in the RSV
value look almost like a tf-idf value. For instance, using Equation (11.18),



Online edition (c)
2009 Cambridge UP

230 11 Probabilistic information retrieval

Equation (11.22), and Equation (11.26), we have:

ct = log
[

pt

1− pt
· 1− ut

ut

]
≈ log

[
|Vt|+ 1

2
|V| − |Vt|+ 1

· N

dft

]
(11.28)

But things aren’t quite the same: pt/(1− pt) measures the (estimated) pro-
portion of relevant documents that the term t occurs in, not term frequency.
Moreover, if we apply log identities:

ct = log
|Vt|+ 1

2
|V| − |Vt|+ 1

+ log
N

dft
(11.29)

we see that we are now adding the two log scaled components rather than
multiplying them.

? Exercise 11.1

Work through the derivation of Equation (11.20) from Equations (11.18) and (11.19).

Exercise 11.2

What are the differences between standard vector space tf-idf weighting and the BIM
probabilistic retrieval model (in the case where no document relevance information
is available)?

Exercise 11.3 [⋆⋆]
Let Xt be a random variable indicating whether the term t appears in a document.
Suppose we have |R| relevant documents in the document collection and that Xt = 1
in s of the documents. Take the observed data to be just these observations of Xt for
each document in R. Show that the MLE for the parameter pt = P(Xt = 1|R = 1,~q),
that is, the value for pt which maximizes the probability of the observed data, is
pt = s/|R|.
Exercise 11.4

Describe the differences between vector space relevance feedback and probabilistic
relevance feedback.

11.4 An appraisal and some extensions

11.4.1 An appraisal of probabilistic models

Probabilistic methods are one of the oldest formal models in IR. Already
in the 1970s they were held out as an opportunity to place IR on a firmer
theoretical footing, and with the resurgence of probabilistic methods in com-
putational linguistics in the 1990s, that hope has returned, and probabilis-
tic methods are again one of the currently hottest topics in IR. Traditionally,
probabilistic IR has had neat ideas but the methods have never won on per-
formance. Getting reasonable approximations of the needed probabilities for
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a probabilistic IR model is possible, but it requires some major assumptions.
In the BIM these are:

• a Boolean representation of documents/queries/relevance

• term independence

• terms not in the query don’t affect the outcome

• document relevance values are independent

It is perhaps the severity of the modeling assumptions that makes achieving
good performance difficult. A general problem seems to be that probabilistic
models either require partial relevance information or else only allow for
deriving apparently inferior term weighting models.

Things started to change in the 1990s when the BM25 weighting scheme,
which we discuss in the next section, showed very good performance, and
started to be adopted as a term weighting scheme by many groups. The
difference between “vector space” and “probabilistic” IR systems is not that
great: in either case, you build an information retrieval scheme in the exact
same way that we discussed in Chapter 7. For a probabilistic IR system, it’s
just that, at the end, you score queries not by cosine similarity and tf-idf in
a vector space, but by a slightly different formula motivated by probability
theory. Indeed, sometimes people have changed an existing vector-space
IR system into an effectively probabilistic system simply by adopted term
weighting formulas from probabilistic models. In this section, we briefly
present three extensions of the traditional probabilistic model, and in the next
chapter, we look at the somewhat different probabilistic language modeling
approach to IR.

11.4.2 Tree-structured dependencies between terms

Some of the assumptions of the BIM can be removed. For example, we can
remove the assumption that terms are independent. This assumption is very
far from true in practice. A case that particularly violates this assumption is
term pairs like Hong and Kong, which are strongly dependent. But dependen-
cies can occur in various complex configurations, such as between the set of
terms New, York, England, City, Stock, Exchange, and University. van Rijsbergen
(1979) proposed a simple, plausible model which allowed a tree structure of
term dependencies, as in Figure 11.1. In this model each term can be directly
dependent on only one other term, giving a tree structure of dependencies.
When it was invented in the 1970s, estimation problems held back the practi-
cal success of this model, but the idea was reinvented as the Tree Augmented
Naive Bayes model by Friedman and Goldszmidt (1996), who used it with
some success on various machine learning data sets.
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x1

x2

x3 x4 x5

x6 x7

◮ Figure 11.1 A tree of dependencies between terms. In this graphical model rep-
resentation, a term xi is directly dependent on a term xk if there is an arrow xk → xi .

11.4.3 Okapi BM25: a non-binary model

The BIM was originally designed for short catalog records and abstracts of
fairly consistent length, and it works reasonably in these contexts, but for
modern full-text search collections, it seems clear that a model should pay
attention to term frequency and document length, as in Chapter 6. The BM25BM25 WEIGHTS

weighting scheme, often called Okapi weighting, after the system in which it wasOKAPI WEIGHTING

first implemented, was developed as a way of building a probabilistic model
sensitive to these quantities while not introducing too many additional pa-
rameters into the model (Spärck Jones et al. 2000). We will not develop the
full theory behind the model here, but just present a series of forms that
build up to the standard form now used for document scoring. The simplest
score for document d is just idf weighting of the query terms present, as in
Equation (11.22):

RSVd = ∑
t∈q

log
N

dft
(11.30)

Sometimes, an alternative version of idf is used. If we start with the formula
in Equation (11.21) but in the absence of relevance feedback information we
estimate that S = s = 0, then we get an alternative idf formulation as follows:

RSVd = ∑
t∈q

log
N − dft + 1

2

dft + 1
2

(11.31)
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This variant behaves slightly strangely: if a term occurs in over half the doc-
uments in the collection then this model gives a negative term weight, which
is presumably undesirable. But, assuming the use of a stop list, this normally
doesn’t happen, and the value for each summand can be given a floor of 0.

We can improve on Equation (11.30) by factoring in the frequency of each
term and document length:

RSVd = ∑
t∈q

log
[

N

dft

]
· (k1 + 1)tftd

k1((1− b) + b× (Ld/Lave)) + tftd
(11.32)

Here, tftd is the frequency of term t in document d, and Ld and Lave are the
length of document d and the average document length for the whole col-
lection. The variable k1 is a positive tuning parameter that calibrates the
document term frequency scaling. A k1 value of 0 corresponds to a binary
model (no term frequency), and a large value corresponds to using raw term
frequency. b is another tuning parameter (0 ≤ b ≤ 1) which determines
the scaling by document length: b = 1 corresponds to fully scaling the term
weight by the document length, while b = 0 corresponds to no length nor-
malization.

If the query is long, then we might also use similar weighting for query
terms. This is appropriate if the queries are paragraph long information
needs, but unnecessary for short queries.

RSVd = ∑
t∈q

[
log

N

dft

]
· (k1 + 1)tftd

k1((1− b) + b× (Ld/Lave)) + tftd
· (k3 + 1)tftq

k3 + tftq
(11.33)

with tftq being the frequency of term t in the query q, and k3 being another
positive tuning parameter that this time calibrates term frequency scaling
of the query. In the equation presented, there is no length normalization of
queries (it is as if b = 0 here). Length normalization of the query is unnec-
essary because retrieval is being done with respect to a single fixed query.
The tuning parameters of these formulas should ideally be set to optimize
performance on a development test collection (see page 153). That is, we
can search for values of these parameters that maximize performance on a
separate development test collection (either manually or with optimization
methods such as grid search or something more advanced), and then use
these parameters on the actual test collection. In the absence of such opti-
mization, experiments have shown reasonable values are to set k1 and k3 to
a value between 1.2 and 2 and b = 0.75.

If we have relevance judgments available, then we can use the full form of
(11.21) in place of the approximation log(N/dft) introduced in (11.22):

RSVd = ∑
t∈q

log

[[
(|VRt|+ 1

2 )/(|VNRt|+ 1
2 )

(dft − |VRt|+ 1
2 )/(N − dft − |VR|+ |VRt|+ 1

2 )

]
(11.34)
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× (k1 + 1)tftd

k1((1− b) + b(Ld/Lave)) + tftd
× (k3 + 1)tftq

k3 + tftq

]

Here, VRt, NVRt, and VR are used as in Section 11.3.4. The first part of the
expression reflects relevance feedback (or just idf weighting if no relevance
information is available), the second implements document term frequency
and document length scaling, and the third considers term frequency in the
query.

Rather than just providing a term weighting method for terms in a user’s
query, relevance feedback can also involve augmenting the query (automat-
ically or with manual review) with some (say, 10–20) of the top terms in the
known-relevant documents as ordered by the relevance factor ĉt from Equa-
tion (11.21), and the above formula can then be used with such an augmented
query vector~q.

The BM25 term weighting formulas have been used quite widely and quite
successfully across a range of collections and search tasks. Especially in the
TREC evaluations, they performed well and were widely adopted by many
groups. See Spärck Jones et al. (2000) for extensive motivation and discussion
of experimental results.

11.4.4 Bayesian network approaches to IR

Turtle and Croft (1989; 1991) introduced into information retrieval the use
of Bayesian networks (Jensen and Jensen 2001), a form of probabilistic graph-BAYESIAN NETWORKS

ical model. We skip the details because fully introducing the formalism of
Bayesian networks would require much too much space, but conceptually,
Bayesian networks use directed graphs to show probabilistic dependencies
between variables, as in Figure 11.1, and have led to the development of so-
phisticated algorithms for propagating influence so as to allow learning and
inference with arbitrary knowledge within arbitrary directed acyclic graphs.
Turtle and Croft used a sophisticated network to better model the complex
dependencies between a document and a user’s information need.

The model decomposes into two parts: a document collection network and
a query network. The document collection network is large, but can be pre-
computed: it maps from documents to terms to concepts. The concepts are
a thesaurus-based expansion of the terms appearing in the document. The
query network is relatively small but a new network needs to be built each
time a query comes in, and then attached to the document network. The
query network maps from query terms, to query subexpressions (built us-
ing probabilistic or “noisy” versions of AND and OR operators), to the user’s
information need.

The result is a flexible probabilistic network which can generalize vari-
ous simpler Boolean and probabilistic models. Indeed, this is the primary
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case of a statistical ranked retrieval model that naturally supports structured
query operators. The system allowed efficient large-scale retrieval, and was
the basis of the InQuery text retrieval system, built at the University of Mas-
sachusetts. This system performed very well in TREC evaluations and for a
time was sold commercially. On the other hand, the model still used various
approximations and independence assumptions to make parameter estima-
tion and computation possible. There has not been much follow-on work
along these lines, but we would note that this model was actually built very
early on in the modern era of using Bayesian networks, and there have been
many subsequent developments in the theory, and the time is perhaps right
for a new generation of Bayesian network-based information retrieval sys-
tems.

11.5 References and further reading

Longer introductions to probability theory can be found in most introduc-
tory probability and statistics books, such as (Grinstead and Snell 1997, Rice
2006, Ross 2006). An introduction to Bayesian utility theory can be found in
(Ripley 1996).

The probabilistic approach to IR originated in the UK in the 1950s. The
first major presentation of a probabilistic model is Maron and Kuhns (1960).
Robertson and Jones (1976) introduce the main foundations of the BIM and
van Rijsbergen (1979) presents in detail the classic BIM probabilistic model.
The idea of the PRP is variously attributed to S. E. Robertson, M. E. Maron
and W. S. Cooper (the term “Probabilistic Ordering Principle” is used in
Robertson and Jones (1976), but PRP dominates in later work). Fuhr (1992)
is a more recent presentation of probabilistic IR, which includes coverage of
other approaches such as probabilistic logics and Bayesian networks. Crestani
et al. (1998) is another survey.Spärck Jones et al. (2000) is the definitive pre-
sentation of probabilistic IR experiments by the “London school”, and Robert-
son (2005) presents a retrospective on the group’s participation in TREC eval-
uations, including detailed discussion of the Okapi BM25 scoring function
and its development. Robertson et al. (2004) extend BM25 to the case of mul-
tiple weighted fields.

The open-source Indri search engine, which is distributed with the Lemur
toolkit (http://www.lemurproject.org/) merges ideas from Bayesian inference net-
works and statistical language modeling approaches (see Chapter 12), in par-
ticular preserving the former’s support for structured query operators.
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12 Language models for information

retrieval

A common suggestion to users for coming up with good queries is to think
of words that would likely appear in a relevant document, and to use those
words as the query. The language modeling approach to IR directly models
that idea: a document is a good match to a query if the document model
is likely to generate the query, which will in turn happen if the document
contains the query words often. This approach thus provides a different real-
ization of some of the basic ideas for document ranking which we saw in Sec-
tion 6.2 (page 117). Instead of overtly modeling the probability P(R = 1|q, d)
of relevance of a document d to a query q, as in the traditional probabilis-
tic approach to IR (Chapter 11), the basic language modeling approach in-
stead builds a probabilistic language model Md from each document d, and
ranks documents based on the probability of the model generating the query:
P(q|Md).

In this chapter, we first introduce the concept of language models (Sec-
tion 12.1) and then describe the basic and most commonly used language
modeling approach to IR, the Query Likelihood Model (Section 12.2). Af-
ter some comparisons between the language modeling approach and other
approaches to IR (Section 12.3), we finish by briefly describing various ex-
tensions to the language modeling approach (Section 12.4).

12.1 Language models

12.1.1 Finite automata and language models

What do we mean by a document model generating a query? A traditional
generative model of a language, of the kind familiar from formal languageGENERATIVE MODEL

theory, can be used either to recognize or to generate strings. For example,
the finite automaton shown in Figure 12.1 can generate strings that include
the examples shown. The full set of strings that can be generated is called
the language of the automaton.1LANGUAGE
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I wish

I wish
I wish I wish
I wish I wish I wish
I wish I wish I wish I wish I wish I wish
. . .

CANNOT GENERATE: wish I wish

◮ Figure 12.1 A simple finite automaton and some of the strings in the language it
generates. → shows the start state of the automaton and a double circle indicates a
(possible) finishing state.

q1

P(STOP|q1) = 0.2

the 0.2
a 0.1
frog 0.01
toad 0.01
said 0.03
likes 0.02
that 0.04
. . . . . .

◮ Figure 12.2 A one-state finite automaton that acts as a unigram language model.
We show a partial specification of the state emission probabilities.

If instead each node has a probability distribution over generating differ-
ent terms, we have a language model. The notion of a language model is
inherently probabilistic. A language model is a function that puts a probabilityLANGUAGE MODEL

measure over strings drawn from some vocabulary. That is, for a language
model M over an alphabet Σ:

∑
s∈Σ∗

P(s) = 1(12.1)

One simple kind of language model is equivalent to a probabilistic finite
automaton consisting of just a single node with a single probability distri-
bution over producing different terms, so that ∑t∈V P(t) = 1, as shown
in Figure 12.2. After generating each word, we decide whether to stop or
to loop around and then produce another word, and so the model also re-
quires a probability of stopping in the finishing state. Such a model places a
probability distribution over any sequence of words. By construction, it also
provides a model for generating text according to its distribution.

1. Finite automata can have outputs attached to either their states or their arcs; we use states
here, because that maps directly on to the way probabilistic automata are usually formalized.
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Model M1 Model M2
the 0.2 the 0.15
a 0.1 a 0.12
frog 0.01 frog 0.0002
toad 0.01 toad 0.0001
said 0.03 said 0.03
likes 0.02 likes 0.04
that 0.04 that 0.04
dog 0.005 dog 0.01
cat 0.003 cat 0.015
monkey 0.001 monkey 0.002
. . . . . . . . . . . .

◮ Figure 12.3 Partial specification of two unigram language models.

✎ Example 12.1: To find the probability of a word sequence, we just multiply the
probabilities which the model gives to each word in the sequence, together with the
probability of continuing or stopping after producing each word. For example,

P(frog said that toad likes frog) = (0.01× 0.03× 0.04× 0.01× 0.02× 0.01)(12.2)
×(0.8× 0.8× 0.8× 0.8× 0.8× 0.8× 0.2)

≈ 0.000000000001573

As you can see, the probability of a particular string/document, is usually a very
small number! Here we stopped after generating frog the second time. The first line of
numbers are the term emission probabilities, and the second line gives the probabil-
ity of continuing or stopping after generating each word. An explicit stop probability
is needed for a finite automaton to be a well-formed language model according to
Equation (12.1). Nevertheless, most of the time, we will omit to include STOP and
(1− STOP) probabilities (as do most other authors). To compare two models for a
data set, we can calculate their likelihood ratio, which results from simply dividing theLIKELIHOOD RATIO

probability of the data according to one model by the probability of the data accord-
ing to the other model. Providing that the stop probability is fixed, its inclusion will
not alter the likelihood ratio that results from comparing the likelihood of two lan-
guage models generating a string. Hence, it will not alter the ranking of documents.2
Nevertheless, formally, the numbers will no longer truly be probabilities, but only
proportional to probabilities. See Exercise 12.4.

✎ Example 12.2: Suppose, now, that we have two language models M1 and M2,
shown partially in Figure 12.3. Each gives a probability estimate to a sequence of

2. In the IR context that we are leading up to, taking the stop probability to be fixed across
models seems reasonable. This is because we are generating queries, and the length distribution
of queries is fixed and independent of the document from which we are generating the language
model.
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terms, as already illustrated in Example 12.1. The language model that gives the
higher probability to the sequence of terms is more likely to have generated the term
sequence. This time, we will omit STOP probabilities from our calculations. For the
sequence shown, we get:

(12.3) s frog said that toad likes that dog
M1 0.01 0.03 0.04 0.01 0.02 0.04 0.005
M2 0.0002 0.03 0.04 0.0001 0.04 0.04 0.01

P(s|M1) = 0.00000000000048
P(s|M2) = 0.000000000000000384

and we see that P(s|M1) > P(s|M2). We present the formulas here in terms of prod-
ucts of probabilities, but, as is common in probabilistic applications, in practice it is
usually best to work with sums of log probabilities (cf. page 258).

12.1.2 Types of language models

How do we build probabilities over sequences of terms? We can always
use the chain rule from Equation (11.1) to decompose the probability of a
sequence of events into the probability of each successive event conditioned
on earlier events:

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t1t2)P(t4|t1t2t3)(12.4)

The simplest form of language model simply throws away all conditioning
context, and estimates each term independently. Such a model is called a
unigram language model:UNIGRAM LANGUAGE

MODEL

Puni(t1t2t3t4) = P(t1)P(t2)P(t3)P(t4)(12.5)

There are many more complex kinds of language models, such as bigramBIGRAM LANGUAGE
MODEL language models, which condition on the previous term,

Pbi(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t2)P(t4|t3)(12.6)

and even more complex grammar-based language models such as proba-
bilistic context-free grammars. Such models are vital for tasks like speech
recognition, spelling correction, and machine translation, where you need
the probability of a term conditioned on surrounding context. However,
most language-modeling work in IR has used unigram language models.
IR is not the place where you most immediately need complex language
models, since IR does not directly depend on the structure of sentences to
the extent that other tasks like speech recognition do. Unigram models are
often sufficient to judge the topic of a text. Moreover, as we shall see, IR lan-
guage models are frequently estimated from a single document and so it is
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questionable whether there is enough training data to do more. Losses from
data sparseness (see the discussion on page 260) tend to outweigh any gains
from richer models. This is an example of the bias-variance tradeoff (cf. Sec-
tion 14.6, page 308): With limited training data, a more constrained model
tends to perform better. In addition, unigram models are more efficient to
estimate and apply than higher-order models. Nevertheless, the importance
of phrase and proximity queries in IR in general suggests that future work
should make use of more sophisticated language models, and some has be-
gun to (see Section 12.5, page 252). Indeed, making this move parallels the
model of van Rijsbergen in Chapter 11 (page 231).

12.1.3 Multinomial distributions over words

Under the unigram language model the order of words is irrelevant, and so
such models are often called “bag of words” models, as discussed in Chap-
ter 6 (page 117). Even though there is no conditioning on preceding context,
this model nevertheless still gives the probability of a particular ordering of
terms. However, any other ordering of this bag of terms will have the same
probability. So, really, we have a multinomial distribution over words. So longMULTINOMIAL

DISTRIBUTION as we stick to unigram models, the language model name and motivation
could be viewed as historical rather than necessary. We could instead just
refer to the model as a multinomial model. From this perspective, the equa-
tions presented above do not present the multinomial probability of a bag of
words, since they do not sum over all possible orderings of those words, as
is done by the multinomial coefficient (the first term on the right-hand side)
in the standard presentation of a multinomial model:

P(d) =
Ld!

tft1,d!tft2,d! · · · tftM,d!
P(t1)

tft1,d P(t2)
tft2,d · · · P(tM)tftM,d(12.7)

Here, Ld = ∑1≤i≤M tfti,d is the length of document d, M is the size of the term
vocabulary, and the products are now over the terms in the vocabulary, not
the positions in the document. However, just as with STOP probabilities, in
practice we can also leave out the multinomial coefficient in our calculations,
since, for a particular bag of words, it will be a constant, and so it has no effect
on the likelihood ratio of two different models generating a particular bag of
words. Multinomial distributions also appear in Section 13.2 (page 258).

The fundamental problem in designing language models is that we do not
know what exactly we should use as the model Md. However, we do gener-
ally have a sample of text that is representative of that model. This problem
makes a lot of sense in the original, primary uses of language models. For ex-
ample, in speech recognition, we have a training sample of (spoken) text. But
we have to expect that, in the future, users will use different words and in
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different sequences, which we have never observed before, and so the model
has to generalize beyond the observed data to allow unknown words and se-
quences. This interpretation is not so clear in the IR case, where a document
is finite and usually fixed. The strategy we adopt in IR is as follows. We
pretend that the document d is only a representative sample of text drawn
from a model distribution, treating it like a fine-grained topic. We then esti-
mate a language model from this sample, and use that model to calculate the
probability of observing any word sequence, and, finally, we rank documents
according to their probability of generating the query.

? Exercise 12.1 [⋆]
Including stop probabilities in the calculation, what will the sum of the probability
estimates of all strings in the language of length 1 be? Assume that you generate a
word and then decide whether to stop or not (i.e., the null string is not part of the
language).

Exercise 12.2 [⋆]
If the stop probability is omitted from calculations, what will the sum of the scores
assigned to strings in the language of length 1 be?

Exercise 12.3 [⋆]
What is the likelihood ratio of the document according to M1 and M2 in Exam-
ple 12.2?

Exercise 12.4 [⋆]
No explicit STOP probability appeared in Example 12.2. Assuming that the STOP
probability of each model is 0.1, does this change the likelihood ratio of a document
according to the two models?

Exercise 12.5 [⋆⋆]
How might a language model be used in a spelling correction system? In particular,
consider the case of context-sensitive spelling correction, and correcting incorrect us-
ages of words, such as their in Are you their? (See Section 3.5 (page 65) for pointers to
some literature on this topic.)

12.2 The query likelihood model

12.2.1 Using query likelihood language models in IR

Language modeling is a quite general formal approach to IR, with many vari-
ant realizations. The original and basic method for using language models
in IR is the query likelihood model. In it, we construct from each document dQUERY LIKELIHOOD

MODEL in the collection a language model Md. Our goal is to rank documents by
P(d|q), where the probability of a document is interpreted as the likelihood
that it is relevant to the query. Using Bayes rule (as introduced in Section 11.1,
page 220), we have:

P(d|q) = P(q|d)P(d)/P(q)
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P(q) is the same for all documents, and so can be ignored. The prior prob-
ability of a document P(d) is often treated as uniform across all d and so it
can also be ignored, but we could implement a genuine prior which could in-
clude criteria like authority, length, genre, newness, and number of previous
people who have read the document. But, given these simplifications, we
return results ranked by simply P(q|d), the probability of the query q under
the language model derived from d. The Language Modeling approach thus
attempts to model the query generation process: Documents are ranked by
the probability that a query would be observed as a random sample from the
respective document model.

The most common way to do this is using the multinomial unigram lan-
guage model, which is equivalent to a multinomial Naive Bayes model (page 263),
where the documents are the classes, each treated in the estimation as a sep-
arate “language”. Under this model, we have that:

P(q|Md) = Kq ∏
t∈V

P(t|Md)
tft,d(12.8)

where, again Kq = Ld!/(tft1,d!tft2,d! · · · tftM ,d!) is the multinomial coefficient
for the query q, which we will henceforth ignore, since it is a constant for a
particular query.

For retrieval based on a language model (henceforth LM), we treat the
generation of queries as a random process. The approach is to

1. Infer a LM for each document.

2. Estimate P(q|Mdi
), the probability of generating the query according to

each of these document models.

3. Rank the documents according to these probabilities.

The intuition of the basic model is that the user has a prototype document in
mind, and generates a query based on words that appear in this document.
Often, users have a reasonable idea of terms that are likely to occur in doc-
uments of interest and they will choose query terms that distinguish these
documents from others in the collection.3 Collection statistics are an integral
part of the language model, rather than being used heuristically as in many
other approaches.

12.2.2 Estimating the query generation probability

In this section we describe how to estimate P(q|Md). The probability of pro-
ducing the query given the LM Md of document d using maximum likelihood

3. Of course, in other cases, they do not. The answer to this within the language modeling
approach is translation language models, as briefly discussed in Section 12.4.
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estimation (MLE) and the unigram assumption is:

P̂(q|Md) = ∏
t∈q

P̂mle(t|Md) = ∏
t∈q

tft,d

Ld
(12.9)

where Md is the language model of document d, tft,d is the (raw) term fre-
quency of term t in document d, and Ld is the number of tokens in docu-
ment d. That is, we just count up how often each word occurred, and divide
through by the total number of words in the document d. This is the same
method of calculating an MLE as we saw in Section 11.3.2 (page 226), but
now using a multinomial over word counts.

The classic problem with using language models is one of estimation (the
ˆ symbol on the P’s is used above to stress that the model is estimated):
terms appear very sparsely in documents. In particular, some words will
not have appeared in the document at all, but are possible words for the in-
formation need, which the user may have used in the query. If we estimate
P̂(t|Md) = 0 for a term missing from a document d, then we get a strict
conjunctive semantics: documents will only give a query non-zero probabil-
ity if all of the query terms appear in the document. Zero probabilities are
clearly a problem in other uses of language models, such as when predicting
the next word in a speech recognition application, because many words will
be sparsely represented in the training data. It may seem rather less clear
whether this is problematic in an IR application. This could be thought of
as a human-computer interface issue: vector space systems have generally
preferred more lenient matching, though recent web search developments
have tended more in the direction of doing searches with such conjunctive
semantics. Regardless of the approach here, there is a more general prob-
lem of estimation: occurring words are also badly estimated; in particular,
the probability of words occurring once in the document is normally over-
estimated, since their one occurrence was partly by chance. The answer to
this (as we saw in Section 11.3.2, page 226) is smoothing. But as people have
come to understand the LM approach better, it has become apparent that the
role of smoothing in this model is not only to avoid zero probabilities. The
smoothing of terms actually implements major parts of the term weighting
component (Exercise 12.8). It is not just that an unsmoothed model has con-
junctive semantics; an unsmoothed model works badly because it lacks parts
of the term weighting component.

Thus, we need to smooth probabilities in our document language mod-
els: to discount non-zero probabilities and to give some probability mass to
unseen words. There’s a wide space of approaches to smoothing probabil-
ity distributions to deal with this problem. In Section 11.3.2 (page 226), we
already discussed adding a number (1, 1/2, or a small α) to the observed
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counts and renormalizing to give a probability distribution.4 In this sec-
tion we will mention a couple of other smoothing methods, which involve
combining observed counts with a more general reference probability distri-
bution. The general approach is that a non-occurring term should be possi-
ble in a query, but its probability should be somewhat close to but no more
likely than would be expected by chance from the whole collection. That is,
if tft,d = 0 then

P̂(t|Md) ≤ cft/T

where cft is the raw count of the term in the collection, and T is the raw size
(number of tokens) of the entire collection. A simple idea that works well in
practice is to use a mixture between a document-specific multinomial distri-
bution and a multinomial distribution estimated from the entire collection:

P̂(t|d) = λP̂mle(t|Md) + (1− λ)P̂mle(t|Mc)(12.10)

where 0 < λ < 1 and Mc is a language model built from the entire doc-
ument collection. This mixes the probability from the document with the
general collection frequency of the word. Such a model is referred to as a
linear interpolation language model.5 Correctly setting λ is important to theLINEAR

INTERPOLATION good performance of this model.
An alternative is to use a language model built from the whole collection

as a prior distribution in a Bayesian updating process (rather than a uniformBAYESIAN SMOOTHING

distribution, as we saw in Section 11.3.2). We then get the following equation:

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α
(12.11)

Both of these smoothing methods have been shown to perform well in IR
experiments; we will stick with the linear interpolation smoothing method
for the rest of this section. While different in detail, they are both conceptu-
ally similar: in both cases the probability estimate for a word present in the
document combines a discounted MLE and a fraction of the estimate of its
prevalence in the whole collection, while for words not present in a docu-
ment, the estimate is just a fraction of the estimate of the prevalence of the
word in the whole collection.

The role of smoothing in LMs for IR is not simply or principally to avoid es-
timation problems. This was not clear when the models were first proposed,
but it is now understood that smoothing is essential to the good properties

4. In the context of probability theory, (re)normalization refers to summing numbers that cover
an event space and dividing them through by their sum, so that the result is a probability distri-
bution which sums to 1. This is distinct from both the concept of term normalization in Chapter 2
and the concept of length normalization in Chapter 6, which is done with a L2 norm.
5. It is also referred to as Jelinek-Mercer smoothing.
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of the models. The reason for this is explored in Exercise 12.8. The extent
of smoothing in these two models is controlled by the λ and α parameters: a
small value of λ or a large value of α means more smoothing. This parameter
can be tuned to optimize performance using a line search (or, for the linear
interpolation model, by other methods, such as the expectation maximimiza-
tion algorithm; see Section 16.5, page 368). The value need not be a constant.
One approach is to make the value a function of the query size. This is useful
because a small amount of smoothing (a “conjunctive-like” search) is more
suitable for short queries, while a lot of smoothing is more suitable for long
queries.

To summarize, the retrieval ranking for a query q under the basic LM for
IR we have been considering is given by:

P(d|q) ∝ P(d) ∏
t∈q

((1− λ)P(t|Mc) + λP(t|Md))(12.12)

This equation captures the probability that the document that the user had
in mind was in fact d.

✎ Example 12.3: Suppose the document collection contains two documents:

• d1: Xyzzy reports a profit but revenue is down

• d2: Quorus narrows quarter loss but revenue decreases further

The model will be MLE unigram models from the documents and collection, mixed
with λ = 1/2.

Suppose the query is revenue down. Then:

P(q|d1) = [(1/8 + 2/16)/2] × [(1/8 + 1/16)/2](12.13)
= 1/8× 3/32 = 3/256

P(q|d2) = [(1/8 + 2/16)/2] × [(0/8 + 1/16)/2]

= 1/8× 1/32 = 1/256

So, the ranking is d1 > d2.

12.2.3 Ponte and Croft’s Experiments

Ponte and Croft (1998) present the first experiments on the language model-
ing approach to information retrieval. Their basic approach is the model that
we have presented until now. However, we have presented an approach
where the language model is a mixture of two multinomials, much as in
(Miller et al. 1999, Hiemstra 2000) rather than Ponte and Croft’s multivari-
ate Bernoulli model. The use of multinomials has been standard in most
subsequent work in the LM approach and experimental results in IR, as
well as evidence from text classification which we consider in Section 13.3



Online edition (c)
2009 Cambridge UP

12.2 The query likelihood model 247

Precision
Rec. tf-idf LM %chg
0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.3 0.2761 0.3342 +21.0 *
0.4 0.2093 0.2572 +22.9 *
0.5 0.1558 0.2061 +32.3 *
0.6 0.1024 0.1405 +37.1 *
0.7 0.0451 0.0760 +68.7 *
0.8 0.0160 0.0432 +169.6 *
0.9 0.0033 0.0063 +89.3
1.0 0.0028 0.0050 +76.9
Ave 0.1868 0.2233 +19.55 *

◮ Figure 12.4 Results of a comparison of tf-idf with language modeling (LM) term
weighting by Ponte and Croft (1998). The version of tf-idf from the INQUERY IR sys-
tem includes length normalization of tf. The table gives an evaluation according to
11-point average precision with significance marked with a * according to a Wilcoxon
signed rank test. The language modeling approach always does better in these exper-
iments, but note that where the approach shows significant gains is at higher levels
of recall.

(page 263), suggests that it is superior. Ponte and Croft argued strongly for
the effectiveness of the term weights that come from the language modeling
approach over traditional tf-idf weights. We present a subset of their results
in Figure 12.4 where they compare tf-idf to language modeling by evaluating
TREC topics 202–250 over TREC disks 2 and 3. The queries are sentence-
length natural language queries. The language modeling approach yields
significantly better results than their baseline tf-idf based term weighting ap-
proach. And indeed the gains shown here have been extended in subsequent
work.

? Exercise 12.6 [⋆]

Consider making a language model from the following training text:

the martian has landed on the latin pop sensation ricky martin

a. Under a MLE-estimated unigram probability model, what are P(the) and P(martian)?

b. Under a MLE-estimated bigram model, what are P(sensation|pop) and P(pop|the)?
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Exercise 12.7 [⋆⋆]

Suppose we have a collection that consists of the 4 documents given in the below
table.

docID Document text
1 click go the shears boys click click click
2 click click
3 metal here
4 metal shears click here

Build a query likelihood language model for this document collection. Assume a
mixture model between the documents and the collection, with both weighted at 0.5.
Maximum likelihood estimation (mle) is used to estimate both as unigram models.
Work out the model probabilities of the queries click, shears, and hence click shears for
each document, and use those probabilities to rank the documents returned by each
query. Fill in these probabilities in the below table:

Query Doc 1 Doc 2 Doc 3 Doc 4
click
shears
click shears

What is the final ranking of the documents for the query click shears?

Exercise 12.8 [⋆⋆]

Using the calculations in Exercise 12.7 as inspiration or as examples where appro-
priate, write one sentence each describing the treatment that the model in Equa-
tion (12.10) gives to each of the following quantities. Include whether it is present
in the model or not and whether the effect is raw or scaled.

a. Term frequency in a document

b. Collection frequency of a term

c. Document frequency of a term

d. Length normalization of a term

Exercise 12.9 [⋆⋆]

In the mixture model approach to the query likelihood model (Equation (12.12)), the
probability estimate of a term is based on the term frequency of a word in a document,
and the collection frequency of the word. Doing this certainly guarantees that each
term of a query (in the vocabulary) has a non-zero chance of being generated by each
document. But it has a more subtle but important effect of implementing a form of
term weighting, related to what we saw in Chapter 6. Explain how this works. In
particular, include in your answer a concrete numeric example showing this term
weighting at work.

12.3 Language modeling versus other approaches in IR

The language modeling approach provides a novel way of looking at the
problem of text retrieval, which links it with a lot of recent work in speech
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and language processing. As Ponte and Croft (1998) emphasize, the language
modeling approach to IR provides a different approach to scoring matches
between queries and documents, and the hope is that the probabilistic lan-
guage modeling foundation improves the weights that are used, and hence
the performance of the model. The major issue is estimation of the docu-
ment model, such as choices of how to smooth it effectively. The model
has achieved very good retrieval results. Compared to other probabilistic
approaches, such as the BIM from Chapter 11, the main difference initially
appears to be that the LM approach does away with explicitly modeling rel-
evance (whereas this is the central variable evaluated in the BIM approach).
But this may not be the correct way to think about things, as some of the
papers in Section 12.5 further discuss. The LM approach assumes that docu-
ments and expressions of information needs are objects of the same type, and
assesses their match by importing the tools and methods of language mod-
eling from speech and natural language processing. The resulting model is
mathematically precise, conceptually simple, computationally tractable, and
intuitively appealing. This seems similar to the situation with XML retrieval
(Chapter 10): there the approaches that assume queries and documents are
objects of the same type are also among the most successful.

On the other hand, like all IR models, you can also raise objections to the
model. The assumption of equivalence between document and information
need representation is unrealistic. Current LM approaches use very simple
models of language, usually unigram models. Without an explicit notion of
relevance, relevance feedback is difficult to integrate into the model, as are
user preferences. It also seems necessary to move beyond a unigram model
to accommodate notions of phrase or passage matching or Boolean retrieval
operators. Subsequent work in the LM approach has looked at addressing
some of these concerns, including putting relevance back into the model and
allowing a language mismatch between the query language and the docu-
ment language.

The model has significant relations to traditional tf-idf models. Term fre-
quency is directly represented in tf-idf models, and much recent work has
recognized the importance of document length normalization. The effect of
doing a mixture of document generation probability with collection gener-
ation probability is a little like idf: terms rare in the general collection but
common in some documents will have a greater influence on the ranking of
documents. In most concrete realizations, the models share treating terms as
if they were independent. On the other hand, the intuitions are probabilistic
rather than geometric, the mathematical models are more principled rather
than heuristic, and the details of how statistics like term frequency and doc-
ument length are used differ. If you are concerned mainly with performance
numbers, recent work has shown the LM approach to be very effective in re-
trieval experiments, beating tf-idf and BM25 weights. Nevertheless, there is
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Query Query model P(t|Query)

Document Doc. model P(t|Document)

(a)

(b)
(c)

◮ Figure 12.5 Three ways of developing the language modeling approach: (a) query
likelihood, (b) document likelihood, and (c) model comparison.

perhaps still insufficient evidence that its performance so greatly exceeds that
of a well-tuned traditional vector space retrieval system as to justify chang-
ing an existing implementation.

12.4 Extended language modeling approaches

In this section we briefly mention some of the work that extends the basic
language modeling approach.

There are other ways to think of using the language modeling idea in IR
settings, and many of them have been tried in subsequent work. Rather than
looking at the probability of a document language model Md generating the
query, you can look at the probability of a query language model Mq gener-
ating the document. The main reason that doing things in this direction and
creating a document likelihood model is less appealing is that there is much lessDOCUMENT

LIKELIHOOD MODEL text available to estimate a language model based on the query text, and so
the model will be worse estimated, and will have to depend more on being
smoothed with some other language model. On the other hand, it is easy to
see how to incorporate relevance feedback into such a model: you can ex-
pand the query with terms taken from relevant documents in the usual way
and hence update the language model Mq (Zhai and Lafferty 2001a). Indeed,
with appropriate modeling choices, this approach leads to the BIM model of
Chapter 11. The relevance model of Lavrenko and Croft (2001) is an instance
of a document likelihood model, which incorporates pseudo-relevance feed-
back into a language modeling approach. It achieves very strong empirical
results.

Rather than directly generating in either direction, we can make a lan-
guage model from both the document and query, and then ask how different
these two language models are from each other. Lafferty and Zhai (2001) lay
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out these three ways of thinking about the problem, which we show in Fig-
ure 12.5, and develop a general risk minimization approach for document
retrieval. For instance, one way to model the risk of returning a document d
as relevant to a query q is to use the Kullback-Leibler (KL) divergence betweenKULLBACK-LEIBLER

DIVERGENCE their respective language models:

R(d; q) = KL(Md‖Mq) = ∑
t∈V

P(t|Mq) log
P(t|Mq)

P(t|Md)
(12.14)

KL divergence is an asymmetric divergence measure originating in informa-
tion theory, which measures how bad the probability distribution Mq is at
modeling Md (Cover and Thomas 1991, Manning and Schütze 1999). Laf-
ferty and Zhai (2001) present results suggesting that a model comparison
approach outperforms both query-likelihood and document-likelihood ap-
proaches. One disadvantage of using KL divergence as a ranking function
is that scores are not comparable across queries. This does not matter for ad
hoc retrieval, but is important in other applications such as topic tracking.
Kraaij and Spitters (2003) suggest an alternative proposal which models sim-
ilarity as a normalized log-likelihood ratio (or, equivalently, as a difference
between cross-entropies).

Basic LMs do not address issues of alternate expression, that is, synonymy,
or any deviation in use of language between queries and documents. Berger
and Lafferty (1999) introduce translation models to bridge this query-document
gap. A translation model lets you generate query words not in a document byTRANSLATION MODEL

translation to alternate terms with similar meaning. This also provides a ba-
sis for performing cross-language IR. We assume that the translation model
can be represented by a conditional probability distribution T(·|·) between
vocabulary terms. The form of the translation query generation model is
then:

P(q|Md) = ∏
t∈q

∑
v∈V

P(v|Md)T(t|v)(12.15)

The term P(v|Md) is the basic document language model, and the term T(t|v)
performs translation. This model is clearly more computationally intensive
and we need to build a translation model. The translation model is usually
built using separate resources (such as a traditional thesaurus or bilingual
dictionary or a statistical machine translation system’s translation diction-
ary), but can be built using the document collection if there are pieces of
text that naturally paraphrase or summarize other pieces of text. Candi-
date examples are documents and their titles or abstracts, or documents and
anchor-text pointing to them in a hypertext environment.

Building extended LM approaches remains an active area of research. In
general, translation models, relevance feedback models, and model compar-
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ison approaches have all been demonstrated to improve performance over
the basic query likelihood LM.

12.5 References and further reading

For more details on the basic concepts of probabilistic language models and
techniques for smoothing, see either Manning and Schütze (1999, Chapter 6)
or Jurafsky and Martin (2008, Chapter 4).

The important initial papers that originated the language modeling ap-
proach to IR are: (Ponte and Croft 1998, Hiemstra 1998, Berger and Lafferty
1999, Miller et al. 1999). Other relevant papers can be found in the next sev-
eral years of SIGIR proceedings. (Croft and Lafferty 2003) contains a col-
lection of papers from a workshop on language modeling approaches and
Hiemstra and Kraaij (2005) review one prominent thread of work on using
language modeling approaches for TREC tasks. Zhai and Lafferty (2001b)
clarify the role of smoothing in LMs for IR and present detailed empirical
comparisons of different smoothing methods. Zaragoza et al. (2003) advo-
cate using full Bayesian predictive distributions rather than MAP point es-
timates, but while they outperform Bayesian smoothing, they fail to outper-
form a linear interpolation. Zhai and Lafferty (2002) argue that a two-stage
smoothing model with first Bayesian smoothing followed by linear interpo-
lation gives a good model of the task, and performs better and more stably
than a single form of smoothing. A nice feature of the LM approach is that it
provides a convenient and principled way to put various kinds of prior infor-
mation into the model; Kraaij et al. (2002) demonstrate this by showing the
value of link information as a prior in improving web entry page retrieval
performance. As briefly discussed in Chapter 16 (page 353), Liu and Croft
(2004) show some gains by smoothing a document LM with estimates from
a cluster of similar documents; Tao et al. (2006) report larger gains by doing
document-similarity based smoothing.

Hiemstra and Kraaij (2005) present TREC results showing a LM approach
beating use of BM25 weights. Recent work has achieved some gains by
going beyond the unigram model, providing the higher order models are
smoothed with lower order models (Gao et al. 2004, Cao et al. 2005), though
the gains to date remain modest. Spärck Jones (2004) presents a critical view-
point on the rationale for the language modeling approach, but Lafferty and
Zhai (2003) argue that a unified account can be given of the probabilistic
semantics underlying both the language modeling approach presented in
this chapter and the classical probabilistic information retrieval approach of
Chapter 11. The Lemur Toolkit (http://www.lemurproject.org/) provides a flexi-
ble open source framework for investigating language modeling approaches
to IR.
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13 Text classification and Naive

Bayes

Thus far, this book has mainly discussed the process of ad hoc retrieval, where
users have transient information needs that they try to address by posing
one or more queries to a search engine. However, many users have ongoing
information needs. For example, you might need to track developments in
multicore computer chips. One way of doing this is to issue the query multi-
core AND computer AND chip against an index of recent newswire articles each
morning. In this and the following two chapters we examine the question:
How can this repetitive task be automated? To this end, many systems sup-
port standing queries. A standing query is like any other query except that itSTANDING QUERY

is periodically executed on a collection to which new documents are incre-
mentally added over time.

If your standing query is just multicore AND computer AND chip, you will tend
to miss many relevant new articles which use other terms such as multicore
processors. To achieve good recall, standing queries thus have to be refined
over time and can gradually become quite complex. In this example, using a
Boolean search engine with stemming, you might end up with a query like
(multicore OR multi-core) AND (chip OR processor OR microprocessor).

To capture the generality and scope of the problem space to which stand-
ing queries belong, we now introduce the general notion of a classificationCLASSIFICATION

problem. Given a set of classes, we seek to determine which class(es) a given
object belongs to. In the example, the standing query serves to divide new
newswire articles into the two classes: documents about multicore computer chips
and documents not about multicore computer chips. We refer to this as two-class
classification. Classification using standing queries is also called routing orROUTING

filteringand will be discussed further in Section 15.3.1 (page 335).FILTERING

A class need not be as narrowly focused as the standing query multicore
computer chips. Often, a class is a more general subject area like China or coffee.
Such more general classes are usually referred to as topics, and the classifica-
tion task is then called text classification, text categorization, topic classification,TEXT CLASSIFICATION

or topic spotting. An example for China appears in Figure 13.1. Standing
queries and topics differ in their degree of specificity, but the methods for
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solving routing, filtering, and text classification are essentially the same. We
therefore include routing and filtering under the rubric of text classification
in this and the following chapters.

The notion of classification is very general and has many applications within
and beyond information retrieval (IR). For instance, in computer vision, a
classifier may be used to divide images into classes such as landscape, por-
trait, and neither. We focus here on examples from information retrieval such
as:

• Several of the preprocessing steps necessary for indexing as discussed in
Chapter 2: detecting a document’s encoding (ASCII, Unicode UTF-8 etc;
page 20); word segmentation (Is the white space between two letters a
word boundary or not? page 24 ) ; truecasing (page 30); and identifying
the language of a document (page 46).

• The automatic detection of spam pages (which then are not included in
the search engine index).

• The automatic detection of sexually explicit content (which is included in
search results only if the user turns an option such as SafeSearch off).

• Sentiment detection or the automatic classification of a movie or productSENTIMENT DETECTION

review as positive or negative. An example application is a user search-
ing for negative reviews before buying a camera to make sure it has no
undesirable features or quality problems.

• Personal email sorting. A user may have folders like talk announcements,EMAIL SORTING

electronic bills, email from family and friends, and so on, and may want a
classifier to classify each incoming email and automatically move it to the
appropriate folder. It is easier to find messages in sorted folders than in
a very large inbox. The most common case of this application is a spam
folder that holds all suspected spam messages.

• Topic-specific or vertical search. Vertical search engines restrict searches toVERTICAL SEARCH
ENGINE a particular topic. For example, the query computer science on a vertical

search engine for the topic China will return a list of Chinese computer
science departments with higher precision and recall than the query com-
puter science China on a general purpose search engine. This is because the
vertical search engine does not include web pages in its index that contain
the term china in a different sense (e.g., referring to a hard white ceramic),
but does include relevant pages even if they do not explicitly mention the
term China.

• Finally, the ranking function in ad hoc information retrieval can also be
based on a document classifier as we will explain in Section 15.4 (page 341).
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This list shows the general importance of classification in IR. Most retrieval
systems today contain multiple components that use some form of classifier.
The classification task we will use as an example in this book is text classifi-
cation.

A computer is not essential for classification. Many classification tasks
have traditionally been solved manually. Books in a library are assigned
Library of Congress categories by a librarian. But manual classification is
expensive to scale. The multicore computer chips example illustrates one al-
ternative approach: classification by the use of standing queries – which can
be thought of as rules – most commonly written by hand. As in our exam-RULES IN TEXT

CLASSIFICATION ple (multicore OR multi-core) AND (chip OR processor OR microprocessor), rules are
sometimes equivalent to Boolean expressions.

A rule captures a certain combination of keywords that indicates a class.
Hand-coded rules have good scaling properties, but creating and maintain-
ing them over time is labor intensive. A technically skilled person (e.g., a
domain expert who is good at writing regular expressions) can create rule
sets that will rival or exceed the accuracy of the automatically generated clas-
sifiers we will discuss shortly; however, it can be hard to find someone with
this specialized skill.

Apart from manual classification and hand-crafted rules, there is a third
approach to text classification, namely, machine learning-based text classifi-
cation. It is the approach that we focus on in the next several chapters. In
machine learning, the set of rules or, more generally, the decision criterion of
the text classifier, is learned automatically from training data. This approach
is also called statistical text classification if the learning method is statistical.STATISTICAL TEXT

CLASSIFICATION In statistical text classification, we require a number of good example docu-
ments (or training documents) for each class. The need for manual classifi-
cation is not eliminated because the training documents come from a person
who has labeled them – where labeling refers to the process of annotatingLABELING

each document with its class. But labeling is arguably an easier task than
writing rules. Almost anybody can look at a document and decide whether
or not it is related to China. Sometimes such labeling is already implicitly
part of an existing workflow. For instance, you may go through the news
articles returned by a standing query each morning and give relevance feed-
back (cf. Chapter 9) by moving the relevant articles to a special folder like
multicore-processors.

We begin this chapter with a general introduction to the text classification
problem including a formal definition (Section 13.1); we then cover Naive
Bayes, a particularly simple and effective classification method (Sections 13.2–
13.4). All of the classification algorithms we study represent documents in
high-dimensional spaces. To improve the efficiency of these algorithms, it
is generally desirable to reduce the dimensionality of these spaces; to this
end, a technique known as feature selection is commonly applied in text clas-
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sification as discussed in Section 13.5. Section 13.6 covers evaluation of text
classification. In the following chapters, Chapters 14 and 15, we look at two
other families of classification methods, vector space classifiers and support
vector machines.

13.1 The text classification problem

In text classification, we are given a description d ∈ X of a document, where
X is the document space; and a fixed set of classes C = {c1, c2, . . . , cJ}. ClassesDOCUMENT SPACE

CLASS are also called categories or labels. Typically, the document space X is some
type of high-dimensional space, and the classes are human defined for the
needs of an application, as in the examples China and documents that talk
about multicore computer chips above. We are given a training set D of labeledTRAINING SET

documents 〈d, c〉,where 〈d, c〉 ∈ X× C. For example:

〈d, c〉 = 〈Beijing joins the World Trade Organization, China〉

for the one-sentence document Beijing joins the World Trade Organization and
the class (or label) China.

Using a learning method or learning algorithm, we then wish to learn a clas-LEARNING METHOD

sifier or classification function γ that maps documents to classes:CLASSIFIER

γ : X → C(13.1)

This type of learning is called supervised learning because a supervisor (theSUPERVISED LEARNING

human who defines the classes and labels training documents) serves as a
teacher directing the learning process. We denote the supervised learning
method by Γ and write Γ(D) = γ. The learning method Γ takes the training
set D as input and returns the learned classification function γ.

Most names for learning methods Γ are also used for classifiers γ. We
talk about the Naive Bayes (NB) learning method Γ when we say that “Naive
Bayes is robust,” meaning that it can be applied to many different learning
problems and is unlikely to produce classifiers that fail catastrophically. But
when we say that “Naive Bayes had an error rate of 20%,” we are describing
an experiment in which a particular NB classifier γ (which was produced by
the NB learning method) had a 20% error rate in an application.

Figure 13.1 shows an example of text classification from the Reuters-RCV1
collection, introduced in Section 4.2, page 69. There are six classes (UK, China,
. . . , sports), each with three training documents. We show a few mnemonic
words for each document’s content. The training set provides some typical
examples for each class, so that we can learn the classification function γ.
Once we have learned γ, we can apply it to the test set (or test data), for ex-TEST SET

ample, the new document first private Chinese airline whose class is unknown.
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classes:

training
set:

test
set:

regions industries subject areas

γ(d′) =China

first
private

Chinese
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team
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◮ Figure 13.1 Classes, training set, and test set in text classification .

In Figure 13.1, the classification function assigns the new document to class
γ(d) = China, which is the correct assignment.

The classes in text classification often have some interesting structure such
as the hierarchy in Figure 13.1. There are two instances each of region cate-
gories, industry categories, and subject area categories. A hierarchy can be
an important aid in solving a classification problem; see Section 15.3.2 for
further discussion. Until then, we will make the assumption in the text clas-
sification chapters that the classes form a set with no subset relationships
between them.

Definition (13.1) stipulates that a document is a member of exactly one
class. This is not the most appropriate model for the hierarchy in Figure 13.1.
For instance, a document about the 2008 Olympics should be a member of
two classes: the China class and the sports class. This type of classification
problem is referred to as an any-of problem and we will return to it in Sec-
tion 14.5 (page 306). For the time being, we only consider one-of problems
where a document is a member of exactly one class.

Our goal in text classification is high accuracy on test data or new data – for
example, the newswire articles that we will encounter tomorrow morning
in the multicore chip example. It is easy to achieve high accuracy on the
training set (e.g., we can simply memorize the labels). But high accuracy on
the training set in general does not mean that the classifier will work well on
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new data in an application. When we use the training set to learn a classifier
for test data, we make the assumption that training data and test data are
similar or from the same distribution. We defer a precise definition of this
notion to Section 14.6 (page 308).

13.2 Naive Bayes text classification

The first supervised learning method we introduce is the multinomial NaiveMULTINOMIAL NAIVE
BAYES Bayes or multinomial NB model, a probabilistic learning method. The proba-

bility of a document d being in class c is computed as

P(c|d) ∝ P(c) ∏
1≤k≤nd

P(tk|c)(13.2)

where P(tk|c) is the conditional probability of term tk occurring in a docu-
ment of class c.1 We interpret P(tk|c) as a measure of how much evidence
tk contributes that c is the correct class. P(c) is the prior probability of a
document occurring in class c. If a document’s terms do not provide clear
evidence for one class versus another, we choose the one that has a higher
prior probability. 〈t1, t2, . . . , tnd

〉 are the tokens in d that are part of the vocab-
ulary we use for classification and nd is the number of such tokens in d. For
example, 〈t1, t2, . . . , tnd

〉 for the one-sentence document Beijing and Taipei join
the WTO might be 〈Beijing, Taipei, join, WTO〉, with nd = 4, if we treat the terms
and and the as stop words.

In text classification, our goal is to find the best class for the document. The
best class in NB classification is the most likely or maximum a posteriori (MAP)MAXIMUM A

POSTERIORI CLASS class cmap:

cmap = arg max
c∈C

P̂(c|d) = arg max
c∈C

P̂(c) ∏
1≤k≤nd

P̂(tk|c).(13.3)

We write P̂ for P because we do not know the true values of the parameters
P(c) and P(tk|c), but estimate them from the training set as we will see in a
moment.

In Equation (13.3), many conditional probabilities are multiplied, one for
each position 1 ≤ k ≤ nd. This can result in a floating point underflow.
It is therefore better to perform the computation by adding logarithms of
probabilities instead of multiplying probabilities. The class with the highest
log probability score is still the most probable; log(xy) = log(x) + log(y)
and the logarithm function is monotonic. Hence, the maximization that is

1. We will explain in the next section why P(c|d) is proportional to (∝), not equal to the quantity
on the right.
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actually done in most implementations of NB is:

cmap = arg max
c∈C

[log P̂(c) + ∑
1≤k≤nd

log P̂(tk|c)].(13.4)

Equation (13.4) has a simple interpretation. Each conditional parameter
log P̂(tk|c) is a weight that indicates how good an indicator tk is for c. Sim-
ilarly, the prior log P̂(c) is a weight that indicates the relative frequency of
c. More frequent classes are more likely to be the correct class than infre-
quent classes. The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the class, and Equa-
tion (13.4) selects the class for which we have the most evidence.

We will initially work with this intuitive interpretation of the multinomial
NB model and defer a formal derivation to Section 13.4.

How do we estimate the parameters P̂(c) and P̂(tk|c)? We first try the
maximum likelihood estimate (MLE; Section 11.3.2, page 226), which is sim-
ply the relative frequency and corresponds to the most likely value of each
parameter given the training data. For the priors this estimate is:

P̂(c) =
Nc

N
,(13.5)

where Nc is the number of documents in class c and N is the total number of
documents.

We estimate the conditional probability P̂(t|c) as the relative frequency of
term t in documents belonging to class c:

P̂(t|c) =
Tct

∑t′∈V Tct′
,(13.6)

where Tct is the number of occurrences of t in training documents from class
c, including multiple occurrences of a term in a document. We have made the
positional independence assumption here, which we will discuss in more detail
in the next section: Tct is a count of occurrences in all positions k in the doc-
uments in the training set. Thus, we do not compute different estimates for
different positions and, for example, if a word occurs twice in a document,
in positions k1 and k2, then P̂(tk1

|c) = P̂(tk2 |c).
The problem with the MLE estimate is that it is zero for a term–class combi-

nation that did not occur in the training data. If the term WTO in the training
data only occurred in China documents, then the MLE estimates for the other
classes, for example UK, will be zero:

P̂(WTO|UK) = 0.

Now, the one-sentence document Britain is a member of the WTO will get a
conditional probability of zero for UK because we are multiplying the condi-
tional probabilities for all terms in Equation (13.2). Clearly, the model should
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TRAINMULTINOMIALNB(C, D)
1 V ← EXTRACTVOCABULARY(D)
2 N ← COUNTDOCS(D)
3 for each c ∈ C

4 do Nc ← COUNTDOCSINCLASS(D, c)
5 prior[c]← Nc/N
6 textc ← CONCATENATETEXTOFALLDOCSINCLASS(D, c)
7 for each t ∈ V
8 do Tct ← COUNTTOKENSOFTERM(textc, t)
9 for each t ∈ V

10 do condprob[t][c]← Tct+1
∑t′ (Tct′+1)

11 return V, prior, condprob

APPLYMULTINOMIALNB(C, V, prior, condprob, d)
1 W ← EXTRACTTOKENSFROMDOC(V, d)
2 for each c ∈ C

3 do score[c] ← log prior[c]
4 for each t ∈W
5 do score[c] += log condprob[t][c]
6 return arg maxc∈C

score[c]

◮ Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.

assign a high probability to the UK class because the term Britain occurs. The
problem is that the zero probability for WTO cannot be “conditioned away,”
no matter how strong the evidence for the class UK from other features. The
estimate is 0 because of sparseness: The training data are never large enoughSPARSENESS

to represent the frequency of rare events adequately, for example, the fre-
quency of WTO occurring in UK documents.

To eliminate zeros, we use add-one or Laplace smoothing, which simply addsADD-ONE SMOOTHING

one to each count (cf. Section 11.3.2):

P̂(t|c) =
Tct + 1

∑t′∈V(Tct′ + 1)
=

Tct + 1
(∑t′∈V Tct′) + B

,(13.7)

where B = |V| is the number of terms in the vocabulary. Add-one smoothing
can be interpreted as a uniform prior (each term occurs once for each class)
that is then updated as evidence from the training data comes in. Note that
this is a prior probability for the occurrence of a term as opposed to the prior
probability of a class which we estimate in Equation (13.5) on the document
level.
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◮ Table 13.1 Data for parameter estimation examples.
docID words in document in c = China?

training set 1 Chinese Beijing Chinese yes
2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?

◮ Table 13.2 Training and test times for NB.
mode time complexity
training Θ(|D|Lave + |C||V|)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

We have now introduced all the elements we need for training and apply-
ing an NB classifier. The complete algorithm is described in Figure 13.2.

✎ Example 13.1: For the example in Table 13.1, the multinomial parameters we
need to classify the test document are the priors P̂(c) = 3/4 and P̂(c) = 1/4 and the
following conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of textc and textc are 8
and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabu-
lary consists of six terms.

We then get:

P̂(c|d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003.

P̂(c|d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001.

Thus, the classifier assigns the test document to c = China. The reason for this clas-
sification decision is that the three occurrences of the positive indicator Chinese in d5
outweigh the occurrences of the two negative indicators Japan and Tokyo.

What is the time complexity of NB? The complexity of computing the pa-
rameters is Θ(|C||V|) because the set of parameters consists of |C||V| con-
ditional probabilities and |C| priors. The preprocessing necessary for com-
puting the parameters (extracting the vocabulary, counting terms, etc.) can
be done in one pass through the training data. The time complexity of this
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component is therefore Θ(|D|Lave), where |D| is the number of documents
and Lave is the average length of a document.

We use Θ(|D|Lave) as a notation for Θ(T) here, where T is the length of the
training collection. This is nonstandard; Θ(.) is not defined for an average.
We prefer expressing the time complexity in terms of D and Lave because
these are the primary statistics used to characterize training collections.

The time complexity of APPLYMULTINOMIALNB in Figure 13.2 is Θ(|C|La).
La and Ma are the numbers of tokens and types, respectively, in the test doc-
ument. APPLYMULTINOMIALNB can be modified to be Θ(La + |C|Ma) (Ex-
ercise 13.8). Finally, assuming that the length of test documents is bounded,
Θ(La + |C|Ma) = Θ(|C|Ma) because La < b|C|Ma for a fixed constant b.2

Table 13.2 summarizes the time complexities. In general, we have |C||V| <
|D|Lave, so both training and testing complexity are linear in the time it takes
to scan the data. Because we have to look at the data at least once, NB can be
said to have optimal time complexity. Its efficiency is one reason why NB is
a popular text classification method.

13.2.1 Relation to multinomial unigram language model

The multinomial NB model is formally identical to the multinomial unigram
language model (Section 12.2.1, page 242). In particular, Equation (13.2) is
a special case of Equation (12.12) from page 243, which we repeat here for
λ = 1:

P(d|q) ∝ P(d) ∏
t∈q

P(t|Md).(13.8)

The document d in text classification (Equation (13.2)) takes the role of the
query in language modeling (Equation (13.8)) and the classes c in text clas-
sification take the role of the documents d in language modeling. We used
Equation (13.8) to rank documents according to the probability that they are
relevant to the query q. In NB classification, we are usually only interested
in the top-ranked class.

We also used MLE estimates in Section 12.2.2 (page 243) and encountered
the problem of zero estimates owing to sparse data (page 244); but instead
of add-one smoothing, we used a mixture of two distributions to address the
problem there. Add-one smoothing is closely related to add- 1

2 smoothing in
Section 11.3.4 (page 228).

? Exercise 13.1

Why is |C||V| < |D|Lave in Table 13.2 expected to hold for most text collections?

2. Our assumption here is that the length of test documents is bounded. La would exceed
b|C|Ma for extremely long test documents.
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TRAINBERNOULLINB(C, D)
1 V ← EXTRACTVOCABULARY(D)
2 N ← COUNTDOCS(D)
3 for each c ∈ C

4 do Nc ← COUNTDOCSINCLASS(D, c)
5 prior[c]← Nc/N
6 for each t ∈ V
7 do Nct ← COUNTDOCSINCLASSCONTAININGTERM(D, c, t)
8 condprob[t][c]← (Nct + 1)/(Nc + 2)
9 return V, prior, condprob

APPLYBERNOULLINB(C, V, prior, condprob, d)
1 Vd ← EXTRACTTERMSFROMDOC(V, d)
2 for each c ∈ C

3 do score[c]← log prior[c]
4 for each t ∈ V
5 do if t ∈ Vd

6 then score[c] += log condprob[t][c]
7 else score[c] += log(1− condprob[t][c])
8 return arg maxc∈C

score[c]

◮ Figure 13.3 NB algorithm (Bernoulli model): Training and testing. The add-one
smoothing in Line 8 (top) is in analogy to Equation (13.7) with B = 2.

13.3 The Bernoulli model

There are two different ways we can set up an NB classifier. The model we in-
troduced in the previous section is the multinomial model. It generates one
term from the vocabulary in each position of the document, where we as-
sume a generative model that will be discussed in more detail in Section 13.4
(see also page 237).

An alternative to the multinomial model is the multivariate Bernoulli model
or Bernoulli model. It is equivalent to the binary independence model of Sec-BERNOULLI MODEL

tion 11.3 (page 222), which generates an indicator for each term of the vo-
cabulary, either 1 indicating presence of the term in the document or 0 indi-
cating absence. Figure 13.3 presents training and testing algorithms for the
Bernoulli model. The Bernoulli model has the same time complexity as the
multinomial model.

The different generation models imply different estimation strategies and
different classification rules. The Bernoulli model estimates P̂(t|c) as the frac-
tion of documents of class c that contain term t (Figure 13.3, TRAINBERNOULLI-
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NB, line 8). In contrast, the multinomial model estimates P̂(t|c) as the frac-
tion of tokens or fraction of positions in documents of class c that contain term
t (Equation (13.7)). When classifying a test document, the Bernoulli model
uses binary occurrence information, ignoring the number of occurrences,
whereas the multinomial model keeps track of multiple occurrences. As a
result, the Bernoulli model typically makes many mistakes when classifying
long documents. For example, it may assign an entire book to the class China
because of a single occurrence of the term China.

The models also differ in how nonoccurring terms are used in classifica-
tion. They do not affect the classification decision in the multinomial model;
but in the Bernoulli model the probability of nonoccurrence is factored in
when computing P(c|d) (Figure 13.3, APPLYBERNOULLINB, Line 7). This is
because only the Bernoulli NB model models absence of terms explicitly.

✎ Example 13.2: Applying the Bernoulli model to the example in Table 13.1, we
have the same estimates for the priors as before: P̂(c) = 3/4, P̂(c) = 1/4. The
conditional probabilities are:

P̂(Chinese|c) = (3 + 1)/(3 + 2) = 4/5

P̂(Japan|c) = P̂(Tokyo|c) = (0 + 1)/(3 + 2) = 1/5

P̂(Beijing|c) = P̂(Macao|c) = P̂(Shanghai|c) = (1 + 1)/(3 + 2) = 2/5

P̂(Chinese|c) = (1 + 1)/(1 + 2) = 2/3

P̂(Japan|c) = P̂(Tokyo|c) = (1 + 1)/(1 + 2) = 2/3

P̂(Beijing|c) = P̂(Macao|c) = P̂(Shanghai|c) = (0 + 1)/(1 + 2) = 1/3

The denominators are (3 + 2) and (1 + 2) because there are three documents in c
and one document in c and because the constant B in Equation (13.7) is 2 – there are
two cases to consider for each term, occurrence and nonoccurrence.

The scores of the test document for the two classes are

P̂(c|d5) ∝ P̂(c) · P̂(Chinese|c) · P̂(Japan|c) · P̂(Tokyo|c)
· (1− P̂(Beijing|c)) · (1− P̂(Shanghai|c)) · (1− P̂(Macao|c))

= 3/4 · 4/5 · 1/5 · 1/5 · (1−2/5) · (1−2/5) · (1−2/5)

≈ 0.005

and, analogously,

P̂(c|d5) ∝ 1/4 · 2/3 · 2/3 · 2/3 · (1−1/3) · (1−1/3) · (1−1/3)

≈ 0.022

Thus, the classifier assigns the test document to c = not-China. When looking only
at binary occurrence and not at term frequency, Japan and Tokyo are indicators for c
(2/3 > 1/5) and the conditional probabilities of Chinese for c and c are not different
enough (4/5 vs. 2/3) to affect the classification decision.
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13.4 Properties of Naive Bayes

To gain a better understanding of the two models and the assumptions they
make, let us go back and examine how we derived their classification rules in
Chapters 11 and 12. We decide class membership of a document by assigning
it to the class with the maximum a posteriori probability (cf. Section 11.3.2,
page 226), which we compute as follows:

cmap = arg max
c∈C

P(c|d)

= arg max
c∈C

P(d|c)P(c)

P(d)
(13.9)

= arg max
c∈C

P(d|c)P(c),(13.10)

where Bayes’ rule (Equation (11.4), page 220) is applied in (13.9) and we drop
the denominator in the last step because P(d) is the same for all classes and
does not affect the argmax.

We can interpret Equation (13.10) as a description of the generative process
we assume in Bayesian text classification. To generate a document, we first
choose class c with probability P(c) (top nodes in Figures 13.4 and 13.5). The
two models differ in the formalization of the second step, the generation of
the document given the class, corresponding to the conditional distribution
P(d|c):

Multinomial P(d|c) = P(〈t1, . . . , tk, . . . , tnd
〉|c)(13.11)

Bernoulli P(d|c) = P(〈e1, . . . , ei, . . . , eM〉|c),(13.12)

where 〈t1, . . . , tnd
〉 is the sequence of terms as it occurs in d (minus terms

that were excluded from the vocabulary) and 〈e1, . . . , ei, . . . , eM〉 is a binary
vector of dimensionality M that indicates for each term whether it occurs in
d or not.

It should now be clearer why we introduced the document space X in
Equation (13.1) when we defined the classification problem. A critical step
in solving a text classification problem is to choose the document represen-
tation. 〈t1, . . . , tnd

〉 and 〈e1, . . . , eM〉 are two different document representa-
tions. In the first case, X is the set of all term sequences (or, more precisely,
sequences of term tokens). In the second case, X is {0, 1}M.

We cannot use Equations (13.11) and (13.12) for text classification directly.
For the Bernoulli model, we would have to estimate 2M|C| different param-
eters, one for each possible combination of M values ei and a class. The
number of parameters in the multinomial case has the same order of magni-
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C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

◮ Figure 13.4 The multinomial NB model.

tude.3 This being a very large quantity, estimating these parameters reliably
is infeasible.

To reduce the number of parameters, we make the Naive Bayes conditionalCONDITIONAL
INDEPENDENCE

ASSUMPTION
independence assumption. We assume that attribute values are independent of
each other given the class:

Multinomial P(d|c) = P(〈t1, . . . , tnd
〉|c) = ∏

1≤k≤nd

P(Xk = tk|c)(13.13)

Bernoulli P(d|c) = P(〈e1, . . . , eM〉|c) = ∏
1≤i≤M

P(Ui = ei|c).(13.14)

We have introduced two random variables here to make the two different
generative models explicit. Xk is the random variable for position k in theRANDOM VARIABLE X

document and takes as values terms from the vocabulary. P(Xk = t|c) is the
probability that in a document of class c the term t will occur in position k. UiRANDOM VARIABLE U

is the random variable for vocabulary term i and takes as values 0 (absence)
and 1 (presence). P̂(Ui = 1|c) is the probability that in a document of class c
the term ti will occur – in any position and possibly multiple times.

We illustrate the conditional independence assumption in Figures 13.4 and 13.5.
The class China generates values for each of the five term attributes (multi-
nomial) or six binary attributes (Bernoulli) with a certain probability, inde-
pendent of the values of the other attributes. The fact that a document in the
class China contains the term Taipei does not make it more likely or less likely
that it also contains Beijing.

In reality, the conditional independence assumption does not hold for text
data. Terms are conditionally dependent on each other. But as we will dis-
cuss shortly, NB models perform well despite the conditional independence
assumption.

3. In fact, if the length of documents is not bounded, the number of parameters in the multino-
mial case is infinite.
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UAlaska=0 UBeijing=1 UIndia=0 Ujoin=1 UTaipei=1 UWTO=1

C=China

◮ Figure 13.5 The Bernoulli NB model.

Even when assuming conditional independence, we still have too many
parameters for the multinomial model if we assume a different probability
distribution for each position k in the document. The position of a term in a
document by itself does not carry information about the class. Although
there is a difference between China sues France and France sues China, the
occurrence of China in position 1 versus position 3 of the document is not
useful in NB classification because we look at each term separately. The con-
ditional independence assumption commits us to this way of processing the
evidence.

Also, if we assumed different term distributions for each position k, we
would have to estimate a different set of parameters for each k. The probabil-
ity of bean appearing as the first term of a coffee document could be different
from it appearing as the second term, and so on. This again causes problems
in estimation owing to data sparseness.

For these reasons, we make a second independence assumption for the
multinomial model, positional independence: The conditional probabilities forPOSITIONAL

INDEPENDENCE a term are the same independent of position in the document.

P(Xk1
= t|c) = P(Xk2 = t|c)

for all positions k1, k2, terms t and classes c. Thus, we have a single dis-
tribution of terms that is valid for all positions ki and we can use X as its
symbol.4 Positional independence is equivalent to adopting the bag of words
model, which we introduced in the context of ad hoc retrieval in Chapter 6
(page 117).

With conditional and positional independence assumptions, we only need
to estimate Θ(M|C|) parameters P(tk|c) (multinomial model) or P(ei|c) (Bernoulli

4. Our terminology is nonstandard. The random variable X is a categorical variable, not a multi-
nomial variable, and the corresponding NB model should perhaps be called a sequence model. We
have chosen to present this sequence model and the multinomial model in Section 13.4.1 as the
same model because they are computationally identical.
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◮ Table 13.3 Multinomial versus Bernoulli model.
multinomial model Bernoulli model

event model generation of token generation of document
random variable(s) X = t iff t occurs at given pos Ut = 1 iff t occurs in doc
document representation d = 〈t1, . . . , tk, . . . , tnd

〉, tk ∈ V d = 〈e1, . . . , ei, . . . , eM〉,
ei ∈ {0, 1}

parameter estimation P̂(X = t|c) P̂(Ui = e|c)
decision rule: maximize P̂(c) ∏1≤k≤nd

P̂(X = tk|c) P̂(c) ∏ti∈V P̂(Ui = ei|c)
multiple occurrences taken into account ignored
length of docs can handle longer docs works best for short docs
# features can handle more works best with fewer
estimate for term the P̂(X = the|c) ≈ 0.05 P̂(Uthe = 1|c) ≈ 1.0

model), one for each term–class combination, rather than a number that is
at least exponential in M, the size of the vocabulary. The independence
assumptions reduce the number of parameters to be estimated by several
orders of magnitude.

To summarize, we generate a document in the multinomial model (Fig-
ure 13.4) by first picking a class C = c with P(c) where C is a random variableRANDOM VARIABLE C

taking values from C as values. Next we generate term tk in position k with
P(Xk = tk|c) for each of the nd positions of the document. The Xk all have
the same distribution over terms for a given c. In the example in Figure 13.4,
we show the generation of 〈t1, t2, t3, t4, t5〉 = 〈Beijing, and, Taipei, join, WTO〉,
corresponding to the one-sentence document Beijing and Taipei join WTO.

For a completely specified document generation model, we would also
have to define a distribution P(nd|c) over lengths. Without it, the multino-
mial model is a token generation model rather than a document generation
model.

We generate a document in the Bernoulli model (Figure 13.5) by first pick-
ing a class C = c with P(c) and then generating a binary indicator ei for each
term ti of the vocabulary (1 ≤ i ≤ M). In the example in Figure 13.5, we
show the generation of 〈e1, e2, e3, e4, e5, e6〉 = 〈0, 1, 0, 1, 1, 1〉, corresponding,
again, to the one-sentence document Beijing and Taipei join WTO where we
have assumed that and is a stop word.

We compare the two models in Table 13.3, including estimation equations
and decision rules.

Naive Bayes is so called because the independence assumptions we have
just made are indeed very naive for a model of natural language. The condi-
tional independence assumption states that features are independent of each
other given the class. This is hardly ever true for terms in documents. In
many cases, the opposite is true. The pairs hong and kong or london and en-
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◮ Table 13.4 Correct estimation implies accurate prediction, but accurate predic-
tion does not imply correct estimation.

c1 c2 class selected
true probability P(c|d) 0.6 0.4 c1
P̂(c) ∏1≤k≤nd

P̂(tk|c) (Equation (13.13)) 0.00099 0.00001
NB estimate P̂(c|d) 0.99 0.01 c1

glish in Figure 13.7 are examples of highly dependent terms. In addition, the
multinomial model makes an assumption of positional independence. The
Bernoulli model ignores positions in documents altogether because it only
cares about absence or presence. This bag-of-words model discards all in-
formation that is communicated by the order of words in natural language
sentences. How can NB be a good text classifier when its model of natural
language is so oversimplified?

The answer is that even though the probability estimates of NB are of low
quality, its classification decisions are surprisingly good. Consider a document
d with true probabilities P(c1|d) = 0.6 and P(c2|d) = 0.4 as shown in Ta-
ble 13.4. Assume that d contains many terms that are positive indicators for
c1 and many terms that are negative indicators for c2. Thus, when using the
multinomial model in Equation (13.13), P̂(c1) ∏1≤k≤nd

P̂(tk|c1) will be much
larger than P̂(c2) ∏1≤k≤nd

P̂(tk|c2) (0.00099 vs. 0.00001 in the table). After di-
vision by 0.001 to get well-formed probabilities for P(c|d), we end up with
one estimate that is close to 1.0 and one that is close to 0.0. This is common:
The winning class in NB classification usually has a much larger probabil-
ity than the other classes and the estimates diverge very significantly from
the true probabilities. But the classification decision is based on which class
gets the highest score. It does not matter how accurate the estimates are. De-
spite the bad estimates, NB estimates a higher probability for c1 and therefore
assigns d to the correct class in Table 13.4. Correct estimation implies accurate
prediction, but accurate prediction does not imply correct estimation. NB classifiers
estimate badly, but often classify well.

Even if it is not the method with the highest accuracy for text, NB has many
virtues that make it a strong contender for text classification. It excels if there
are many equally important features that jointly contribute to the classifi-
cation decision. It is also somewhat robust to noise features (as defined in
the next section) and concept drift – the gradual change over time of the con-CONCEPT DRIFT

cept underlying a class like US president from Bill Clinton to George W. Bush
(see Section 13.7). Classifiers like kNN (Section 14.3, page 297) can be care-
fully tuned to idiosyncratic properties of a particular time period. This will
then hurt them when documents in the following time period have slightly
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◮ Table 13.5 A set of documents for which the NB independence assumptions are
problematic.

(1) He moved from London, Ontario, to London, England.
(2) He moved from London, England, to London, Ontario.
(3) He moved from England to London, Ontario.

different properties.
The Bernoulli model is particularly robust with respect to concept drift.

We will see in Figure 13.8 that it can have decent performance when using
fewer than a dozen terms. The most important indicators for a class are less
likely to change. Thus, a model that only relies on these features is more
likely to maintain a certain level of accuracy in concept drift.

NB’s main strength is its efficiency: Training and classification can be ac-
complished with one pass over the data. Because it combines efficiency with
good accuracy it is often used as a baseline in text classification research.
It is often the method of choice if (i) squeezing out a few extra percentage
points of accuracy is not worth the trouble in a text classification application,
(ii) a very large amount of training data is available and there is more to be
gained from training on a lot of data than using a better classifier on a smaller
training set, or (iii) if its robustness to concept drift can be exploited.

In this book, we discuss NB as a classifier for text. The independence as-
sumptions do not hold for text. However, it can be shown that NB is an
optimal classifier (in the sense of minimal error rate on new data) for dataOPTIMAL CLASSIFIER

where the independence assumptions do hold.

13.4.1 A variant of the multinomial model

An alternative formalization of the multinomial model represents each doc-
ument d as an M-dimensional vector of counts 〈tft1,d, . . . , tftM,d〉 where tfti,d
is the term frequency of ti in d. P(d|c) is then computed as follows (cf. Equa-
tion (12.8), page 243);

P(d|c) = P(〈tft1,d, . . . , tftM ,d〉|c) ∝ ∏
1≤i≤M

P(X = ti|c)tfti,d(13.15)

Note that we have omitted the multinomial factor. See Equation (12.8) (page 243).
Equation (13.15) is equivalent to the sequence model in Equation (13.2) as

P(X = ti|c)tfti,d = 1 for terms that do not occur in d (tfti,d = 0) and a term
that occurs tfti,d ≥ 1 times will contribute tfti,d factors both in Equation (13.2)
and in Equation (13.15).
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SELECTFEATURES(D, c, k)
1 V ← EXTRACTVOCABULARY(D)
2 L← []
3 for each t ∈ V
4 do A(t, c)← COMPUTEFEATUREUTILITY(D, t, c)
5 APPEND(L, 〈A(t, c), t〉)
6 return FEATURESWITHLARGESTVALUES(L, k)

◮ Figure 13.6 Basic feature selection algorithm for selecting the k best features.

? Exercise 13.2 [⋆]

Which of the documents in Table 13.5 have identical and different bag of words rep-
resentations for (i) the Bernoulli model (ii) the multinomial model? If there are differ-
ences, describe them.

Exercise 13.3

The rationale for the positional independence assumption is that there is no useful
information in the fact that a term occurs in position k of a document. Find exceptions.
Consider formulaic documents with a fixed document structure.

Exercise 13.4

Table 13.3 gives Bernoulli and multinomial estimates for the word the. Explain the
difference.

13.5 Feature selection

Feature selection is the process of selecting a subset of the terms occurringFEATURE SELECTION

in the training set and using only this subset as features in text classifica-
tion. Feature selection serves two main purposes. First, it makes training
and applying a classifier more efficient by decreasing the size of the effective
vocabulary. This is of particular importance for classifiers that, unlike NB,
are expensive to train. Second, feature selection often increases classifica-
tion accuracy by eliminating noise features. A noise feature is one that, whenNOISE FEATURE

added to the document representation, increases the classification error on
new data. Suppose a rare term, say arachnocentric, has no information about
a class, say China, but all instances of arachnocentric happen to occur in China
documents in our training set. Then the learning method might produce a
classifier that misassigns test documents containing arachnocentric to China.
Such an incorrect generalization from an accidental property of the training
set is called overfitting.OVERFITTING

We can view feature selection as a method for replacing a complex clas-
sifier (using all features) with a simpler one (using a subset of the features).
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It may appear counterintuitive at first that a seemingly weaker classifier is
advantageous in statistical text classification, but when discussing the bias-
variance tradeoff in Section 14.6 (page 308), we will see that weaker models
are often preferable when limited training data are available.

The basic feature selection algorithm is shown in Figure 13.6. For a given
class c, we compute a utility measure A(t, c) for each term of the vocabulary
and select the k terms that have the highest values of A(t, c). All other terms
are discarded and not used in classification. We will introduce three different
utility measures in this section: mutual information, A(t, c) = I(Ut; Cc); the
χ2 test, A(t, c) = X2(t, c); and frequency, A(t, c) = N(t, c).

Of the two NB models, the Bernoulli model is particularly sensitive to
noise features. A Bernoulli NB classifier requires some form of feature se-
lection or else its accuracy will be low.

This section mainly addresses feature selection for two-class classification
tasks like China versus not-China. Section 13.5.5 briefly discusses optimiza-
tions for systems with more than two classes.

13.5.1 Mutual information

A common feature selection method is to compute A(t, c) as the expected
mutual information (MI) of term t and class c.5 MI measures how much in-MUTUAL INFORMATION

formation the presence/absence of a term contributes to making the correct
classification decision on c. Formally:

I(U; C) = ∑
et∈{1,0}

∑
ec∈{1,0}

P(U = et, C = ec) log2
P(U = et, C = ec)

P(U = et)P(C = ec)
,(13.16)

where U is a random variable that takes values et = 1 (the document contains
term t) and et = 0 (the document does not contain t), as defined on page 266,
and C is a random variable that takes values ec = 1 (the document is in class
c) and ec = 0 (the document is not in class c). We write Ut and Cc if it is not
clear from context which term t and class c we are referring to.

ForMLEs of the probabilities, Equation (13.16) is equivalent to Equation (13.17):

I(U; C) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1
(13.17)

+
N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0

where the Ns are counts of documents that have the values of et and ec that
are indicated by the two subscripts. For example, N10 is the number of doc-

5. Take care not to confuse expected mutual information with pointwise mutual information,
which is defined as log N11/E11 where N11 and E11 are defined as in Equation (13.18). The
two measures have different properties. See Section 13.7.
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uments that contain t (et = 1) and are not in c (ec = 0). N1. = N10 + N11 is
the number of documents that contain t (et = 1) and we count documents
independent of class membership (ec ∈ {0, 1}). N = N00 + N01 + N10 + N11
is the total number of documents. An example of one of the MLE estimates
that transform Equation (13.16) into Equation (13.17) is P(U = 1, C = 1) =
N11/N.

✎ Example 13.3: Consider the class poultry and the term export in Reuters-RCV1.
The counts of the number of documents with the four possible combinations of indi-
cator values are as follows:

ec = epoultry = 1 ec = epoultry = 0
et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

After plugging these values into Equation (13.17) we get:

I(U; C) =
49

801,948
log2

801,948 · 49
(49+27,652)(49+141)

+
141

801,948
log2

801,948 · 141
(141+774,106)(49+141)

+
27,652

801,948
log2

801,948 · 27,652
(49+27,652)(27,652+774,106)

+
774,106
801,948

log2
801,948 · 774,106

(141+774,106)(27,652+774,106)

≈ 0.0001105

To select k terms t1, . . . , tk for a given class, we use the feature selection al-
gorithm in Figure 13.6: We compute the utility measure as A(t, c) = I(Ut, Cc)
and select the k terms with the largest values.

Mutual information measures how much information – in the information-
theoretic sense – a term contains about the class. If a term’s distribution is
the same in the class as it is in the collection as a whole, then I(U; C) =
0. MI reaches its maximum value if the term is a perfect indicator for class
membership, that is, if the term is present in a document if and only if the
document is in the class.

Figure 13.7 shows terms with high mutual information scores for the six
classes in Figure 13.1.6 The selected terms (e.g., london, uk, british for the class
UK) are of obvious utility for making classification decisions for their respec-
tive classes. At the bottom of the list for UK we find terms like peripherals
and tonight (not shown in the figure) that are clearly not helpful in deciding

6. Feature scores were computed on the first 100,000 documents, except for poultry, a rare class,
for which 800,000 documents were used. We have omitted numbers and other special words
from the top ten lists.
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UK
london 0.1925
uk 0.0755
british 0.0596
stg 0.0555
britain 0.0469
plc 0.0357
england 0.0238
pence 0.0212
pounds 0.0149
english 0.0126

China
china 0.0997
chinese 0.0523
beijing 0.0444
yuan 0.0344
shanghai 0.0292
hong 0.0198
kong 0.0195
xinhua 0.0155
province 0.0117
taiwan 0.0108

poultry
poultry 0.0013
meat 0.0008
chicken 0.0006
agriculture 0.0005
avian 0.0004
broiler 0.0003
veterinary 0.0003
birds 0.0003
inspection 0.0003
pathogenic 0.0003

coffee
coffee 0.0111
bags 0.0042
growers 0.0025
kg 0.0019
colombia 0.0018
brazil 0.0016
export 0.0014
exporters 0.0013
exports 0.0013
crop 0.0012

elections
election 0.0519
elections 0.0342
polls 0.0339
voters 0.0315
party 0.0303
vote 0.0299
poll 0.0225
candidate 0.0202
campaign 0.0202
democratic 0.0198

sports
soccer 0.0681
cup 0.0515
match 0.0441
matches 0.0408
played 0.0388
league 0.0386
beat 0.0301
game 0.0299
games 0.0284
team 0.0264

◮ Figure 13.7 Features with high mutual information scores for six Reuters-RCV1
classes.

whether the document is in the class. As you might expect, keeping the in-
formative terms and eliminating the non-informative ones tends to reduce
noise and improve the classifier’s accuracy.

Such an accuracy increase can be observed in Figure 13.8, which shows
F1 as a function of vocabulary size after feature selection for Reuters-RCV1.7

Comparing F1 at 132,776 features (corresponding to selection of all features)
and at 10–100 features, we see that MI feature selection increases F1 by about
0.1 for the multinomial model and by more than 0.2 for the Bernoulli model.
For the Bernoulli model, F1 peaks early, at ten features selected. At that point,
the Bernoulli model is better than the multinomial model. When basing a
classification decision on only a few features, it is more robust to consider bi-
nary occurrence only. For the multinomial model (MI feature selection), the
peak occurs later, at 100 features, and its effectiveness recovers somewhat at

7. We trained the classifiers on the first 100,000 documents and computed F1 on the next 100,000.
The graphs are averages over five classes.
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◮ Figure 13.8 Effect of feature set size on accuracy for multinomial and Bernoulli
models.

the end when we use all features. The reason is that the multinomial takes
the number of occurrences into account in parameter estimation and clas-
sification and therefore better exploits a larger number of features than the
Bernoulli model. Regardless of the differences between the two methods,
using a carefully selected subset of the features results in better effectiveness
than using all features.

13.5.2 χ
2 Feature selection

Another popular feature selection method is χ2. In statistics, the χ2 test isχ2 FEATURE SELECTION

applied to test the independence of two events, where two events A and B are
defined to be independent if P(AB) = P(A)P(B) or, equivalently, P(A|B) =INDEPENDENCE

P(A) and P(B|A) = P(B). In feature selection, the two events are occurrence
of the term and occurrence of the class. We then rank terms with respect to
the following quantity:

X2(D, t, c) = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(13.18)
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where et and ec are defined as in Equation (13.16). N is the observed frequency
in D and E the expected frequency. For example, E11 is the expected frequency
of t and c occurring together in a document assuming that term and class are
independent.

✎ Example 13.4: We first compute E11 for the data in Example 13.3:

E11 = N× P(t)× P(c) = N× N11 + N10

N
× N11 + N01

N

= N× 49 + 141
N

× 49 + 27652
N

≈ 6.6

where N is the total number of documents as before.
We compute the other Eetec in the same way:

epoultry = 1 epoultry = 0
eexport = 1 N11 = 49 E11 ≈ 6.6 N10 = 27,652 E10 ≈ 27,694.4
eexport = 0 N01 = 141 E01 ≈ 183.4 N00 = 774,106 E00 ≈ 774,063.6

Plugging these values into Equation (13.18), we get a X2 value of 284:

X2(D, t, c) = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

≈ 284

X2 is a measure of how much expected counts E and observed counts N
deviate from each other. A high value of X2 indicates that the hypothesis of
independence, which implies that expected and observed counts are similar,
is incorrect. In our example, X2 ≈ 284 > 10.83. Based on Table 13.6, we
can reject the hypothesis that poultry and export are independent with only a
0.001 chance of being wrong.8 Equivalently, we say that the outcome X2 ≈
284 > 10.83 is statistically significant at the 0.001 level. If the two events areSTATISTICAL

SIGNIFICANCE dependent, then the occurrence of the term makes the occurrence of the class
more likely (or less likely), so it should be helpful as a feature. This is the
rationale of χ2 feature selection.

An arithmetically simpler way of computing X2 is the following:

X2(D, t, c) =
(N11 + N10 + N01 + N00)× (N11N00− N10N01)

2

(N11 + N01)× (N11 + N10)× (N10 + N00)× (N01 + N00)
(13.19)

This is equivalent to Equation (13.18) (Exercise 13.14).

8. We can make this inference because, if the two events are independent, then X2 ∼ χ2, where
χ2 is the χ2 distribution. See, for example, Rice (2006).
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◮ Table 13.6 Critical values of the χ2 distribution with one degree of freedom. For
example, if the two events are independent, then P(X2 > 6.63) < 0.01. So for X2 >

6.63 the assumption of independence can be rejected with 99% confidence.
p χ2 critical value
0.1 2.71
0.05 3.84
0.01 6.63
0.005 7.88
0.001 10.83

✄ Assessing χ
2 as a feature selection method

From a statistical point of view, χ2 feature selection is problematic. For a
test with one degree of freedom, the so-called Yates correction should be
used (see Section 13.7), which makes it harder to reach statistical significance.
Also, whenever a statistical test is used multiple times, then the probability
of getting at least one error increases. If 1,000 hypotheses are rejected, each
with 0.05 error probability, then 0.05× 1000 = 50 calls of the test will be
wrong on average. However, in text classification it rarely matters whether a
few additional terms are added to the feature set or removed from it. Rather,
the relative importance of features is important. As long as χ2 feature selec-
tion only ranks features with respect to their usefulness and is not used to
make statements about statistical dependence or independence of variables,
we need not be overly concerned that it does not adhere strictly to statistical
theory.

13.5.3 Frequency-based feature selection

A third feature selection method is frequency-based feature selection, that is,
selecting the terms that are most common in the class. Frequency can be
either defined as document frequency (the number of documents in the class
c that contain the term t) or as collection frequency (the number of tokens of
t that occur in documents in c). Document frequency is more appropriate for
the Bernoulli model, collection frequency for the multinomial model.

Frequency-based feature selection selects some frequent terms that have
no specific information about the class, for example, the days of the week
(Monday, Tuesday, . . . ), which are frequent across classes in newswire text.
When many thousands of features are selected, then frequency-based fea-
ture selection often does well. Thus, if somewhat suboptimal accuracy is
acceptable, then frequency-based feature selection can be a good alternative
to more complex methods. However, Figure 13.8 is a case where frequency-
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based feature selection performs a lot worse than MI and χ2 and should not
be used.

13.5.4 Feature selection for multiple classifiers

In an operational system with a large number of classifiers, it is desirable
to select a single set of features instead of a different one for each classifier.
One way of doing this is to compute the X2 statistic for an n× 2 table where
the columns are occurrence and nonoccurrence of the term and each row
corresponds to one of the classes. We can then select the k terms with the
highest X2 statistic as before.

More commonly, feature selection statistics are first computed separately
for each class on the two-class classification task c versus c and then com-
bined. One combination method computes a single figure of merit for each
feature, for example, by averaging the values A(t, c) for feature t, and then
selects the k features with highest figures of merit. Another frequently used
combination method selects the top k/n features for each of n classifiers and
then combines these n sets into one global feature set.

Classification accuracy often decreases when selecting k common features
for a system with n classifiers as opposed to n different sets of size k. But even
if it does, the gain in efficiency owing to a common document representation
may be worth the loss in accuracy.

13.5.5 Comparison of feature selection methods

Mutual information and χ2 represent rather different feature selection meth-
ods. The independence of term t and class c can sometimes be rejected with
high confidence even if t carries little information about membership of a
document in c. This is particularly true for rare terms. If a term occurs once
in a large collection and that one occurrence is in the poultry class, then this
is statistically significant. But a single occurrence is not very informative
according to the information-theoretic definition of information. Because
its criterion is significance, χ2 selects more rare terms (which are often less
reliable indicators) than mutual information. But the selection criterion of
mutual information also does not necessarily select the terms that maximize
classification accuracy.

Despite the differences between the two methods, the classification accu-
racy of feature sets selected with χ2 and MI does not seem to differ systemat-
ically. In most text classification problems, there are a few strong indicators
and many weak indicators. As long as all strong indicators and a large num-
ber of weak indicators are selected, accuracy is expected to be good. Both
methods do this.

Figure 13.8 compares MI and χ2 feature selection for the multinomial model.
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Peak effectiveness is virtually the same for both methods. χ2 reaches this
peak later, at 300 features, probably because the rare, but highly significant
features it selects initially do not cover all documents in the class. However,
features selected later (in the range of 100–300) are of better quality than those
selected by MI.

All three methods – MI, χ2 and frequency based – are greedy methods.GREEDY FEATURE
SELECTION They may select features that contribute no incremental information over

previously selected features. In Figure 13.7, kong is selected as the seventh
term even though it is highly correlated with previously selected hong and
therefore redundant. Although such redundancy can negatively impact ac-
curacy, non-greedy methods (see Section 13.7 for references) are rarely used
in text classification due to their computational cost.

? Exercise 13.5

Consider the following frequencies for the class coffee for four terms in the first 100,000
documents of Reuters-RCV1:

term N00 N01 N10 N11
brazil 98,012 102 1835 51
council 96,322 133 3525 20
producers 98,524 119 1118 34
roasted 99,824 143 23 10

Select two of these four terms based on (i) χ2, (ii) mutual information, (iii) frequency.

13.6 Evaluation of text classification

] Historically, the classic Reuters-21578 collection was the main benchmark
for text classification evaluation. This is a collection of 21,578 newswire ar-
ticles, originally collected and labeled by Carnegie Group, Inc. and Reuters,
Ltd. in the course of developing the CONSTRUE text classification system.
It is much smaller than and predates the Reuters-RCV1 collection discussed
in Chapter 4 (page 69). The articles are assigned classes from a set of 118
topic categories. A document may be assigned several classes or none, but
the commonest case is single assignment (documents with at least one class
received an average of 1.24 classes). The standard approach to this any-of
problem (Chapter 14, page 306) is to learn 118 two-class classifiers, one for
each class, where the two-class classifier for class c is the classifier for the twoTWO-CLASS CLASSIFIER

classes c and its complement c.
For each of these classifiers, we can measure recall, precision, and accu-

racy. In recent work, people almost invariably use the ModApte split, whichMODAPTE SPLIT

includes only documents that were viewed and assessed by a human indexer,
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◮ Table 13.7 The ten largest classes in the Reuters-21578 collection with number of
documents in training and test sets.

class # train # testclass # train # test
earn 2877 1087 trade 369 119
acquisitions 1650 179 interest 347 131
money-fx 538 179 ship 197 89
grain 433 149 wheat 212 71
crude 389 189 corn 182 56

and comprises 9,603 training documents and 3,299 test documents. The dis-
tribution of documents in classes is very uneven, and some work evaluates
systems on only documents in the ten largest classes. They are listed in Ta-
ble 13.7. A typical document with topics is shown in Figure 13.9.

In Section 13.1, we stated as our goal in text classification the minimization
of classification error on test data. Classification error is 1.0 minus classifica-
tion accuracy, the proportion of correct decisions, a measure we introduced
in Section 8.3 (page 155). This measure is appropriate if the percentage of
documents in the class is high, perhaps 10% to 20% and higher. But as we
discussed in Section 8.3, accuracy is not a good measure for “small” classes
because always saying no, a strategy that defeats the purpose of building a
classifier, will achieve high accuracy. The always-no classifier is 99% accurate
for a class with relative frequency 1%. For small classes, precision, recall and
F1 are better measures.

We will use effectiveness as a generic term for measures that evaluate theEFFECTIVENESS

quality of classification decisions, including precision, recall, F1, and accu-
racy. Performance refers to the computational efficiency of classification andPERFORMANCE

EFFICIENCY IR systems in this book. However, many researchers mean effectiveness, not
efficiency of text classification when they use the term performance.

When we process a collection with several two-class classifiers (such as
Reuters-21578 with its 118 classes), we often want to compute a single ag-
gregate measure that combines the measures for individual classifiers. There
are two methods for doing this. Macroaveraging computes a simple aver-MACROAVERAGING

age over classes. Microaveraging pools per-document decisions across classes,MICROAVERAGING

and then computes an effectiveness measure on the pooled contingency ta-
ble. Table 13.8 gives an example.

The differences between the two methods can be large. Macroaveraging
gives equal weight to each class, whereas microaveraging gives equal weight
to each per-document classification decision. Because the F1 measure ignores
true negatives and its magnitude is mostly determined by the number of
true positives, large classes dominate small classes in microaveraging. In the
example, microaveraged precision (0.83) is much closer to the precision of
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<REUTERS TOPICS=’’YES’’ LEWISSPLIT=’’TRAIN’’
CGISPLIT=’’TRAINING-SET’’ OLDID=’’12981’’ NEWID=’’798 ’’>
<DATE> 2-MAR-1987 16:51:43.42</DATE>
<TOPICS><D>livestock</D><D>hog</D></TOPICS>
<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>
<DATELINE> CHICAGO, March 2 - </DATELINE><BODY>The Americ an Pork
Congress kicks off tomorrow, March 3, in Indianapolis with 1 60
of the nations pork producers from 44 member states determin ing
industry positions on a number of issues, according to the
National Pork Producers Council, NPPC.
Delegates to the three day Congress will be considering 26
resolutions concerning various issues, including the futu re
direction of farm policy and the tax law as it applies to the
agriculture sector. The delegates will also debate whether to
endorse concepts of a national PRV (pseudorabies virus) con trol
and eradication program, the NPPC said. A large
trade show, in conjunction with the congress, will feature
the latest in technology in all areas of the industry, the NPP C
added. Reuter
\&\#3;</BODY></TEXT></REUTERS>

◮ Figure 13.9 A sample document from the Reuters-21578 collection.

c2 (0.9) than to the precision of c1 (0.5) because c2 is five times larger than
c1. Microaveraged results are therefore really a measure of effectiveness on
the large classes in a test collection. To get a sense of effectiveness on small
classes, you should compute macroaveraged results.

In one-of classification (Section 14.5, page 306), microaveraged F1 is the
same as accuracy (Exercise 13.6).

Table 13.9 gives microaveraged and macroaveraged effectiveness of Naive
Bayes for the ModApte split of Reuters-21578. To give a sense of the relative
effectiveness of NB, we compare it with linear SVMs (rightmost column; see
Chapter 15), one of the most effective classifiers, but also one that is more
expensive to train than NB. NB has a microaveraged F1 of 80%, which is
9% less than the SVM (89%), a 10% relative decrease (row “micro-avg-L (90
classes)”). So there is a surprisingly small effectiveness penalty for its sim-
plicity and efficiency. However, on small classes, some of which only have on
the order of ten positive examples in the training set, NB does much worse.
Its macroaveraged F1 is 13% below the SVM, a 22% relative decrease (row
“macro-avg (90 classes)”).

The table also compares NB with the other classifiers we cover in this book:
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◮ Table 13.8 Macro- and microaveraging. “Truth” is the true class and “call” the
decision of the classifier. In this example, macroaveraged precision is [10/(10 + 10) +
90/(10 + 90)]/2 = (0.5 + 0.9)/2 = 0.7. Microaveraged precision is 100/(100 + 20) ≈
0.83.

class 1
truth: truth:
yes no

call:
yes 10 10

call:
no

10 970

class 2
truth: truth:
yes no

call:
yes 90 10

call:
no

10 890

pooled table
truth: truth:
yes no

call:
yes 100 20

call:
no

20 1860

◮ Table 13.9 Text classification effectiveness numbers on Reuters-21578 for F1 (in
percent). Results from Li and Yang (2003) (a), Joachims (1998) (b: kNN) and Dumais
et al. (1998) (b: NB, Rocchio, trees, SVM).

(a) NB Rocchio kNN SVM
micro-avg-L (90 classes) 80 85 86 89
macro-avg (90 classes) 47 59 60 60

(b) NB Rocchio kNN trees SVM
earn 96 93 97 98 98
acq 88 65 92 90 94
money-fx 57 47 78 66 75
grain 79 68 82 85 95
crude 80 70 86 85 89
trade 64 65 77 73 76
interest 65 63 74 67 78
ship 85 49 79 74 86
wheat 70 69 77 93 92
corn 65 48 78 92 90
micro-avg (top 10) 82 65 82 88 92
micro-avg-D (118 classes) 75 62 n/a n/a 87

Rocchio and kNN. In addition, we give numbers for decision trees, an impor-DECISION TREES

tant classification method we do not cover. The bottom part of the table
shows that there is considerable variation from class to class. For instance,
NB beats kNN on ship, but is much worse on money-fx.

Comparing parts (a) and (b) of the table, one is struck by the degree to
which the cited papers’ results differ. This is partly due to the fact that the
numbers in (b) are break-even scores (cf. page 161) averaged over 118 classes,
whereas the numbers in (a) are true F1 scores (computed without any know-
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ledge of the test set) averaged over ninety classes. This is unfortunately typ-
ical of what happens when comparing different results in text classification:
There are often differences in the experimental setup or the evaluation that
complicate the interpretation of the results.

These and other results have shown that the average effectiveness of NB
is uncompetitive with classifiers like SVMs when trained and tested on inde-
pendent and identically distributed (i.i.d.) data, that is, uniform data with all the
good properties of statistical sampling. However, these differences may of-
ten be invisible or even reverse themselves when working in the real world
where, usually, the training sample is drawn from a subset of the data to
which the classifier will be applied, the nature of the data drifts over time
rather than being stationary (the problem of concept drift we mentioned on
page 269), and there may well be errors in the data (among other problems).
Many practitioners have had the experience of being unable to build a fancy
classifier for a certain problem that consistently performs better than NB.

Our conclusion from the results in Table 13.9 is that, although most re-
searchers believe that an SVM is better than kNN and kNN better than NB,
the ranking of classifiers ultimately depends on the class, the document col-
lection, and the experimental setup. In text classification, there is always
more to know than simply which machine learning algorithm was used, as
we further discuss in Section 15.3 (page 334).

When performing evaluations like the one in Table 13.9, it is important to
maintain a strict separation between the training set and the test set. We can
easily make correct classification decisions on the test set by using informa-
tion we have gleaned from the test set, such as the fact that a particular term
is a good predictor in the test set (even though this is not the case in the train-
ing set). A more subtle example of using knowledge about the test set is to
try a large number of values of a parameter (e.g., the number of selected fea-
tures) and select the value that is best for the test set. As a rule, accuracy on
new data – the type of data we will encounter when we use the classifier in
an application – will be much lower than accuracy on a test set that the clas-
sifier has been tuned for. We discussed the same problem in ad hoc retrieval
in Section 8.1 (page 153).

In a clean statistical text classification experiment, you should never run
any program on or even look at the test set while developing a text classifica-
tion system. Instead, set aside a development set for testing while you developDEVELOPMENT SET

your method. When such a set serves the primary purpose of finding a good
value for a parameter, for example, the number of selected features, then it
is also called held-out data. Train the classifier on the rest of the training setHELD-OUT DATA

with different parameter values, and then select the value that gives best re-
sults on the held-out part of the training set. Ideally, at the very end, when
all parameters have been set and the method is fully specified, you run one
final experiment on the test set and publish the results. Because no informa-
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◮ Table 13.10 Data for parameter estimation exercise.
docID words in document in c = China?

training set 1 Taipei Taiwan yes
2 Macao Taiwan Shanghai yes
3 Japan Sapporo no
4 Sapporo Osaka Taiwan no

test set 5 Taiwan Taiwan Sapporo ?

tion about the test set was used in developing the classifier, the results of this
experiment should be indicative of actual performance in practice.

This ideal often cannot be met; researchers tend to evaluate several sys-
tems on the same test set over a period of several years. But it is neverthe-
less highly important to not look at the test data and to run systems on it as
sparingly as possible. Beginners often violate this rule, and their results lose
validity because they have implicitly tuned their system to the test data sim-
ply by running many variant systems and keeping the tweaks to the system
that worked best on the test set.

? Exercise 13.6 [⋆⋆]

Assume a situation where every document in the test collection has been assigned
exactly one class, and that a classifier also assigns exactly one class to each document.
This setup is called one-of classification (Section 14.5, page 306). Show that in one-of
classification (i) the total number of false positive decisions equals the total number
of false negative decisions and (ii) microaveraged F1 and accuracy are identical.

Exercise 13.7

The class priors in Figure 13.2 are computed as the fraction of documents in the class
as opposed to the fraction of tokens in the class. Why?

Exercise 13.8

The function APPLYMULTINOMIALNB in Figure 13.2 has time complexity Θ(La +
|C|La). How would you modify the function so that its time complexity is Θ(La +
|C|Ma)?

Exercise 13.9

Based on the data in Table 13.10, (i) estimate a multinomial Naive Bayes classifier, (ii)
apply the classifier to the test document, (iii) estimate a Bernoulli NB classifier, (iv)
apply the classifier to the test document. You need not estimate parameters that you
don’t need for classifying the test document.

Exercise 13.10

Your task is to classify words as English or not English. Words are generated by a
source with the following distribution:
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event word English? probability
1 ozb no 4/9
2 uzu no 4/9
3 zoo yes 1/18
4 bun yes 1/18

(i) Compute the parameters (priors and conditionals) of a multinomial NB classi-
fier that uses the letters b, n, o, u, and z as features. Assume a training set that
reflects the probability distribution of the source perfectly. Make the same indepen-
dence assumptions that are usually made for a multinomial classifier that uses terms
as features for text classification. Compute parameters using smoothing, in which
computed-zero probabilities are smoothed into probability 0.01, and computed-nonzero
probabilities are untouched. (This simplistic smoothing may cause P(A) + P(A) > 1.
Solutions are not required to correct this.) (ii) How does the classifier classify the
word zoo? (iii) Classify the word zoo using a multinomial classifier as in part (i), but
do not make the assumption of positional independence. That is, estimate separate
parameters for each position in a word. You only need to compute the parameters
you need for classifying zoo.

Exercise 13.11

What are the values of I(Ut; Cc) and X2(D, t, c) if term and class are completely inde-
pendent? What are the values if they are completely dependent?

Exercise 13.12

The feature selection method in Equation (13.16) is most appropriate for the Bernoulli
model. Why? How could one modify it for the multinomial model?

Exercise 13.13

Features can also be selected according toinformation gain (IG), which is defined as:INFORMATION GAIN

IG(D, t, c) = H(pD)− ∑
x∈{Dt+ ,Dt−}

|x|
|D|H(px)

where H is entropy, D is the training set, and Dt+ , and Dt− are the subset of D with
term t, and the subset of D without term t, respectively. pA is the class distribution
in (sub)collection A, e.g., pA(c) = 0.25, pA(c) = 0.75 if a quarter of the documents in
A are in class c.
Show that mutual information and information gain are equivalent.

Exercise 13.14

Show that the two X2 formulas (Equations (13.18) and (13.19)) are equivalent.

Exercise 13.15

In the χ2 example on page 276 we have |N11 − E11| = |N10 − E10| = |N01 − E01| =
|N00 − E00|. Show that this holds in general.

Exercise 13.16

χ2 and mutual information do not distinguish between positively and negatively cor-
related features. Because most good text classification features are positively corre-
lated (i.e., they occur more often in c than in c), one may want to explicitly rule out
the selection of negative indicators. How would you do this?
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13.7 References and further reading

General introductions to statistical classification and machine learning can be
found in (Hastie et al. 2001), (Mitchell 1997), and (Duda et al. 2000), including
many important methods (e.g., decision trees and boosting) that we do not
cover. A comprehensive review of text classification methods and results is
(Sebastiani 2002). Manning and Schütze (1999, Chapter 16) give an accessible
introduction to text classification with coverage of decision trees, perceptrons
and maximum entropy models. More information on the superlinear time
complexity of learning methods that are more accurate than Naive Bayes can
be found in (Perkins et al. 2003) and (Joachims 2006a).

Maron and Kuhns (1960) described one of the first NB text classifiers. Lewis
(1998) focuses on the history of NB classification. Bernoulli and multinomial
models and their accuracy for different collections are discussed by McCal-
lum and Nigam (1998). Eyheramendy et al. (2003) present additional NB
models. Domingos and Pazzani (1997), Friedman (1997), and Hand and Yu
(2001) analyze why NB performs well although its probability estimates are
poor. The first paper also discusses NB’s optimality when the independence
assumptions are true of the data. Pavlov et al. (2004) propose a modified
document representation that partially addresses the inappropriateness of
the independence assumptions. Bennett (2000) attributes the tendency of NB
probability estimates to be close to either 0 or 1 to the effect of document
length. Ng and Jordan (2001) show that NB is sometimes (although rarely)
superior to discriminative methods because it more quickly reaches its opti-
mal error rate. The basic NB model presented in this chapter can be tuned for
better effectiveness (Rennie et al. 2003;Kołcz and Yih 2007). The problem of
concept drift and other reasons why state-of-the-art classifiers do not always
excel in practice are discussed by Forman (2006) and Hand (2006).

Early uses of mutual information and χ2 for feature selection in text clas-
sification are Lewis and Ringuette (1994) and Schütze et al. (1995), respec-
tively. Yang and Pedersen (1997) review feature selection methods and their
impact on classification effectiveness. They find that pointwise mutual infor-POINTWISE MUTUAL

INFORMATION mation is not competitive with other methods. Yang and Pedersen refer to
expected mutual information (Equation (13.16)) as information gain (see Ex-
ercise 13.13, page 285). (Snedecor and Cochran 1989) is a good reference for
the χ2 test in statistics, including the Yates’ correction for continuity for 2× 2
tables. Dunning (1993) discusses problems of the χ2 test when counts are
small. Nongreedy feature selection techniques are described by Hastie et al.
(2001). Cohen (1995) discusses the pitfalls of using multiple significance tests
and methods to avoid them. Forman (2004) evaluates different methods for
feature selection for multiple classifiers.

David D. Lewis defines the ModApte split at www.daviddlewis.com/resources/testcollections/reuters21578/readme
based on Apté et al. (1994). Lewis (1995) describes utility measures for theUTILITY MEASURE
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evaluation of text classification systems. Yang and Liu (1999) employ signif-
icance tests in the evaluation of text classification methods.

Lewis et al. (2004) find that SVMs (Chapter 15) perform better on Reuters-
RCV1 than kNN and Rocchio (Chapter 14).
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14 Vector space classification

The document representation in Naive Bayes is a sequence of terms or a bi-
nary vector 〈e1, . . . , e|V|〉 ∈ {0, 1}|V|. In this chapter we adopt a different
representation for text classification, the vector space model, developed in
Chapter 6. It represents each document as a vector with one real-valued com-
ponent, usually a tf-idf weight, for each term. Thus, the document space X,
the domain of the classification function γ, is R|V|. This chapter introduces a
number of classification methods that operate on real-valued vectors.

The basic hypothesis in using the vector space model for classification is
the contiguity hypothesis.CONTIGUITY

HYPOTHESIS
Contiguity hypothesis. Documents in the same class form a contigu-
ous region and regions of different classes do not overlap.

There are many classification tasks, in particular the type of text classification
that we encountered in Chapter 13, where classes can be distinguished by
word patterns. For example, documents in the class China tend to have high
values on dimensions like Chinese, Beijing, and Mao whereas documents in the
class UK tend to have high values for London, British and Queen. Documents
of the two classes therefore form distinct contiguous regions as shown in
Figure 14.1 and we can draw boundaries that separate them and classify new
documents. How exactly this is done is the topic of this chapter.

Whether or not a set of documents is mapped into a contiguous region de-
pends on the particular choices we make for the document representation:
type of weighting, stop list etc. To see that the document representation is
crucial, consider the two classes written by a group vs. written by a single per-
son. Frequent occurrence of the first person pronoun I is evidence for the
single-person class. But that information is likely deleted from the document
representation if we use a stop list. If the document representation chosen
is unfavorable, the contiguity hypothesis will not hold and successful vector
space classification is not possible.

The same considerations that led us to prefer weighted representations, in
particular length-normalized tf-idf representations, in Chapters 6 and 7 also
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◮ Figure 14.1 Vector space classification into three classes.

apply here. For example, a term with 5 occurrences in a document should get
a higher weight than a term with one occurrence, but a weight 5 times larger
would give too much emphasis to the term. Unweighted and unnormalized
counts should not be used in vector space classification.

We introduce two vector space classification methods in this chapter, Roc-
chio and kNN. Rocchio classification (Section 14.2) divides the vector space
into regions centered on centroids or prototypes, one for each class, computedPROTOTYPE

as the center of mass of all documents in the class. Rocchio classification is
simple and efficient, but inaccurate if classes are not approximately spheres
with similar radii.

kNN or k nearest neighbor classification (Section 14.3) assigns the majority
class of the k nearest neighbors to a test document. kNN requires no explicit
training and can use the unprocessed training set directly in classification.
It is less efficient than other classification methods in classifying documents.
If the training set is large, then kNN can handle non-spherical and other
complex classes better than Rocchio.

A large number of text classifiers can be viewed as linear classifiers – clas-
sifiers that classify based on a simple linear combination of the features (Sec-
tion 14.4). Such classifiers partition the space of features into regions sepa-
rated by linear decision hyperplanes, in a manner to be detailed below. Because
of the bias-variance tradeoff (Section 14.6) more complex nonlinear models
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d tru
e

dprojected

x1

x2 x3 x4

x5

x′1 x′2 x′3 x′4 x′5

x′1 x′2 x′3
x′4 x′5

◮ Figure 14.2 Projections of small areas of the unit sphere preserve distances. Left:
A projection of the 2D semicircle to 1D. For the points x1, x2, x3, x4, x5 at x coordinates
−0.9,−0.2, 0, 0.2, 0.9 the distance |x2x3| ≈ 0.201 only differs by 0.5% from |x′2x′3| =
0.2; but |x1x3|/|x′1x′3| = dtrue/dprojected ≈ 1.06/0.9 ≈ 1.18 is an example of a large
distortion (18%) when projecting a large area. Right: The corresponding projection of
the 3D hemisphere to 2D.

are not systematically better than linear models. Nonlinear models have
more parameters to fit on a limited amount of training data and are more
likely to make mistakes for small and noisy data sets.

When applying two-class classifiers to problems with more than two classes,
there are one-of tasks – a document must be assigned to exactly one of several
mutually exclusive classes – and any-of tasks – a document can be assigned to
any number of classes as we will explain in Section 14.5. Two-class classifiers
solve any-of problems and can be combined to solve one-of problems.

14.1 Document representations and measures of relatedness in vec-
tor spaces

As in Chapter 6, we represent documents as vectors in R|V| in this chapter.
To illustrate properties of document vectors in vector classification, we will
render these vectors as points in a plane as in the example in Figure 14.1.
In reality, document vectors are length-normalized unit vectors that point
to the surface of a hypersphere. We can view the 2D planes in our figures
as projections onto a plane of the surface of a (hyper-)sphere as shown in
Figure 14.2. Distances on the surface of the sphere and on the projection
plane are approximately the same as long as we restrict ourselves to small
areas of the surface and choose an appropriate projection (Exercise 14.1).
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Decisions of many vector space classifiers are based on a notion of dis-
tance, e.g., when computing the nearest neighbors in kNN classification.
We will use Euclidean distance in this chapter as the underlying distance
measure. We observed earlier (Exercise 6.18, page 131) that there is a direct
correspondence between cosine similarity and Euclidean distance for length-
normalized vectors. In vector space classification, it rarely matters whether
the relatedness of two documents is expressed in terms of similarity or dis-
tance.

However, in addition to documents, centroids or averages of vectors also
play an important role in vector space classification. Centroids are not length-
normalized. For unnormalized vectors, dot product, cosine similarity and
Euclidean distance all have different behavior in general (Exercise 14.6). We
will be mostly concerned with small local regions when computing the sim-
ilarity between a document and a centroid, and the smaller the region the
more similar the behavior of the three measures is.

? Exercise 14.1

For small areas, distances on the surface of the hypersphere are approximated well
by distances on its projection (Figure 14.2) because α ≈ sin α for small angles. For
what size angle is the distortion α/ sin(α) (i) 1.01, (ii) 1.05 and (iii) 1.1?

14.2 Rocchio classification

Figure 14.1 shows three classes, China, UK and Kenya, in a two-dimensional
(2D) space. Documents are shown as circles, diamonds and X’s. The bound-
aries in the figure, which we call decision boundaries, are chosen to separateDECISION BOUNDARY

the three classes, but are otherwise arbitrary. To classify a new document,
depicted as a star in the figure, we determine the region it occurs in and as-
sign it the class of that region – China in this case. Our task in vector space
classification is to devise algorithms that compute good boundaries where
“good” means high classification accuracy on data unseen during training.

Perhaps the best-known way of computing good class boundaries is Roc-ROCCHIO
CLASSIFICATION chio classification, which uses centroids to define the boundaries. The centroid

CENTROID of a class c is computed as the vector average or center of mass of its mem-
bers:

~µ(c) =
1
|Dc| ∑

d∈Dc

~v(d)(14.1)

where Dc is the set of documents in D whose class is c: Dc = {d : 〈d, c〉 ∈ D}.
We denote the normalized vector of d by ~v(d) (Equation (6.11), page 122).
Three example centroids are shown as solid circles in Figure 14.3.

The boundary between two classes in Rocchio classification is the set of
points with equal distance from the two centroids. For example, |a1| = |a2|,
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◮ Figure 14.3 Rocchio classification.

|b1| = |b2|, and |c1| = |c2| in the figure. This set of points is always a line.
The generalization of a line in M-dimensional space is a hyperplane, which
we define as the set of points ~x that satisfy:

~wT
~x = b(14.2)

where ~w is the M-dimensional normal vector1 of the hyperplane and b is aNORMAL VECTOR

constant. This definition of hyperplanes includes lines (any line in 2D can
be defined by w1x1 + w2x2 = b) and 2-dimensional planes (any plane in 3D
can be defined by w1x1 + w2x2 + w3x3 = b). A line divides a plane in two,
a plane divides 3-dimensional space in two, and hyperplanes divide higher-
dimensional spaces in two.

Thus, the boundaries of class regions in Rocchio classification are hyper-
planes. The classification rule in Rocchio is to classify a point in accordance
with the region it falls into. Equivalently, we determine the centroid~µ(c) that
the point is closest to and then assign it to c. As an example, consider the star
in Figure 14.3. It is located in the China region of the space and Rocchio
therefore assigns it to China. We show the Rocchio algorithm in pseudocode
in Figure 14.4.

1. Recall from basic linear algebra that ~v · ~w = ~vT~w, i.e., the dot product of ~v and ~w equals the
product by matrix multiplication of the transpose of ~v and ~w.
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term weights
vector Chinese Japan Tokyo Macao Beijing Shanghai
~d1 0 0 0 0 1.0 0
~d2 0 0 0 0 0 1.0
~d3 0 0 0 1.0 0 0
~d4 0 0.71 0.71 0 0 0
~d5 0 0.71 0.71 0 0 0
~µc 0 0 0 0.33 0.33 0.33
~µc 0 0.71 0.71 0 0 0

◮ Table 14.1 Vectors and class centroids for the data in Table 13.1.

✎ Example 14.1: Table 14.1 shows the tf-idf vector representations of the five docu-
ments in Table 13.1 (page 261), using the formula (1 + log10 tft,d) log10(4/dft) if tft,d >

0 (Equation (6.14), page 127). The two class centroids are µc = 1/3 · (~d1 + ~d2 + ~d3)

and µc = 1/1 · (~d4). The distances of the test document from the centroids are
|µc − ~d5| ≈ 1.15 and |µc − ~d5| = 0.0. Thus, Rocchio assigns d5 to c.

The separating hyperplane in this case has the following parameters:

~w ≈ (0 − 0.71 − 0.71 1/3 1/3 1/3)T

b = −1/3

See Exercise 14.15 for how to compute ~w and b. We can easily verify that this hy-
perplane separates the documents as desired: ~wT ~d1 ≈ 0 · 0 +−0.71 · 0 +−0.71 · 0 +

1/3 · 0 + 1/3 · 1.0 + 1/3 · 0 = 1/3 > b (and, similarly, ~wT~di > b for i = 2 and i = 3)
and ~wT ~d4 = −1 < b. Thus, documents in c are above the hyperplane (~wT~d > b) and
documents in c are below the hyperplane (~wT~d < b).

The assignment criterion in Figure 14.4 is Euclidean distance (APPLYROC-
CHIO, line 1). An alternative is cosine similarity:

Assign d to class c = arg max
c′

cos(~µ(c′),~v(d))

As discussed in Section 14.1, the two assignment criteria will sometimes
make different classification decisions. We present the Euclidean distance
variant of Rocchio classification here because it emphasizes Rocchio’s close
correspondence to K-means clustering (Section 16.4, page 360).

Rocchio classification is a form of Rocchio relevance feedback (Section 9.1.1,
page 178). The average of the relevant documents, corresponding to the most
important component of the Rocchio vector in relevance feedback (Equa-
tion (9.3), page 182), is the centroid of the “class” of relevant documents.
We omit the query component of the Rocchio formula in Rocchio classifica-
tion since there is no query in text classification. Rocchio classification can be
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TRAINROCCHIO(C, D)
1 for each cj ∈ C

2 do Dj ← {d : 〈d, cj〉 ∈ D}
3 ~µj ← 1

|Dj| ∑d∈Dj
~v(d)

4 return {~µ1, . . . ,~µJ}

APPLYROCCHIO({~µ1, . . . ,~µJ}, d)
1 return arg minj |~µj −~v(d)|

◮ Figure 14.4 Rocchio classification: Training and testing.
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◮ Figure 14.5 The multimodal class “a” consists of two different clusters (small
upper circles centered on X’s). Rocchio classification will misclassify “o” as “a”
because it is closer to the centroid A of the “a” class than to the centroid B of the “b”
class.

applied to J > 2 classes whereas Rocchio relevance feedback is designed to
distinguish only two classes, relevant and nonrelevant.

In addition to respecting contiguity, the classes in Rocchio classification
must be approximate spheres with similar radii. In Figure 14.3, the solid
square just below the boundary between UK and Kenya is a better fit for the
class UK since UK is more scattered than Kenya. But Rocchio assigns it to
Kenya because it ignores details of the distribution of points in a class and
only uses distance from the centroid for classification.

The assumption of sphericity also does not hold in Figure 14.5. We can-
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mode time complexity
training Θ(|D|Lave + |C||V|)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

◮ Table 14.2 Training and test times for Rocchio classification. Lave is the average
number of tokens per document. La and Ma are the numbers of tokens and types,
respectively, in the test document. Computing Euclidean distance between the class
centroids and a document is Θ(|C|Ma).

not represent the “a” class well with a single prototype because it has two
clusters. Rocchio often misclassifies this type of multimodal class. A text clas-MULTIMODAL CLASS

sification example for multimodality is a country like Burma, which changed
its name to Myanmar in 1989. The two clusters before and after the name
change need not be close to each other in space. We also encountered the
problem of multimodality in relevance feedback (Section 9.1.2, page 184).

Two-class classification is another case where classes are rarely distributed
like spheres with similar radii. Most two-class classifiers distinguish between
a class like China that occupies a small region of the space and its widely
scattered complement. Assuming equal radii will result in a large number
of false positives. Most two-class classification problems therefore require a
modified decision rule of the form:

Assign d to class c iff |~µ(c)−~v(d)| < |~µ(c)−~v(d)| − b

for a positive constant b. As in Rocchio relevance feedback, the centroid of
the negative documents is often not used at all, so that the decision criterion
simplifies to |~µ(c)−~v(d)| < b′ for a positive constant b′.

Table 14.2 gives the time complexity of Rocchio classification.2 Adding all
documents to their respective (unnormalized) centroid is Θ(|D|Lave) (as op-
posed to Θ(|D||V|)) since we need only consider non-zero entries. Dividing
each vector sum by the size of its class to compute the centroid is Θ(|V|).
Overall, training time is linear in the size of the collection (cf. Exercise 13.1).
Thus, Rocchio classification and Naive Bayes have the same linear training
time complexity.

In the next section, we will introduce another vector space classification
method, kNN, that deals better with classes that have non-spherical, discon-
nected or other irregular shapes.

? Exercise 14.2 [⋆]
Show that Rocchio classification can assign a label to a document that is different from
its training set label.

2. We write Θ(|D|Lave) for Θ(T) and assume that the length of test documents is bounded as
we did on page 262.
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◮ Figure 14.6 Voronoi tessellation and decision boundaries (double lines) in 1NN
classification. The three classes are: X, circle and diamond.

14.3 k nearest neighbor

Unlike Rocchio, k nearest neighbor or kNN classification determines the deci-k NEAREST NEIGHBOR
CLASSIFICATION sion boundary locally. For 1NN we assign each document to the class of its

closest neighbor. For kNN we assign each document to the majority class of
its k closest neighbors where k is a parameter. The rationale of kNN classifi-
cation is that, based on the contiguity hypothesis, we expect a test document
d to have the same label as the training documents located in the local region
surrounding d.

Decision boundaries in 1NN are concatenated segments of the Voronoi tes-VORONOI
TESSELLATION sellation as shown in Figure 14.6. The Voronoi tessellation of a set of objects

decomposes space into Voronoi cells, where each object’s cell consists of all
points that are closer to the object than to other objects. In our case, the ob-
jects are documents. The Voronoi tessellation then partitions the plane into
|D| convex polygons, each containing its corresponding document (and no
other) as shown in Figure 14.6, where a convex polygon is a convex region in
2-dimensional space bounded by lines.

For general k ∈ N in kNN, consider the region in the space for which the
set of k nearest neighbors is the same. This again is a convex polygon and the
space is partitioned into convex polygons, within each of which the set of k
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TRAIN-KNN(C, D)
1 D′ ← PREPROCESS(D)
2 k← SELECT-K(C, D′)
3 return D′, k

APPLY-KNN(C, D
′, k, d)

1 Sk ← COMPUTENEARESTNEIGHBORS(D′, k, d)
2 for each cj ∈ C

3 do pj ← |Sk ∩ cj|/k
4 return arg maxj pj

◮ Figure 14.7 kNN training (with preprocessing) and testing. pj is an estimate for
P(cj|Sk) = P(cj |d). cj denotes the set of all documents in the class cj.

nearest neighbors is invariant (Exercise 14.11).3

1NN is not very robust. The classification decision of each test document
relies on the class of a single training document, which may be incorrectly
labeled or atypical. kNN for k > 1 is more robust. It assigns documents to
the majority class of their k closest neighbors, with ties broken randomly.

There is a probabilistic version of this kNN classification algorithm. We
can estimate the probability of membership in class c as the proportion of the
k nearest neighbors in c. Figure 14.6 gives an example for k = 3. Probabil-
ity estimates for class membership of the star are P̂(circle class|star) = 1/3,
P̂(X class|star) = 2/3, and P̂(diamond class|star) = 0. The 3nn estimate
(P̂1(circle class|star) = 1/3) and the 1nn estimate (P̂1(circle class|star) = 1)
differ with 3nn preferring the X class and 1nn preferring the circle class .

The parameter k in kNN is often chosen based on experience or knowledge
about the classification problem at hand. It is desirable for k to be odd to
make ties less likely. k = 3 and k = 5 are common choices, but much larger
values between 50 and 100 are also used. An alternative way of setting the
parameter is to select the k that gives best results on a held-out portion of the
training set.

We can also weight the “votes” of the k nearest neighbors by their cosine

3. The generalization of a polygon to higher dimensions is a polytope. A polytope is a region
in M-dimensional space bounded by (M− 1)-dimensional hyperplanes. In M dimensions, the
decision boundaries for kNN consist of segments of (M− 1)-dimensional hyperplanes that form
the Voronoi tessellation into convex polytopes for the training set of documents. The decision
criterion of assigning a document to the majority class of its k nearest neighbors applies equally
to M = 2 (tessellation into polygons) and M > 2 (tessellation into polytopes).
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kNN with preprocessing of training set
training Θ(|D|Lave)
testing Θ(La + |D|MaveMa) = Θ(|D|MaveMa)

kNN without preprocessing of training set
training Θ(1)
testing Θ(La + |D|Lave Ma) = Θ(|D|Lave Ma)

◮ Table 14.3 Training and test times for kNN classification. Mave is the average size
of the vocabulary of documents in the collection.

similarity. In this scheme, a class’s score is computed as:

score(c, d) = ∑
d′∈Sk(d)

Ic(d′) cos(~v(d′),~v(d))

where Sk(d) is the set of d’s k nearest neighbors and Ic(d′) = 1 iff d′ is in class
c and 0 otherwise. We then assign the document to the class with the highest
score. Weighting by similarities is often more accurate than simple voting.
For example, if two classes have the same number of neighbors in the top k,
the class with the more similar neighbors wins.

Figure 14.7 summarizes the kNN algorithm.

✎ Example 14.2: The distances of the test document from the four training docu-
ments in Table 14.1 are |~d1 − ~d5| = |~d2 − ~d5| = |~d3 − ~d5| ≈ 1.41 and |~d4 − ~d5| = 0.0.
d5’s nearest neighbor is therefore d4 and 1NN assigns d5 to d4’s class, c.

✄ 14.3.1 Time complexity and optimality of kNN

Table 14.3 gives the time complexity of kNN. kNN has properties that are
quite different from most other classification algorithms. Training a kNN
classifier simply consists of determining k and preprocessing documents. In
fact, if we preselect a value for k and do not preprocess, then kNN requires
no training at all. In practice, we have to perform preprocessing steps like
tokenization. It makes more sense to preprocess training documents once
as part of the training phase rather than repeatedly every time we classify a
new test document.

Test time is Θ(|D|MaveMa) for kNN. It is linear in the size of the training
set as we need to compute the distance of each training document from the
test document. Test time is independent of the number of classes J. kNN
therefore has a potential advantage for problems with large J.

In kNN classification, we do not perform any estimation of parameters as
we do in Rocchio classification (centroids) or in Naive Bayes (priors and con-
ditional probabilities). kNN simply memorizes all examples in the training
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set and then compares the test document to them. For this reason, kNN is
also called memory-based learning or instance-based learning. It is usually desir-MEMORY-BASED

LEARNING able to have as much training data as possible in machine learning. But in
kNN large training sets come with a severe efficiency penalty in classifica-
tion.

Can kNN testing be made more efficient than Θ(|D|MaveMa) or, ignoring
the length of documents, more efficient than Θ(|D|)? There are fast kNN
algorithms for small dimensionality M (Exercise 14.12). There are also ap-
proximations for large M that give error bounds for specific efficiency gains
(see Section 14.7). These approximations have not been extensively tested
for text classification applications, so it is not clear whether they can achieve
much better efficiency than Θ(|D|) without a significant loss of accuracy.

The reader may have noticed the similarity between the problem of finding
nearest neighbors of a test document and ad hoc retrieval, where we search
for the documents with the highest similarity to the query (Section 6.3.2,
page 123). In fact, the two problems are both k nearest neighbor problems
and only differ in the relative density of (the vector of) the test document
in kNN (10s or 100s of non-zero entries) versus the sparseness of (the vec-
tor of) the query in ad hoc retrieval (usually fewer than 10 non-zero entries).
We introduced the inverted index for efficient ad hoc retrieval in Section 1.1
(page 6). Is the inverted index also the solution for efficient kNN?

An inverted index restricts a search to those documents that have at least
one term in common with the query. Thus in the context of kNN, the in-
verted index will be efficient if the test document has no term overlap with a
large number of training documents. Whether this is the case depends on the
classification problem. If documents are long and no stop list is used, then
less time will be saved. But with short documents and a large stop list, an
inverted index may well cut the average test time by a factor of 10 or more.

The search time in an inverted index is a function of the length of the post-
ings lists of the terms in the query. Postings lists grow sublinearly with the
length of the collection since the vocabulary increases according to Heaps’
law – if the probability of occurrence of some terms increases, then the prob-
ability of occurrence of others must decrease. However, most new terms are
infrequent. We therefore take the complexity of inverted index search to be
Θ(T) (as discussed in Section 2.4.2, page 41) and, assuming average docu-
ment length does not change over time, Θ(T) = Θ(|D|).

As we will see in the next chapter, kNN’s effectiveness is close to that of the
most accurate learning methods in text classification (Table 15.2, page 334). A
measure of the quality of a learning method is its Bayes error rate, the averageBAYES ERROR RATE

error rate of classifiers learned by it for a particular problem. kNN is not
optimal for problems with a non-zero Bayes error rate – that is, for problems
where even the best possible classifier has a non-zero classification error. The
error of 1NN is asymptotically (as the training set increases) bounded by
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◮ Figure 14.8 There are an infinite number of hyperplanes that separate two linearly
separable classes.

twice the Bayes error rate. That is, if the optimal classifier has an error rate
of x, then 1NN has an asymptotic error rate of less than 2x. This is due to the
effect of noise – we already saw one example of noise in the form of noisy
features in Section 13.5 (page 271), but noise can also take other forms as we
will discuss in the next section. Noise affects two components of kNN: the
test document and the closest training document. The two sources of noise
are additive, so the overall error of 1NN is twice the optimal error rate. For
problems with Bayes error rate 0, the error rate of 1NN will approach 0 as
the size of the training set increases.

? Exercise 14.3

Explain why kNN handles multimodal classes better than Rocchio.

14.4 Linear versus nonlinear classifiers

In this section, we show that the two learning methods Naive Bayes and
Rocchio are instances of linear classifiers, the perhaps most important group
of text classifiers, and contrast them with nonlinear classifiers. To simplify
the discussion, we will only consider two-class classifiers in this section and
define a linear classifier as a two-class classifier that decides class membershipLINEAR CLASSIFIER

by comparing a linear combination of the features to a threshold.
In two dimensions, a linear classifier is a line. Five examples are shown

in Figure 14.8. These lines have the functional form w1x1 + w2x2 = b. The
classification rule of a linear classifier is to assign a document to c if w1x1 +
w2x2 > b and to c if w1x1 + w2x2 ≤ b. Here, (x1, x2)

T is the two-dimensional
vector representation of the document and (w1, w2)

T is the parameter vector
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APPLYLINEARCLASSIFIER(~w, b,~x)
1 score← ∑

M
i=1 wixi

2 if score > b
3 then return 1
4 else return 0

◮ Figure 14.9 Linear classification algorithm.

that defines (together with b) the decision boundary. An alternative geomet-
ric interpretation of a linear classifier is provided in Figure 15.7 (page 343).

We can generalize this 2D linear classifier to higher dimensions by defining
a hyperplane as we did in Equation (14.2), repeated here as Equation (14.3):

~wT
~x = b(14.3)

The assignment criterion then is: assign to c if ~wT~x > b and to c if ~wT~x ≤ b.
We call a hyperplane that we use as a linear classifier a decision hyperplane.DECISION HYPERPLANE

The corresponding algorithm for linear classification in M dimensions is
shown in Figure 14.9. Linear classification at first seems trivial given the
simplicity of this algorithm. However, the difficulty is in training the lin-
ear classifier, that is, in determining the parameters ~w and b based on the
training set. In general, some learning methods compute much better param-
eters than others where our criterion for evaluating the quality of a learning
method is the effectiveness of the learned linear classifier on new data.

We now show that Rocchio and Naive Bayes are linear classifiers. To see
this for Rocchio, observe that a vector ~x is on the decision boundary if it has
equal distance to the two class centroids:

|~µ(c1)−~x| = |~µ(c2)−~x|(14.4)

Some basic arithmetic shows that this corresponds to a linear classifier with
normal vector ~w = ~µ(c1) − ~µ(c2) and b = 0.5 ∗ (|~µ(c1)|2 − |~µ(c2)|2) (Exer-
cise 14.15).

We can derive the linearity of Naive Bayes from its decision rule, which
chooses the category c with the largest P̂(c|d) (Figure 13.2, page 260) where:

P̂(c|d) ∝ P̂(c) ∏
1≤k≤nd

P̂(tk|c)

and nd is the number of tokens in the document that are part of the vocabu-
lary. Denoting the complement category as c̄, we obtain for the log odds:

log
P̂(c|d)

P̂(c̄|d)
= log

P̂(c)

P̂(c̄)
+ ∑

1≤k≤nd

log
P̂(tk|c)
P̂(tk|c̄)

(14.5)
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ti wi d1i d2i ti wi d1i d2i

prime 0.70 0 1 dlrs -0.71 1 1
rate 0.67 1 0 world -0.35 1 0
interest 0.63 0 0 sees -0.33 0 0
rates 0.60 0 0 year -0.25 0 0
discount 0.46 1 0 group -0.24 0 0
bundesbank 0.43 0 0 dlr -0.24 0 0

◮ Table 14.4 A linear classifier. The dimensions ti and parameters wi of a linear
classifier for the class interest (as in interest rate) in Reuters-21578. The threshold is
b = 0. Terms like dlr and world have negative weights because they are indicators for
the competing class currency.

We choose class c if the odds are greater than 1 or, equivalently, if the log
odds are greater than 0. It is easy to see that Equation (14.5) is an instance
of Equation (14.3) for wi = log[P̂(ti|c)/P̂(ti|c̄)], xi = number of occurrences
of ti in d, and b = − log[P̂(c)/P̂(c̄)]. Here, the index i, 1 ≤ i ≤ M, refers
to terms of the vocabulary (not to positions in d as k does; cf. Section 13.4.1,
page 270) and ~x and ~w are M-dimensional vectors. So in log space, Naive
Bayes is a linear classifier.

✎ Example 14.3: Table 14.4 defines a linear classifier for the category interest in
Reuters-21578 (see Section 13.6, page 279). We assign document ~d1 “rate discount
dlrs world” to interest since ~wT~d1 = 0.67 · 1 + 0.46 · 1 + (−0.71) · 1 + (−0.35) · 1 =

0.07 > 0 = b. We assign ~d2 “prime dlrs” to the complement class (not in interest) since
~wT~d2 = −0.01 ≤ b. For simplicity, we assume a simple binary vector representation
in this example: 1 for occurring terms, 0 for non-occurring terms.

Figure 14.10 is a graphical example of a linear problem, which we define to
mean that the underlying distributions P(d|c) and P(d|c) of the two classes
are separated by a line. We call this separating line the class boundary. It isCLASS BOUNDARY

the “true” boundary of the two classes and we distinguish it from the deci-
sion boundary that the learning method computes to approximate the class
boundary.

As is typical in text classification, there are some noise documents in Fig-NOISE DOCUMENT

ure 14.10 (marked with arrows) that do not fit well into the overall distri-
bution of the classes. In Section 13.5 (page 271), we defined a noise feature
as a misleading feature that, when included in the document representation,
on average increases the classification error. Analogously, a noise document
is a document that, when included in the training set, misleads the learn-
ing method and increases classification error. Intuitively, the underlying
distribution partitions the representation space into areas with mostly ho-
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◮ Figure 14.10 A linear problem with noise. In this hypothetical web page classifi-
cation scenario, Chinese-only web pages are solid circles and mixed Chinese-English
web pages are squares. The two classes are separated by a linear class boundary
(dashed line, short dashes), except for three noise documents (marked with arrows).

mogeneous class assignments. A document that does not conform with the
dominant class in its area is a noise document.

Noise documents are one reason why training a linear classifier is hard. If
we pay too much attention to noise documents when choosing the decision
hyperplane of the classifier, then it will be inaccurate on new data. More
fundamentally, it is usually difficult to determine which documents are noise
documents and therefore potentially misleading.

If there exists a hyperplane that perfectly separates the two classes, then
we call the two classes linearly separable. In fact, if linear separability holds,LINEAR SEPARABILITY

then there is an infinite number of linear separators (Exercise 14.4) as illus-
trated by Figure 14.8, where the number of possible separating hyperplanes
is infinite.

Figure 14.8 illustrates another challenge in training a linear classifier. If we
are dealing with a linearly separable problem, then we need a criterion for
selecting among all decision hyperplanes that perfectly separate the training
data. In general, some of these hyperplanes will do well on new data, some



Online edition (c)
2009 Cambridge UP

14.4 Linear versus nonlinear classifiers 305

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

◮ Figure 14.11 A nonlinear problem.

will not.
An example of a nonlinear classifier is kNN. The nonlinearity of kNN isNONLINEAR

CLASSIFIER intuitively clear when looking at examples like Figure 14.6. The decision
boundaries of kNN (the double lines in Figure 14.6) are locally linear seg-
ments, but in general have a complex shape that is not equivalent to a line in
2D or a hyperplane in higher dimensions.

Figure 14.11 is another example of a nonlinear problem: there is no good
linear separator between the distributions P(d|c) and P(d|c) because of the
circular “enclave” in the upper left part of the graph. Linear classifiers mis-
classify the enclave, whereas a nonlinear classifier like kNN will be highly
accurate for this type of problem if the training set is large enough.

If a problem is nonlinear and its class boundaries cannot be approximated
well with linear hyperplanes, then nonlinear classifiers are often more accu-
rate than linear classifiers. If a problem is linear, it is best to use a simpler
linear classifier.

? Exercise 14.4

Prove that the number of linear separators of two classes is either infinite or zero.
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14.5 Classification with more than two classes

We can extend two-class linear classifiers to J > 2 classes. The method to use
depends on whether the classes are mutually exclusive or not.

Classification for classes that are not mutually exclusive is called any-of ,ANY-OF
CLASSIFICATION multilabel, or multivalue classification. In this case, a document can belong to

several classes simultaneously, or to a single class, or to none of the classes.
A decision on one class leaves all options open for the others. It is some-
times said that the classes are independent of each other, but this is misleading
since the classes are rarely statistically independent in the sense defined on
page 275. In terms of the formal definition of the classification problem in
Equation (13.1) (page 256), we learn J different classifiers γj in any-of classi-
fication, each returning either cj or cj: γj(d) ∈ {cj, cj}.

Solving an any-of classification task with linear classifiers is straightfor-
ward:

1. Build a classifier for each class, where the training set consists of the set
of documents in the class (positive labels) and its complement (negative
labels).

2. Given the test document, apply each classifier separately. The decision of
one classifier has no influence on the decisions of the other classifiers.

The second type of classification with more than two classes is one-of clas-ONE-OF
CLASSIFICATION sification. Here, the classes are mutually exclusive. Each document must

belong to exactly one of the classes. One-of classification is also called multi-
nomial, polytomous4, multiclass, or single-label classification. Formally, there is a
single classification function γ in one-of classification whose range is C, i.e.,
γ(d) ∈ {c1, . . . , cJ}. kNN is a (nonlinear) one-of classifier.

True one-of problems are less common in text classification than any-of
problems. With classes like UK, China, poultry, or coffee, a document can be
relevant to many topics simultaneously – as when the prime minister of the
UK visits China to talk about the coffee and poultry trade.

Nevertheless, we will often make a one-of assumption, as we did in Fig-
ure 14.1, even if classes are not really mutually exclusive. For the classifica-
tion problem of identifying the language of a document, the one-of assump-
tion is a good approximation as most text is written in only one language.
In such cases, imposing a one-of constraint can increase the classifier’s ef-
fectiveness because errors that are due to the fact that the any-of classifiers
assigned a document to either no class or more than one class are eliminated.

J hyperplanes do not divide R|V| into J distinct regions as illustrated in
Figure 14.12. Thus, we must use a combination method when using two-
class linear classifiers for one-of classification. The simplest method is to

4. A synonym of polytomous is polychotomous.
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?

◮ Figure 14.12 J hyperplanes do not divide space into J disjoint regions.

rank classes and then select the top-ranked class. Geometrically, the ranking
can be with respect to the distances from the J linear separators. Documents
close to a class’s separator are more likely to be misclassified, so the greater
the distance from the separator, the more plausible it is that a positive clas-
sification decision is correct. Alternatively, we can use a direct measure of
confidence to rank classes, e.g., probability of class membership. We can
state this algorithm for one-of classification with linear classifiers as follows:

1. Build a classifier for each class, where the training set consists of the set
of documents in the class (positive labels) and its complement (negative
labels).

2. Given the test document, apply each classifier separately.

3. Assign the document to the class with

• the maximum score,

• the maximum confidence value,

• or the maximum probability.

An important tool for analyzing the performance of a classifier for J > 2
classes is the confusion matrix. The confusion matrix shows for each pair ofCONFUSION MATRIX

classes 〈c1, c2〉, how many documents from c1 were incorrectly assigned to c2.
In Table 14.5, the classifier manages to distinguish the three financial classes
money-fx, trade, and interest from the three agricultural classes wheat, corn,
and grain, but makes many errors within these two groups. The confusion
matrix can help pinpoint opportunities for improving the accuracy of the
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assigned class money-fx trade interest wheat corn grain
true class
money-fx 95 0 10 0 0 0
trade 1 1 90 0 1 0
interest 13 0 0 0 0 0
wheat 0 0 1 34 3 7
corn 1 0 2 13 26 5
grain 0 0 2 14 5 10

◮ Table 14.5 A confusion matrix for Reuters-21578. For example, 14 documents
from grain were incorrectly assigned to wheat. Adapted from Picca et al. (2006).

system. For example, to address the second largest error in Table 14.5 (14 in
the row grain), one could attempt to introduce features that distinguish wheat
documents from grain documents.

? Exercise 14.5

Create a training set of 300 documents, 100 each from three different languages (e.g.,
English, French, Spanish). Create a test set by the same procedure, but also add 100
documents from a fourth language. Train (i) a one-of classifier (ii) an any-of classi-
fier on this training set and evaluate it on the test set. (iii) Are there any interesting
differences in how the two classifiers behave on this task?

✄ 14.6 The bias-variance tradeoff

Nonlinear classifiers are more powerful than linear classifiers. For some
problems, there exists a nonlinear classifier with zero classification error, but
no such linear classifier. Does that mean that we should always use nonlinear
classifiers for optimal effectiveness in statistical text classification?

To answer this question, we introduce the bias-variance tradeoff in this sec-
tion, one of the most important concepts in machine learning. The tradeoff
helps explain why there is no universally optimal learning method. Selecting
an appropriate learning method is therefore an unavoidable part of solving
a text classification problem.

Throughout this section, we use linear and nonlinear classifiers as proto-
typical examples of “less powerful” and “more powerful” learning, respec-
tively. This is a simplification for a number of reasons. First, many nonlinear
models subsume linear models as a special case. For instance, a nonlinear
learning method like kNN will in some cases produce a linear classifier. Sec-
ond, there are nonlinear models that are less complex than linear models.
For instance, a quadratic polynomial with two parameters is less powerful
than a 10,000-dimensional linear classifier. Third, the complexity of learn-
ing is not really a property of the classifier because there are many aspects
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of learning (such as feature selection, cf. (Section 13.5, page 271), regulariza-
tion, and constraints such as margin maximization in Chapter 15) that make
a learning method either more powerful or less powerful without affecting
the type of classifier that is the final result of learning – regardless of whether
that classifier is linear or nonlinear. We refer the reader to the publications
listed in Section 14.7 for a treatment of the bias-variance tradeoff that takes
into account these complexities. In this section, linear and nonlinear classi-
fiers will simply serve as proxies for weaker and stronger learning methods
in text classification.

We first need to state our objective in text classification more precisely. In
Section 13.1 (page 256), we said that we want to minimize classification er-
ror on the test set. The implicit assumption was that training documents
and test documents are generated according to the same underlying distri-
bution. We will denote this distribution P(〈d, c〉) where d is the document
and c its label or class. Figures 13.4 and 13.5 were examples of generative
models that decompose P(〈d, c〉) into the product of P(c) and P(d|c). Fig-
ures 14.10 and 14.11 depict generative models for 〈d, c〉 with d ∈ R

2 and
c ∈ {square, solid circle}.

In this section, instead of using the number of correctly classified test doc-
uments (or, equivalently, the error rate on test documents) as evaluation
measure, we adopt an evaluation measure that addresses the inherent un-
certainty of labeling. In many text classification problems, a given document
representation can arise from documents belonging to different classes. This
is because documents from different classes can be mapped to the same doc-
ument representation. For example, the one-sentence documents China sues
France and France sues China are mapped to the same document representa-
tion d′ = {China, France, sues} in a bag of words model. But only the latter
document is relevant to the class c′ = legal actions brought by France (which
might be defined, for example, as a standing query by an international trade
lawyer).

To simplify the calculations in this section, we do not count the number
of errors on the test set when evaluating a classifier, but instead look at how
well the classifier estimates the conditional probability P(c|d) of a document
being in a class. In the above example, we might have P(c′|d′) = 0.5.

Our goal in text classification then is to find a classifier γ such that, aver-
aged over documents d, γ(d) is as close as possible to the true probability
P(c|d). We measure this using mean squared error:

MSE(γ) = Ed[γ(d)− P(c|d)]2(14.6)

where Ed is the expectation with respect to P(d). The mean squared error
term gives partial credit for decisions by γ that are close if not completely
right.
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E[x− α]2 = Ex2 − 2Exα + α2(14.8)

= (Ex)2 − 2Exα + α2

+Ex2 − 2(Ex)2 + (Ex)2

= [Ex− α]2

+Ex2 − E2x(Ex) + E(Ex)2

= [Ex− α]2 + E[x− Ex]2

EDEd[ΓD(d)− P(c|d)]2 = EdED[ΓD(d)− P(c|d)]2(14.9)

= Ed[ [EDΓD(d)− P(c|d)]2

+ED [ΓD(d)− EDΓD(d)]2 ]

◮ Figure 14.13 Arithmetic transformations for the bias-variance decomposition.
For the derivation of Equation (14.9), we set α = P(c|d) and x = ΓD(d) in Equa-
tion (14.8).

We define a classifier γ to be optimal for a distribution P(〈d, c〉) if it mini-OPTIMAL CLASSIFIER

mizes MSE(γ).
Minimizing MSE is a desideratum for classifiers. We also need a criterion

for learning methods. Recall that we defined a learning method Γ as a function
that takes a labeled training set D as input and returns a classifier γ.

For learning methods, we adopt as our goal to find a Γ that, averaged over
training sets, learns classifiers γ with minimal MSE. We can formalize this as
minimizing learning error:LEARNING ERROR

learning-error(Γ) = ED[MSE(Γ(D))](14.7)

where ED is the expectation over labeled training sets. To keep things simple,
we can assume that training sets have a fixed size – the distribution P(〈d, c〉)
then defines a distribution P(D) over training sets.

We can use learning error as a criterion for selecting a learning method in
statistical text classification. A learning method Γ is optimal for a distributionOPTIMAL LEARNING

METHOD P(D) if it minimizes the learning error.
Writing ΓD for Γ(D) for better readability, we can transform Equation (14.7)

as follows:

learning-error(Γ) = ED[MSE(ΓD)]

= EDEd[ΓD(d)− P(c|d)]2(14.10)

= Ed[bias(Γ, d) + variance(Γ, d)](14.11)
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bias(Γ, d) = [P(c|d)− EDΓD(d)]2(14.12)

variance(Γ, d) = ED[ΓD(d)− EDΓD(d)]2(14.13)

where the equivalence between Equations (14.10) and (14.11) is shown in
Equation (14.9) in Figure 14.13. Note that d and D are independent of each
other. In general, for a random document d and a random training set D, D

does not contain a labeled instance of d.
Bias is the squared difference between P(c|d), the true conditional prob-BIAS

ability of d being in c, and ΓD(d), the prediction of the learned classifier,
averaged over training sets. Bias is large if the learning method produces
classifiers that are consistently wrong. Bias is small if (i) the classifiers are
consistently right or (ii) different training sets cause errors on different docu-
ments or (iii) different training sets cause positive and negative errors on the
same documents, but that average out to close to 0. If one of these three con-
ditions holds, then EDΓD(d), the expectation over all training sets, is close to
P(c|d).

Linear methods like Rocchio and Naive Bayes have a high bias for non-
linear problems because they can only model one type of class boundary, a
linear hyperplane. If the generative model P(〈d, c〉) has a complex nonlinear
class boundary, the bias term in Equation (14.11) will be high because a large
number of points will be consistently misclassified. For example, the circular
enclave in Figure 14.11 does not fit a linear model and will be misclassified
consistently by linear classifiers.

We can think of bias as resulting from our domain knowledge (or lack
thereof) that we build into the classifier. If we know that the true boundary
between the two classes is linear, then a learning method that produces linear
classifiers is more likely to succeed than a nonlinear method. But if the true
class boundary is not linear and we incorrectly bias the classifier to be linear,
then classification accuracy will be low on average.

Nonlinear methods like kNN have low bias. We can see in Figure 14.6 that
the decision boundaries of kNN are variable – depending on the distribu-
tion of documents in the training set, learned decision boundaries can vary
greatly. As a result, each document has a chance of being classified correctly
for some training sets. The average prediction EDΓD(d) is therefore closer to
P(c|d) and bias is smaller than for a linear learning method.

Variance is the variation of the prediction of learned classifiers: the aver-VARIANCE

age squared difference between ΓD(d) and its average EDΓD(d). Variance is
large if different training sets D give rise to very different classifiers ΓD . It is
small if the training set has a minor effect on the classification decisions ΓD

makes, be they correct or incorrect. Variance measures how inconsistent the
decisions are, not whether they are correct or incorrect.

Linear learning methods have low variance because most randomly drawn
training sets produce similar decision hyperplanes. The decision lines pro-
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duced by linear learning methods in Figures 14.10 and 14.11 will deviate
slightly from the main class boundaries, depending on the training set, but
the class assignment for the vast majority of documents (with the exception
of those close to the main boundary) will not be affected. The circular enclave
in Figure 14.11 will be consistently misclassified.

Nonlinear methods like kNN have high variance. It is apparent from Fig-
ure 14.6 that kNN can model very complex boundaries between two classes.
It is therefore sensitive to noise documents of the sort depicted in Figure 14.10.
As a result the variance term in Equation (14.11) is large for kNN: Test doc-
uments are sometimes misclassified – if they happen to be close to a noise
document in the training set – and sometimes correctly classified – if there
are no noise documents in the training set near them. This results in high
variation from training set to training set.

High-variance learning methods are prone to overfitting the training data.OVERFITTING

The goal in classification is to fit the training data to the extent that we cap-
ture true properties of the underlying distribution P(〈d, c〉). In overfitting,
the learning method also learns from noise. Overfitting increases MSE and
frequently is a problem for high-variance learning methods.

We can also think of variance as the model complexity or, equivalently, mem-MEMORY CAPACITY

ory capacity of the learning method – how detailed a characterization of the
training set it can remember and then apply to new data. This capacity corre-
sponds to the number of independent parameters available to fit the training
set. Each kNN neighborhood Sk makes an independent classification deci-
sion. The parameter in this case is the estimate P̂(c|Sk) from Figure 14.7.
Thus, kNN’s capacity is only limited by the size of the training set. It can
memorize arbitrarily large training sets. In contrast, the number of parame-
ters of Rocchio is fixed – J parameters per dimension, one for each centroid
– and independent of the size of the training set. The Rocchio classifier (in
form of the centroids defining it) cannot “remember” fine-grained details of
the distribution of the documents in the training set.

According to Equation (14.7), our goal in selecting a learning method is to
minimize learning error. The fundamental insight captured by Equation (14.11),
which we can succinctly state as: learning-error = bias + variance, is that the
learning error has two components, bias and variance, which in general can-
not be minimized simultaneously. When comparing two learning methods
Γ1 and Γ2, in most cases the comparison comes down to one method having
higher bias and lower variance and the other lower bias and higher variance.
The decision for one learning method vs. another is then not simply a mat-
ter of selecting the one that reliably produces good classifiers across training
sets (small variance) or the one that can learn classification problems with
very difficult decision boundaries (small bias). Instead, we have to weigh
the respective merits of bias and variance in our application and choose ac-
cordingly. This tradeoff is called the bias-variance tradeoff .BIAS-VARIANCE

TRADEOFF
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Figure 14.10 provides an illustration, which is somewhat contrived, but
will be useful as an example for the tradeoff. Some Chinese text contains
English words written in the Roman alphabet like CPU, ONLINE, and GPS.
Consider the task of distinguishing Chinese-only web pages from mixed
Chinese-English web pages. A search engine might offer Chinese users with-
out knowledge of English (but who understand loanwords like CPU) the op-
tion of filtering out mixed pages. We use two features for this classification
task: number of Roman alphabet characters and number of Chinese char-
acters on the web page. As stated earlier, the distribution P(〈d, c〉) of the
generative model generates most mixed (respectively, Chinese) documents
above (respectively, below) the short-dashed line, but there are a few noise
documents.

In Figure 14.10, we see three classifiers:

• One-feature classifier. Shown as a dotted horizontal line. This classifier
uses only one feature, the number of Roman alphabet characters. Assum-
ing a learning method that minimizes the number of misclassifications
in the training set, the position of the horizontal decision boundary is
not greatly affected by differences in the training set (e.g., noise docu-
ments). So a learning method producing this type of classifier has low
variance. But its bias is high since it will consistently misclassify squares
in the lower left corner and “solid circle” documents with more than 50
Roman characters.

• Linear classifier. Shown as a dashed line with long dashes. Learning lin-
ear classifiers has less bias since only noise documents and possibly a few
documents close to the boundary between the two classes are misclassi-
fied. The variance is higher than for the one-feature classifiers, but still
small: The dashed line with long dashes deviates only slightly from the
true boundary between the two classes, and so will almost all linear de-
cision boundaries learned from training sets. Thus, very few documents
(documents close to the class boundary) will be inconsistently classified.

• “Fit-training-set-perfectly” classifier. Shown as a solid line. Here, the
learning method constructs a decision boundary that perfectly separates
the classes in the training set. This method has the lowest bias because
there is no document that is consistently misclassified – the classifiers
sometimes even get noise documents in the test set right. But the variance
of this learning method is high. Because noise documents can move the
decision boundary arbitrarily, test documents close to noise documents
in the training set will be misclassified – something that a linear learning
method is unlikely to do.

It is perhaps surprising that so many of the best-known text classification
algorithms are linear. Some of these methods, in particular linear SVMs, reg-
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ularized logistic regression and regularized linear regression, are among the
most effective known methods. The bias-variance tradeoff provides insight
into their success. Typical classes in text classification are complex and seem
unlikely to be modeled well linearly. However, this intuition is misleading
for the high-dimensional spaces that we typically encounter in text appli-
cations. With increased dimensionality, the likelihood of linear separability
increases rapidly (Exercise 14.17). Thus, linear models in high-dimensional
spaces are quite powerful despite their linearity. Even more powerful nonlin-
ear learning methods can model decision boundaries that are more complex
than a hyperplane, but they are also more sensitive to noise in the training
data. Nonlinear learning methods sometimes perform better if the training
set is large, but by no means in all cases.

14.7 References and further reading

As discussed in Chapter 9, Rocchio relevance feedback is due to Rocchio
(1971). Joachims (1997) presents a probabilistic analysis of the method. Roc-
chio classification was widely used as a classification method in TREC in the
1990s (Buckley et al. 1994a;b, Voorhees and Harman 2005). Initially, it was
used as a form of routing. Routing merely ranks documents according to rel-ROUTING

evance to a class without assigning them. Early work on filtering, a true clas-FILTERING

sification approach that makes an assignment decision on each document,
was published by Ittner et al. (1995) and Schapire et al. (1998). The definition
of routing we use here should not be confused with another sense. Routing
can also refer to the electronic distribution of documents to subscribers, the
so-called push model of document distribution. In a pull model, each transferPUSH MODEL

PULL MODEL of a document to the user is initiated by the user – for example, by means
of search or by selecting it from a list of documents on a news aggregation
website.

Some authors restrict the name Roccchio classification to two-class problems
and use the terms cluster-based (Iwayama and Tokunaga 1995) and centroid-CENTROID-BASED

CLASSIFICATION based classification (Han and Karypis 2000, Tan and Cheng 2007) for Rocchio
classification with J > 2.

A more detailed treatment of kNN can be found in (Hastie et al. 2001), in-
cluding methods for tuning the parameter k. An example of an approximate
fast kNN algorithm is locality-based hashing (Andoni et al. 2006). Klein-
berg (1997) presents an approximate Θ((M log2 M)(M + log N)) kNN algo-
rithm (where M is the dimensionality of the space and N the number of data
points), but at the cost of exponential storage requirements: Θ((N log M)2M).
Indyk (2004) surveys nearest neighbor methods in high-dimensional spaces.
Early work on kNN in text classification was motivated by the availability
of massively parallel hardware architectures (Creecy et al. 1992). Yang (1994)
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uses an inverted index to speed up kNN classification. The optimality result
for 1NN (twice the Bayes error rate asymptotically) is due to Cover and Hart
(1967).

The effectiveness of Rocchio classification and kNN is highly dependent
on careful parameter tuning (in particular, the parameters b′ for Rocchio on
page 296 and k for kNN), feature engineering (Section 15.3, page 334) and
feature selection (Section 13.5, page 271). Buckley and Salton (1995), Schapire
et al. (1998), Yang and Kisiel (2003) and Moschitti (2003) address these issues
for Rocchio and Yang (2001) and Ault and Yang (2002) for kNN. Zavrel et al.
(2000) compare feature selection methods for kNN.

The bias-variance tradeoff was introduced by Geman et al. (1992). The
derivation in Section 14.6 is for MSE(γ), but the tradeoff applies to many
loss functions (cf. Friedman (1997), Domingos (2000)). Schütze et al. (1995)
and Lewis et al. (1996) discuss linear classifiers for text and Hastie et al. (2001)
linear classifiers in general. Readers interested in the algorithms mentioned,
but not described in this chapter may wish to consult Bishop (2006) for neu-
ral networks, Hastie et al. (2001) for linear and logistic regression, and Min-
sky and Papert (1988) for the perceptron algorithm. Anagnostopoulos et al.
(2006) show that an inverted index can be used for highly efficient document
classification with any linear classifier, provided that the classifier is still ef-
fective when trained on a modest number of features via feature selection.

We have only presented the simplest method for combining two-class clas-
sifiers into a one-of classifier. Another important method is the use of error-
correcting codes, where a vector of decisions of different two-class classifiers
is constructed for each document. A test document’s decision vector is then
“corrected” based on the distribution of decision vectors in the training set,
a procedure that incorporates information from all two-class classifiers and
their correlations into the final classification decision (Dietterich and Bakiri
1995). Ghamrawi and McCallum (2005) also exploit dependencies between
classes in any-of classification. Allwein et al. (2000) propose a general frame-
work for combining two-class classifiers.

14.8 Exercises

? Exercise 14.6

In Figure 14.14, which of the three vectors~a,~b, and~c is (i) most similar to ~x according
to dot product similarity, (ii) most similar to ~x according to cosine similarity, (iii)
closest to ~x according to Euclidean distance?

Exercise 14.7

Download Reuters-21578 and train and test Rocchio and kNN classifiers for the classes
acquisitions, corn, crude, earn, grain, interest, money-fx, ship, trade, and wheat. Use the
ModApte split. You may want to use one of a number of software packages that im-



Online edition (c)
2009 Cambridge UP

316 14 Vector space classification

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

a x

b

c

◮ Figure 14.14 Example for differences between Euclidean distance, dot product
similarity and cosine similarity. The vectors are ~a = (0.5 1.5)T, ~x = (2 2)T, ~b =
(4 4)T , and~c = (8 6)T .

plement Rocchio classification and kNN classification, for example, the Bow toolkit
(McCallum 1996).

Exercise 14.8

Download 20 Newgroups (page 154) and train and test Rocchio and kNN classifiers
for its 20 classes.

Exercise 14.9

Show that the decision boundaries in Rocchio classification are, as in kNN, given by
the Voronoi tessellation.

Exercise 14.10 [⋆]

Computing the distance between a dense centroid and a sparse vector is Θ(M) for
a naive implementation that iterates over all M dimensions. Based on the equality
∑(xi − µi)

2 = 1.0 + ∑ µ2
i − 2 ∑ xiµi and assuming that ∑ µ2

i has been precomputed,
write down an algorithm that is Θ(Ma) instead, where Ma is the number of distinct
terms in the test document.

Exercise 14.11 [⋆ ⋆ ⋆]

Prove that the region of the plane consisting of all points with the same k nearest
neighbors is a convex polygon.

Exercise 14.12

Design an algorithm that performs an efficient 1NN search in 1 dimension (where
efficiency is with respect to the number of documents N). What is the time complexity
of the algorithm?

Exercise 14.13 [⋆ ⋆ ⋆]

Design an algorithm that performs an efficient 1NN search in 2 dimensions with at
most polynomial (in N) preprocessing time.
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b

b

◮ Figure 14.15 A simple non-separable set of points.

Exercise 14.14 [⋆ ⋆ ⋆]

Can one design an exact efficient algorithm for 1NN for very large M along the ideas
you used to solve the last exercise?

Exercise 14.15

Show that Equation (14.4) defines a hyperplane with ~w = ~µ(c1) − ~µ(c2) and b =
0.5 ∗ (|~µ(c1)|2 − |~µ(c2)|2).

Exercise 14.16

We can easily construct non-separable data sets in high dimensions by embedding
a non-separable set like the one shown in Figure 14.15. Consider embedding Fig-
ure 14.15 in 3D and then perturbing the 4 points slightly (i.e., moving them a small
distance in a random direction). Why would you expect the resulting configuration
to be linearly separable? How likely is then a non-separable set of m ≪ M points in
M-dimensional space?

Exercise 14.17

Assuming two classes, show that the percentage of non-separable assignments of the
vertices of a hypercube decreases with dimensionality M for M > 1. For example,
for M = 1 the proportion of non-separable assignments is 0, for M = 2, it is 2/16.
One of the two non-separable cases for M = 2 is shown in Figure 14.15, the other is
its mirror image. Solve the exercise either analytically or by simulation.

Exercise 14.18

Although we point out the similarities of Naive Bayes with linear vector space classi-
fiers, it does not make sense to represent count vectors (the document representations
in NB) in a continuous vector space. There is however a formalization of NB that is
analogous to Rocchio. Show that NB assigns a document to the class (represented as
a parameter vector) whose Kullback-Leibler (KL) divergence (Section 12.4, page 251)
to the document (represented as a count vector as in Section 13.4.1 (page 270), nor-
malized to sum to 1) is smallest.
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15 Support vector machines and

machine learning on documents

Improving classifier effectiveness has been an area of intensive machine-
learning research over the last two decades, and this work has led to a new
generation of state-of-the-art classifiers, such as support vector machines,
boosted decision trees, regularized logistic regression, neural networks, and
random forests. Many of these methods, including support vector machines
(SVMs), the main topic of this chapter, have been applied with success to
information retrieval problems, particularly text classification. An SVM is a
kind of large-margin classifier: it is a vector space based machine learning
method where the goal is to find a decision boundary between two classes
that is maximally far from any point in the training data (possibly discount-
ing some points as outliers or noise).

We will initially motivate and develop SVMs for the case of two-class data
sets that are separable by a linear classifier (Section 15.1), and then extend the
model in Section 15.2 to non-separable data, multi-class problems, and non-
linear models, and also present some additional discussion of SVM perfor-
mance. The chapter then moves to consider the practical deployment of text
classifiers in Section 15.3: what sorts of classifiers are appropriate when, and
how can you exploit domain-specific text features in classification? Finally,
we will consider how the machine learning technology that we have been
building for text classification can be applied back to the problem of learning
how to rank documents in ad hoc retrieval (Section 15.4). While several ma-
chine learning methods have been applied to this task, use of SVMs has been
prominent. Support vector machines are not necessarily better than other
machine learning methods (except perhaps in situations with little training
data), but they perform at the state-of-the-art level and have much current
theoretical and empirical appeal.
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◮ Figure 15.1 The support vectors are the 5 points right up against the margin of
the classifier.

15.1 Support vector machines: The linearly separable case

For two-class, separable training data sets, such as the one in Figure 14.8
(page 301), there are lots of possible linear separators. Intuitively, a decision
boundary drawn in the middle of the void between data items of the two
classes seems better than one which approaches very close to examples of
one or both classes. While some learning methods such as the perceptron
algorithm (see references in Section 14.7, page 314) find just any linear sepa-
rator, others, like Naive Bayes, search for the best linear separator according
to some criterion. The SVM in particular defines the criterion to be looking
for a decision surface that is maximally far away from any data point. This
distance from the decision surface to the closest data point determines the
margin of the classifier. This method of construction necessarily means thatMARGIN

the decision function for an SVM is fully specified by a (usually small) sub-
set of the data which defines the position of the separator. These points are
referred to as the support vectors (in a vector space, a point can be thought ofSUPPORT VECTOR

as a vector between the origin and that point). Figure 15.1 shows the margin
and support vectors for a sample problem. Other data points play no part in
determining the decision surface that is chosen.
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◮ Figure 15.2 An intuition for large-margin classification. Insisting on a large mar-
gin reduces the capacity of the model: the range of angles at which the fat deci-
sion surface can be placed is smaller than for a decision hyperplane (cf. Figure 14.8,
page 301).

Maximizing the margin seems good because points near the decision sur-
face represent very uncertain classification decisions: there is almost a 50%
chance of the classifier deciding either way. A classifier with a large margin
makes no low certainty classification decisions. This gives you a classifica-
tion safety margin: a slight error in measurement or a slight document vari-
ation will not cause a misclassification. Another intuition motivating SVMs
is shown in Figure 15.2. By construction, an SVM classifier insists on a large
margin around the decision boundary. Compared to a decision hyperplane,
if you have to place a fat separator between classes, you have fewer choices
of where it can be put. As a result of this, the memory capacity of the model
has been decreased, and hence we expect that its ability to correctly general-
ize to test data is increased (cf. the discussion of the bias-variance tradeoff in
Chapter 14, page 312).

Let us formalize an SVM with algebra. A decision hyperplane (page 302)
can be defined by an intercept term b and a decision hyperplane normal vec-
tor ~w which is perpendicular to the hyperplane. This vector is commonly
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referred to in the machine learning literature as the weight vector. To chooseWEIGHT VECTOR

among all the hyperplanes that are perpendicular to the normal vector, we
specify the intercept term b. Because the hyperplane is perpendicular to the
normal vector, all points ~x on the hyperplane satisfy ~wT~x = −b. Now sup-
pose that we have a set of training data points D = {(~xi, yi)}, where each
member is a pair of a point ~xi and a class label yi corresponding to it.1 For
SVMs, the two data classes are always named +1 and −1 (rather than 1 and
0), and the intercept term is always explicitly represented as b (rather than
being folded into the weight vector ~w by adding an extra always-on feature).
The math works out much more cleanly if you do things this way, as we will
see almost immediately in the definition of functional margin. The linear
classifier is then:

f (~x) = sign(~wT~x + b)(15.1)

A value of −1 indicates one class, and a value of +1 the other class.
We are confident in the classification of a point if it is far away from the

decision boundary. For a given data set and decision hyperplane, we define
the functional margin of the ith example ~xi with respect to a hyperplane 〈~w, b〉FUNCTIONAL MARGIN

as the quantity yi(~w
T~xi + b). The functional margin of a data set with re-

spect to a decision surface is then twice the functional margin of any of the
points in the data set with minimal functional margin (the factor of 2 comes
from measuring across the whole width of the margin, as in Figure 15.3).
However, there is a problem with using this definition as is: the value is un-
derconstrained, because we can always make the functional margin as big
as we wish by simply scaling up ~w and b. For example, if we replace ~w by
5~w and b by 5b then the functional margin yi(5~wT~xi + 5b) is five times as
large. This suggests that we need to place some constraint on the size of the
~w vector. To get a sense of how to do that, let us look at the actual geometry.

What is the Euclidean distance from a point ~x to the decision boundary? In
Figure 15.3, we denote by r this distance. We know that the shortest distance
between a point and a hyperplane is perpendicular to the plane, and hence,
parallel to ~w. A unit vector in this direction is ~w/|~w|. The dotted line in the
diagram is then a translation of the vector r~w/|~w|. Let us label the point on
the hyperplane closest to ~x as ~x′. Then:

~x′ = ~x− yr
~w

|~w|(15.2)

where multiplying by y just changes the sign for the two cases of ~x being on
either side of the decision surface. Moreover,~x′ lies on the decision boundary

1. As discussed in Section 14.1 (page 291), we present the general case of points in a vector
space, but if the points are length normalized document vectors, then all the action is taking
place on the surface of a unit sphere, and the decision surface intersects the sphere’s surface.
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◮ Figure 15.3 The geometric margin of a point (r) and a decision boundary (ρ).

and so satisfies ~wT~x′ + b = 0. Hence:

~wT
(
~x− yr

~w

|~w|
)
+ b = 0(15.3)

Solving for r gives:2

r = y
~wT~x + b

|~w|(15.4)

Again, the points closest to the separating hyperplane are support vectors.
The geometric margin of the classifier is the maximum width of the band thatGEOMETRIC MARGIN

can be drawn separating the support vectors of the two classes. That is, it is
twice the minimum value over data points for r given in Equation (15.4), or,
equivalently, the maximal width of one of the fat separators shown in Fig-
ure 15.2. The geometric margin is clearly invariant to scaling of parameters:
if we replace ~w by 5~w and b by 5b, then the geometric margin is the same, be-
cause it is inherently normalized by the length of ~w. This means that we can
impose any scaling constraint we wish on ~w without affecting the geometric
margin. Among other choices, we could use unit vectors, as in Chapter 6, by

2. Recall that |~w| =
√

~wT~w.
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requiring that |~w| = 1. This would have the effect of making the geometric
margin the same as the functional margin.

Since we can scale the functional margin as we please, for convenience in
solving large SVMs, let us choose to require that the functional margin of all
data points is at least 1 and that it is equal to 1 for at least one data vector.
That is, for all items in the data:

yi(~w
T~xi + b) ≥ 1(15.5)

and there exist support vectors for which the inequality is an equality. Since
each example’s distance from the hyperplane is ri = yi(~w

T~xi + b)/|~w|, the
geometric margin is ρ = 2/|~w|. Our desire is still to maximize this geometric
margin. That is, we want to find ~w and b such that:

• ρ = 2/|~w| is maximized

• For all (~xi, yi) ∈ D, yi(~w
T~xi + b) ≥ 1

Maximizing 2/|~w| is the same as minimizing |~w|/2. This gives the final stan-
dard formulation of an SVM as a minimization problem:

(15.6) Find ~w and b such that:

• 1
2 ~wT~w is minimized, and

• for all {(~xi, yi)}, yi(~w
T~xi + b) ≥ 1

We are now optimizing a quadratic function subject to linear constraints.
Quadratic optimization problems are a standard, well-known class of mathe-QUADRATIC

PROGRAMMING matical optimization problems, and many algorithms exist for solving them.
We could in principle build our SVM using standard quadratic programming
(QP) libraries, but there has been much recent research in this area aiming to
exploit the structure of the kind of QP that emerges from an SVM. As a result,
there are more intricate but much faster and more scalable libraries available
especially for building SVMs, which almost everyone uses to build models.
We will not present the details of such algorithms here.

However, it will be helpful to what follows to understand the shape of the
solution of such an optimization problem. The solution involves construct-
ing a dual problem where a Lagrange multiplier αi is associated with each
constraint yi(~w

T~xi + b) ≥ 1 in the primal problem:

(15.7) Find α1, . . . αN such that ∑ αi − 1
2 ∑i ∑j αiαjyiyj~xi

T~xj is maximized, and

• ∑i αiyi = 0

• αi ≥ 0 for all 1 ≤ i ≤ N

The solution is then of the form:
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◮ Figure 15.4 A tiny 3 data point training set for an SVM.

(15.8) ~w = ∑ αiyi~xi

b = yk − ~wT~xk for any ~xk such that αk 6= 0

In the solution, most of the αi are zero. Each non-zero αi indicates that the
corresponding ~xi is a support vector. The classification function is then:

f (~x) = sign(∑i
αiyi~xi

T~x + b)(15.9)

Both the term to be maximized in the dual problem and the classifying func-
tion involve a dot product between pairs of points (~x and ~xi or ~xi and ~xj), and
that is the only way the data are used – we will return to the significance of
this later.

To recap, we start with a training data set. The data set uniquely defines
the best separating hyperplane, and we feed the data through a quadratic
optimization procedure to find this plane. Given a new point ~x to classify,
the classification function f (~x) in either Equation (15.1) or Equation (15.9) is
computing the projection of the point onto the hyperplane normal. The sign
of this function determines the class to assign to the point. If the point is
within the margin of the classifier (or another confidence threshold t that we
might have determined to minimize classification mistakes) then the classi-
fier can return “don’t know” rather than one of the two classes. The value
of f (~x) may also be transformed into a probability of classification; fitting
a sigmoid to transform the values is standard (Platt 2000). Also, since the
margin is constant, if the model includes dimensions from various sources,
careful rescaling of some dimensions may be required. However, this is not
a problem if our documents (points) are on the unit hypersphere.

✎ Example 15.1: Consider building an SVM over the (very little) data set shown in
Figure 15.4. Working geometrically, for an example like this, the maximum margin
weight vector will be parallel to the shortest line connecting points of the two classes,
that is, the line between (1, 1) and (2, 3), giving a weight vector of (1, 2). The opti-
mal decision surface is orthogonal to that line and intersects it at the halfway point.
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Therefore, it passes through (1.5, 2). So, the SVM decision boundary is:

y = x1 + 2x2 − 5.5

Working algebraically, with the standard constraint that sign(yi(~w
T~xi + b)) ≥ 1,

we seek to minimize |~w|. This happens when this constraint is satisfied with equality
by the two support vectors. Further we know that the solution is ~w = (a, 2a) for some
a. So we have that:

a + 2a + b = −1
2a + 6a + b = 1

Therefore, a = 2/5 and b = −11/5. So the optimal hyperplane is given by ~w =
(2/5, 4/5) and b = −11/5.

The margin ρ is 2/|~w| = 2/
√

4/25 + 16/25 = 2/(2
√

5/5) =
√

5. This answer can
be confirmed geometrically by examining Figure 15.4.

? Exercise 15.1 [⋆]

What is the minimum number of support vectors that there can be for a data set
(which contains instances of each class)?

Exercise 15.2 [⋆⋆]

The basis of being able to use kernels in SVMs (see Section 15.2.3) is that the classifica-
tion function can be written in the form of Equation (15.9) (where, for large problems,
most αi are 0). Show explicitly how the classification function could be written in this
form for the data set from Example 15.1. That is, write f as a function where the data
points appear and the only variable is ~x.

Exercise 15.3 [⋆⋆]

Install an SVM package such as SVMlight (http://svmlight.joachims.org/), and build an
SVM for the data set discussed in Example 15.1. Confirm that the program gives the
same solution as the text. For SVMlight, or another package that accepts the same
training data format, the training file would be:

+1 1:2 2:3
−1 1:2 2:0
−1 1:1 2:1

The training command for SVMlight is then:

svm_learn -c 1 -a alphas.dat train.dat model.dat

The -c 1 option is needed to turn off use of the slack variables that we discuss in
Section 15.2.1. Check that the norm of the weight vector agrees with what we found
in Example 15.1. Examine the file alphas.dat which contains the αi values, and check
that they agree with your answers in Exercise 15.2.
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◮ Figure 15.5 Large margin classification with slack variables.

15.2 Extensions to the SVM model

15.2.1 Soft margin classification

For the very high dimensional problems common in text classification, some-
times the data are linearly separable. But in the general case they are not, and
even if they are, we might prefer a solution that better separates the bulk of
the data while ignoring a few weird noise documents.

If the training set D is not linearly separable, the standard approach is to
allow the fat decision margin to make a few mistakes (some points – outliers
or noisy examples – are inside or on the wrong side of the margin). We then
pay a cost for each misclassified example, which depends on how far it is
from meeting the margin requirement given in Equation (15.5). To imple-
ment this, we introduce slack variables ξi. A non-zero value for ξi allows ~xi toSLACK VARIABLES

not meet the margin requirement at a cost proportional to the value of ξi. See
Figure 15.5.

The formulation of the SVM optimization problem with slack variables is:

(15.10) Find ~w, b, and ξi ≥ 0 such that:

• 1
2 ~wT~w + C ∑i ξi is minimized

• and for all {(~xi, yi)}, yi(~w
T~xi + b) ≥ 1− ξi
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The optimization problem is then trading off how fat it can make the margin
versus how many points have to be moved around to allow this margin.
The margin can be less than 1 for a point ~xi by setting ξi > 0, but then one
pays a penalty of Cξi in the minimization for having done that. The sum of
the ξi gives an upper bound on the number of training errors. Soft-margin
SVMs minimize training error traded off against margin. The parameter C
is a regularization term, which provides a way to control overfitting: as CREGULARIZATION

becomes large, it is unattractive to not respect the data at the cost of reducing
the geometric margin; when it is small, it is easy to account for some data
points with the use of slack variables and to have a fat margin placed so it
models the bulk of the data.

The dual problem for soft margin classification becomes:

(15.11) Find α1, . . . αN such that ∑ αi − 1
2 ∑i ∑j αiαjyiyj~xi

T~xj is maximized, and

• ∑i αiyi = 0

• 0 ≤ αi ≤ C for all 1 ≤ i ≤ N

Neither the slack variables ξi nor Lagrange multipliers for them appear in the
dual problem. All we are left with is the constant C bounding the possible
size of the Lagrange multipliers for the support vector data points. As before,
the ~xi with non-zero αi will be the support vectors. The solution of the dual
problem is of the form:

(15.12) ~w = ∑ αyi~xi

b = yk(1− ξk)− ~wT~xk for k = arg maxk αk

Again ~w is not needed explicitly for classification, which can be done in terms
of dot products with data points, as in Equation (15.9).

Typically, the support vectors will be a small proportion of the training
data. However, if the problem is non-separable or with small margin, then
every data point which is misclassified or within the margin will have a non-
zero αi. If this set of points becomes large, then, for the nonlinear case which
we turn to in Section 15.2.3, this can be a major slowdown for using SVMs at
test time.

The complexity of training and testing with linear SVMs is shown in Ta-
ble 15.1.3 The time for training an SVM is dominated by the time for solving
the underlying QP, and so the theoretical and empirical complexity varies de-
pending on the method used to solve it. The standard result for solving QPs
is that it takes time cubic in the size of the data set (Kozlov et al. 1979). All the
recent work on SVM training has worked to reduce that complexity, often by

3. We write Θ(|D|Lave) for Θ(T) (page 262) and assume that the length of test documents is
bounded as we did on page 262.
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Classifier Mode Method Time complexity
NB training Θ(|D|Lave + |C||V|)
NB testing Θ(|C|Ma)

Rocchio training Θ(|D|Lave + |C||V|)
Rocchio testing Θ(|C|Ma)

kNN training preprocessing Θ(|D|Lave)
kNN testing preprocessing Θ(|D|Mave Ma)

kNN training no preprocessing Θ(1)
kNN testing no preprocessing Θ(|D|Lave Ma)

SVM training conventional O(|C||D|3Mave);
≈ O(|C||D|1.7Mave), empirically

SVM training cutting planes O(|C||D|Mave)
SVM testing O(|C|Ma)

◮ Table 15.1 Training and testing complexity of various classifiers including SVMs.
Training is the time the learning method takes to learn a classifier over D, while test-
ing is the time it takes a classifier to classify one document. For SVMs, multiclass
classification is assumed to be done by a set of |C| one-versus-rest classifiers. Lave is
the average number of tokens per document, while Mave is the average vocabulary
(number of non-zero features) of a document. La and Ma are the numbers of tokens
and types, respectively, in the test document.

being satisfied with approximate solutions. Standardly, empirical complex-
ity is about O(|D|1.7) (Joachims 2006a). Nevertheless, the super-linear train-
ing time of traditional SVM algorithms makes them difficult or impossible
to use on very large training data sets. Alternative traditional SVM solu-
tion algorithms which are linear in the number of training examples scale
badly with a large number of features, which is another standard attribute
of text problems. However, a new training algorithm based on cutting plane
techniques gives a promising answer to this issue by having running time
linear in the number of training examples and the number of non-zero fea-
tures in examples (Joachims 2006a). Nevertheless, the actual speed of doing
quadratic optimization remains much slower than simply counting terms as
is done in a Naive Bayes model. Extending SVM algorithms to nonlinear
SVMs, as in the next section, standardly increases training complexity by a
factor of |D| (since dot products between examples need to be calculated),
making them impractical. In practice it can often be cheaper to materialize
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the higher-order features and to train a linear SVM.4

15.2.2 Multiclass SVMs

SVMs are inherently two-class classifiers. The traditional way to do mul-
ticlass classification with SVMs is to use one of the methods discussed in
Section 14.5 (page 306). In particular, the most common technique in prac-
tice has been to build |C| one-versus-rest classifiers (commonly referred to as
“one-versus-all” or OVA classification), and to choose the class which classi-
fies the test datum with greatest margin. Another strategy is to build a set
of one-versus-one classifiers, and to choose the class that is selected by the
most classifiers. While this involves building |C|(|C| − 1)/2 classifiers, the
time for training classifiers may actually decrease, since the training data set
for each classifier is much smaller.

However, these are not very elegant approaches to solving multiclass prob-
lems. A better alternative is provided by the construction of multiclass SVMs,
where we build a two-class classifier over a feature vector Φ(~x, y) derived
from the pair consisting of the input features and the class of the datum. At
test time, the classifier chooses the class y = arg maxy′ ~w

TΦ(~x, y′). The mar-
gin during training is the gap between this value for the correct class and
for the nearest other class, and so the quadratic program formulation will
require that ∀i ∀y 6= yi ~wTΦ(~xi, yi) − ~wTΦ(~xi, y) ≥ 1 − ξi. This general
method can be extended to give a multiclass formulation of various kinds of
linear classifiers. It is also a simple instance of a generalization of classifica-
tion where the classes are not just a set of independent, categorical labels, but
may be arbitrary structured objects with relationships defined between them.
In the SVM world, such work comes under the label of structural SVMs. WeSTRUCTURAL SVMS

mention them again in Section 15.4.2.

15.2.3 Nonlinear SVMs

With what we have presented so far, data sets that are linearly separable (per-
haps with a few exceptions or some noise) are well-handled. But what are
we going to do if the data set just doesn’t allow classification by a linear clas-
sifier? Let us look at a one-dimensional case. The top data set in Figure 15.6
is straightforwardly classified by a linear classifier but the middle data set is
not. We instead need to be able to pick out an interval. One way to solve this
problem is to map the data on to a higher dimensional space and then to use
a linear classifier in the higher dimensional space. For example, the bottom
part of the figure shows that a linear separator can easily classify the data

4. Materializing the features refers to directly calculating higher order and interaction terms
and then putting them into a linear model.
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◮ Figure 15.6 Projecting data that is not linearly separable into a higher dimensional
space can make it linearly separable.

if we use a quadratic function to map the data into two dimensions (a po-
lar coordinates projection would be another possibility). The general idea is
to map the original feature space to some higher-dimensional feature space
where the training set is separable. Of course, we would want to do so in
ways that preserve relevant dimensions of relatedness between data points,
so that the resultant classifier should still generalize well.

SVMs, and also a number of other linear classifiers, provide an easy and
efficient way of doing this mapping to a higher dimensional space, which is
referred to as “the kernel trick”. It’s not really a trick: it just exploits the mathKERNEL TRICK

that we have seen. The SVM linear classifier relies on a dot product between
data point vectors. Let K(~xi,~xj) = ~xi

T~xj. Then the classifier we have seen so
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far is:
f (~x) = sign(∑

i

αiyiK(~xi,~x) + b)(15.13)

Now suppose we decide to map every data point into a higher dimensional
space via some transformation Φ:~x 7→ φ(~x). Then the dot product becomes
φ(~xi)

Tφ(~xj). If it turned out that this dot product (which is just a real num-
ber) could be computed simply and efficiently in terms of the original data
points, then we wouldn’t have to actually map from ~x 7→ φ(~x). Rather, we
could simply compute the quantity K(~xi,~xj) = φ(~xi)

Tφ(~xj), and then use the
function’s value in Equation (15.13). A kernel function K is such a functionKERNEL FUNCTION

that corresponds to a dot product in some expanded feature space.

✎ Example 15.2: The quadratic kernel in two dimensions. For 2-dimensional
vectors ~u = (u1 u2), ~v = (v1 v2), consider K(~u,~v) = (1 + ~uT~v)2. We wish to
show that this is a kernel, i.e., that K(~u,~v) = φ(~u)Tφ(~v) for some φ. Consider φ(~u) =

(1 u2
1

√
2u1u2 u2

2

√
2u1

√
2u2). Then:

K(~u,~v) = (1 +~uT~v)2(15.14)

= 1 + u2
1v2

1 + 2u1v1u2v2 + u2
2v2

2 + 2u1v1 + 2u2v2

= (1 u2
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√
2v1
√

2v2)

= φ(~u)Tφ(~v)

In the language of functional analysis, what kinds of functions are valid
kernel functions? Kernel functions are sometimes more precisely referred toKERNEL

as Mercer kernels, because they must satisfy Mercer’s condition: for any g(~x)MERCER KERNEL

such that
∫

g(~x)2d~x is finite, we must have that:
∫

K(~x,~z)g(~x)g(~z)d~xd~z ≥ 0 .(15.15)

A kernel function K must be continuous, symmetric, and have a positive def-
inite gram matrix. Such a K means that there exists a mapping to a reproduc-
ing kernel Hilbert space (a Hilbert space is a vector space closed under dot
products) such that the dot product there gives the same value as the function
K. If a kernel does not satisfy Mercer’s condition, then the corresponding QP
may have no solution. If you would like to better understand these issues,
you should consult the books on SVMs mentioned in Section 15.5. Other-
wise, you can content yourself with knowing that 90% of work with kernels
uses one of two straightforward families of functions of two vectors, which
we define below, and which define valid kernels.

The two commonly used families of kernels are polynomial kernels and
radial basis functions. Polynomial kernels are of the form K(~x,~z) = (1 +
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~xT~z)d. The case of d = 1 is a linear kernel, which is what we had before the
start of this section (the constant 1 just changing the threshold). The case of
d = 2 gives a quadratic kernel, and is very commonly used. We illustrated
the quadratic kernel in Example 15.2.

The most common form of radial basis function is a Gaussian distribution,
calculated as:

K(~x,~z) = e−(~x−~z)2/(2σ2)(15.16)

A radial basis function (rbf) is equivalent to mapping the data into an infi-
nite dimensional Hilbert space, and so we cannot illustrate the radial basis
function concretely, as we did a quadratic kernel. Beyond these two families,
there has been interesting work developing other kernels, some of which is
promising for text applications. In particular, there has been investigation of
string kernels (see Section 15.5).

The world of SVMs comes with its own language, which is rather different
from the language otherwise used in machine learning. The terminology
does have deep roots in mathematics, but it’s important not to be too awed
by that terminology. Really, we are talking about some quite simple things. A
polynomial kernel allows us to model feature conjunctions (up to the order of
the polynomial). That is, if we want to be able to model occurrences of pairs
of words, which give distinctive information about topic classification, not
given by the individual words alone, like perhaps operating AND system or
ethnic AND cleansing, then we need to use a quadratic kernel. If occurrences
of triples of words give distinctive information, then we need to use a cubic
kernel. Simultaneously you also get the powers of the basic features – for
most text applications, that probably isn’t useful, but just comes along with
the math and hopefully doesn’t do harm. A radial basis function allows you
to have features that pick out circles (hyperspheres) – although the decision
boundaries become much more complex as multiple such features interact. A
string kernel lets you have features that are character subsequences of terms.
All of these are straightforward notions which have also been used in many
other places under different names.

15.2.4 Experimental results

We presented results in Section 13.6 showing that an SVM is a very effec-
tive text classifier. The results of Dumais et al. (1998) given in Table 13.9
show SVMs clearly performing the best. This was one of several pieces of
work from this time that established the strong reputation of SVMs for text
classification. Another pioneering work on scaling and evaluating SVMs
for text classification was (Joachims 1998). We present some of his results
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Roc- Dec. linear SVM rbf-SVM
NB chio Trees kNN C = 0.5 C = 1.0 σ ≈ 7

earn 96.0 96.1 96.1 97.8 98.0 98.2 98.1
acq 90.7 92.1 85.3 91.8 95.5 95.6 94.7
money-fx 59.6 67.6 69.4 75.4 78.8 78.5 74.3
grain 69.8 79.5 89.1 82.6 91.9 93.1 93.4
crude 81.2 81.5 75.5 85.8 89.4 89.4 88.7
trade 52.2 77.4 59.2 77.9 79.2 79.2 76.6
interest 57.6 72.5 49.1 76.7 75.6 74.8 69.1
ship 80.9 83.1 80.9 79.8 87.4 86.5 85.8
wheat 63.4 79.4 85.5 72.9 86.6 86.8 82.4
corn 45.2 62.2 87.7 71.4 87.5 87.8 84.6
microavg. 72.3 79.9 79.4 82.6 86.7 87.5 86.4

◮ Table 15.2 SVM classifier break-even F1 from (Joachims 2002a, p. 114). Results
are shown for the 10 largest categories and for microaveraged performance over all
90 categories on the Reuters-21578 data set.

from (Joachims 2002a) in Table 15.2.5 Joachims used a large number of term
features in contrast to Dumais et al. (1998), who used MI feature selection
(Section 13.5.1, page 272) to build classifiers with a much more limited num-
ber of features. The success of the linear SVM mirrors the results discussed
in Section 14.6 (page 308) on other linear approaches like Naive Bayes. It
seems that working with simple term features can get one a long way. It is
again noticeable the extent to which different papers’ results for the same ma-
chine learning methods differ. In particular, based on replications by other
researchers, the Naive Bayes results of (Joachims 1998) appear too weak, and
the results in Table 13.9 should be taken as representative.

15.3 Issues in the classification of text documents

There are lots of applications of text classification in the commercial world;
email spam filtering is perhaps now the most ubiquitous. Jackson and Mou-
linier (2002) write: “There is no question concerning the commercial value of
being able to classify documents automatically by content. There are myriad

5. These results are in terms of the break-even F1 (see Section 8.4). Many researchers disprefer
this measure for text classification evaluation, since its calculation may involve interpolation
rather than an actual parameter setting of the system and it is not clear why this value should
be reported rather than maximal F1 or another point on the precision/recall curve motivated by
the task at hand. While earlier results in (Joachims 1998) suggested notable gains on this task
from the use of higher order polynomial or rbf kernels, this was with hard-margin SVMs. With
soft-margin SVMs, a simple linear SVM with the default C = 1 performs best.
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potential applications of such a capability for corporate Intranets, govern-
ment departments, and Internet publishers.”

Most of our discussion of classification has focused on introducing various
machine learning methods rather than discussing particular features of text
documents relevant to classification. This bias is appropriate for a textbook,
but is misplaced for an application developer. It is frequently the case that
greater performance gains can be achieved from exploiting domain-specific
text features than from changing from one machine learning method to an-
other. Jackson and Moulinier (2002) suggest that “Understanding the data
is one of the keys to successful categorization, yet this is an area in which
most categorization tool vendors are extremely weak. Many of the ‘one size
fits all’ tools on the market have not been tested on a wide range of content
types.” In this section we wish to step back a little and consider the applica-
tions of text classification, the space of possible solutions, and the utility of
application-specific heuristics.

15.3.1 Choosing what kind of classifier to use

When confronted with a need to build a text classifier, the first question to
ask is how much training data is there currently available? None? Very little?
Quite a lot? Or a huge amount, growing every day? Often one of the biggest
practical challenges in fielding a machine learning classifier in real applica-
tions is creating or obtaining enough training data. For many problems and
algorithms, hundreds or thousands of examples from each class are required
to produce a high performance classifier and many real world contexts in-
volve large sets of categories. We will initially assume that the classifier is
needed as soon as possible; if a lot of time is available for implementation,
much of it might be spent on assembling data resources.

If you have no labeled training data, and especially if there are existing
staff knowledgeable about the domain of the data, then you should never
forget the solution of using hand-written rules. That is, you write standing
queries, as we touched on at the beginning of Chapter 13. For example:

IF (wheat OR grain) AND NOT (whole OR bread) THEN c = grain

In practice, rules get a lot bigger than this, and can be phrased using more
sophisticated query languages than just Boolean expressions, including the
use of numeric scores. With careful crafting (that is, by humans tuning the
rules on development data), the accuracy of such rules can become very high.
Jacobs and Rau (1990) report identifying articles about takeovers with 92%
precision and 88.5% recall, and Hayes and Weinstein (1990) report 94% re-
call and 84% precision over 675 categories on Reuters newswire documents.
Nevertheless the amount of work to create such well-tuned rules is very
large. A reasonable estimate is 2 days per class, and extra time has to go
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into maintenance of rules, as the content of documents in classes drifts over
time (cf. page 269).

If you have fairly little data and you are going to train a supervised clas-
sifier, then machine learning theory says you should stick to a classifier with
high bias, as we discussed in Section 14.6 (page 308). For example, there
are theoretical and empirical results that Naive Bayes does well in such cir-
cumstances (Ng and Jordan 2001, Forman and Cohen 2004), although this
effect is not necessarily observed in practice with regularized models over
textual data (Klein and Manning 2002). At any rate, a very low bias model
like a nearest neighbor model is probably counterindicated. Regardless, the
quality of the model will be adversely affected by the limited training data.

Here, the theoretically interesting answer is to try to apply semi-supervisedSEMI-SUPERVISED
LEARNING training methods. This includes methods such as bootstrapping or the EM

algorithm, which we will introduce in Section 16.5 (page 368). In these meth-
ods, the system gets some labeled documents, and a further large supply
of unlabeled documents over which it can attempt to learn. One of the big
advantages of Naive Bayes is that it can be straightforwardly extended to
be a semi-supervised learning algorithm, but for SVMs, there is also semi-
supervised learning work which goes under the title of transductive SVMs.TRANSDUCTIVE SVMS

See the references for pointers.
Often, the practical answer is to work out how to get more labeled data as

quickly as you can. The best way to do this is to insert yourself into a process
where humans will be willing to label data for you as part of their natural
tasks. For example, in many cases humans will sort or route email for their
own purposes, and these actions give information about classes. The alter-
native of getting human labelers expressly for the task of training classifiers
is often difficult to organize, and the labeling is often of lower quality, be-
cause the labels are not embedded in a realistic task context. Rather than
getting people to label all or a random sample of documents, there has also
been considerable research on active learning, where a system is built whichACTIVE LEARNING

decides which documents a human should label. Usually these are the ones
on which a classifier is uncertain of the correct classification. This can be ef-
fective in reducing annotation costs by a factor of 2–4, but has the problem
that the good documents to label to train one type of classifier often are not
the good documents to label to train a different type of classifier.

If there is a reasonable amount of labeled data, then you are in the per-
fect position to use everything that we have presented about text classifi-
cation. For instance, you may wish to use an SVM. However, if you are
deploying a linear classifier such as an SVM, you should probably design
an application that overlays a Boolean rule-based classifier over the machine
learning classifier. Users frequently like to adjust things that do not come
out quite right, and if management gets on the phone and wants the classi-
fication of a particular document fixed right now, then this is much easier to
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do by hand-writing a rule than by working out how to adjust the weights
of an SVM without destroying the overall classification accuracy. This is one
reason why machine learning models like decision trees which produce user-
interpretable Boolean-like models retain considerable popularity.

If a huge amount of data are available, then the choice of classifier probably
has little effect on your results and the best choice may be unclear (cf. Banko
and Brill 2001). It may be best to choose a classifier based on the scalability
of training or even runtime efficiency. To get to this point, you need to have
huge amounts of data. The general rule of thumb is that each doubling of
the training data size produces a linear increase in classifier performance,
but with very large amounts of data, the improvement becomes sub-linear.

15.3.2 Improving classifier performance

For any particular application, there is usually significant room for improv-
ing classifier effectiveness through exploiting features specific to the domain
or document collection. Often documents will contain zones which are espe-
cially useful for classification. Often there will be particular subvocabularies
which demand special treatment for optimal classification effectiveness.

Large and difficult category taxonomies

If a text classification problem consists of a small number of well-separated
categories, then many classification algorithms are likely to work well. But
many real classification problems consist of a very large number of often
very similar categories. The reader might think of examples like web direc-
tories (the Yahoo! Directory or the Open Directory Project), library classi-
fication schemes (Dewey Decimal or Library of Congress) or the classifica-
tion schemes used in legal or medical applications. For instance, the Yahoo!
Directory consists of over 200,000 categories in a deep hierarchy. Accurate
classification over large sets of closely related classes is inherently difficult.

Most large sets of categories have a hierarchical structure, and attempting
to exploit the hierarchy by doing hierarchical classification is a promising ap-HIERARCHICAL

CLASSIFICATION proach. However, at present the effectiveness gains from doing this rather
than just working with the classes that are the leaves of the hierarchy re-
main modest.6 But the technique can be very useful simply to improve the
scalability of building classifiers over large hierarchies. Another simple way
to improve the scalability of classifiers over large hierarchies is the use of
aggressive feature selection. We provide references to some work on hierar-
chical classification in Section 15.5.

6. Using the small hierarchy in Figure 13.1 (page 257) as an example, the leaf classes are ones
like poultry and coffee, as opposed to higher-up classes like industries.
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A general result in machine learning is that you can always get a small
boost in classification accuracy by combining multiple classifiers, provided
only that the mistakes that they make are at least somewhat independent.
There is now a large literature on techniques such as voting, bagging, and
boosting multiple classifiers. Again, there are some pointers in the refer-
ences. Nevertheless, ultimately a hybrid automatic/manual solution may be
needed to achieve sufficient classification accuracy. A common approach in
such situations is to run a classifier first, and to accept all its high confidence
decisions, but to put low confidence decisions in a queue for manual review.
Such a process also automatically leads to the production of new training
data which can be used in future versions of the machine learning classifier.
However, note that this is a case in point where the resulting training data is
clearly not randomly sampled from the space of documents.

Features for text

The default in both ad hoc retrieval and text classification is to use terms
as features. However, for text classification, a great deal of mileage can be
achieved by designing additional features which are suited to a specific prob-
lem. Unlike the case of IR query languages, since these features are internal
to the classifier, there is no problem of communicating these features to an
end user. This process is generally referred to as feature engineering. At pre-FEATURE ENGINEERING

sent, feature engineering remains a human craft, rather than something done
by machine learning. Good feature engineering can often markedly improve
the performance of a text classifier. It is especially beneficial in some of the
most important applications of text classification, like spam and porn filter-
ing.

Classification problems will often contain large numbers of terms which
can be conveniently grouped, and which have a similar vote in text classi-
fication problems. Typical examples might be year mentions or strings of
exclamation marks. Or they may be more specialized tokens like ISBNs or
chemical formulas. Often, using them directly in a classifier would greatly in-
crease the vocabulary without providing classificatory power beyond know-
ing that, say, a chemical formula is present. In such cases, the number of
features and feature sparseness can be reduced by matching such items with
regular expressions and converting them into distinguished tokens. Con-
sequently, effectiveness and classifier speed are normally enhanced. Some-
times all numbers are converted into a single feature, but often some value
can be had by distinguishing different kinds of numbers, such as four digit
numbers (which are usually years) versus other cardinal numbers versus real
numbers with a decimal point. Similar techniques can be applied to dates,
ISBN numbers, sports game scores, and so on.

Going in the other direction, it is often useful to increase the number of fea-
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tures by matching parts of words, and by matching selected multiword pat-
terns that are particularly discriminative. Parts of words are often matched
by character k-gram features. Such features can be particularly good at pro-
viding classification clues for otherwise unknown words when the classifier
is deployed. For instance, an unknown word ending in -rase is likely to be an
enzyme, even if it wasn’t seen in the training data. Good multiword patterns
are often found by looking for distinctively common word pairs (perhaps
using a mutual information criterion between words, in a similar way to
its use in Section 13.5.1 (page 272) for feature selection) and then using fea-
ture selection methods evaluated against classes. They are useful when the
components of a compound would themselves be misleading as classifica-
tion cues. For instance, this would be the case if the keyword ethnic was
most indicative of the categories food and arts, the keyword cleansing was
most indicative of the category home, but the collocation ethnic cleansing in-
stead indicates the category world news. Some text classifiers also make use
of features from named entity recognizers (cf. page 195).

Do techniques like stemming and lowercasing (Section 2.2, page 22) help
for text classification? As always, the ultimate test is empirical evaluations
conducted on an appropriate test collection. But it is nevertheless useful to
note that such techniques have a more restricted chance of being useful for
classification. For IR, you often need to collapse forms of a word like oxy-
genate and oxygenation, because the appearance of either in a document is a
good clue that the document will be relevant to a query about oxygenation.
Given copious training data, stemming necessarily delivers no value for text
classification. If several forms that stem together have a similar signal, the
parameters estimated for all of them will have similar weights. Techniques
like stemming help only in compensating for data sparseness. This can be
a useful role (as noted at the start of this section), but often different forms
of a word can convey significantly different cues about the correct document
classification. Overly aggressive stemming can easily degrade classification
performance.

Document zones in text classification

As already discussed in Section 6.1, documents usually have zones, such as
mail message headers like the subject and author, or the title and keywords
of a research article. Text classifiers can usually gain from making use of
these zones during training and classification.

Upweighting document zones. In text classification problems, you can fre-
quently get a nice boost to effectiveness by differentially weighting contri-
butions from different document zones. Often, upweighting title words is
particularly effective (Cohen and Singer 1999, p. 163). As a rule of thumb,
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it is often effective to double the weight of title words in text classification
problems. You can also get value from upweighting words from pieces of
text that are not so much clearly defined zones, but where nevertheless evi-
dence from document structure or content suggests that they are important.
Murata et al. (2000) suggest that you can also get value (in an ad hoc retrieval
context) from upweighting the first sentence of a (newswire) document.

Separate feature spaces for document zones. There are two strategies that
can be used for document zones. Above we upweighted words that appear
in certain zones. This means that we are using the same features (that is, pa-
rameters are “tied” across different zones), but we pay more attention to thePARAMETER TYING

occurrence of terms in particular zones. An alternative strategy is to have a
completely separate set of features and corresponding parameters for words
occurring in different zones. This is in principle more powerful: a word
could usually indicate the topic Middle East when in the title but Commodities
when in the body of a document. But, in practice, tying parameters is usu-
ally more successful. Having separate feature sets means having two or more
times as many parameters, many of which will be much more sparsely seen
in the training data, and hence with worse estimates, whereas upweighting
has no bad effects of this sort. Moreover, it is quite uncommon for words to
have different preferences when appearing in different zones; it is mainly the
strength of their vote that should be adjusted. Nevertheless, ultimately this
is a contingent result, depending on the nature and quantity of the training
data.

Connections to text summarization. In Section 8.7, we mentioned the field
of text summarization, and how most work in that field has adopted the
limited goal of extracting and assembling pieces of the original text that are
judged to be central based on features of sentences that consider the sen-
tence’s position and content. Much of this work can be used to suggest zones
that may be distinctively useful for text classification. For example Kołcz
et al. (2000) consider a form of feature selection where you classify docu-
ments based only on words in certain zones. Based on text summarization
research, they consider using (i) only the title, (ii) only the first paragraph,
(iii) only the paragraph with the most title words or keywords, (iv) the first
two paragraphs or the first and last paragraph, or (v) all sentences with a
minimum number of title words or keywords. In general, these positional
feature selection methods produced as good results as mutual information
(Section 13.5.1), and resulted in quite competitive classifiers. Ko et al. (2004)
also took inspiration from text summarization research to upweight sen-
tences with either words from the title or words that are central to the doc-
ument’s content, leading to classification accuracy gains of almost 1%. This
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presumably works because most such sentences are somehow more central
to the concerns of the document.

? Exercise 15.4 [⋆⋆]
Spam email often makes use of various cloaking techniques to try to get through. One
method is to pad or substitute characters so as to defeat word-based text classifiers.
For example, you see terms like the following in spam email:

Rep1icaRolex bonmus Viiiaaaagra pi11z
PHARlbdMACY [LEV]i[IT]l[RA] se∧xual ClAfLlS

Discuss how you could engineer features that would largely defeat this strategy.

Exercise 15.5 [⋆⋆]
Another strategy often used by purveyors of email spam is to follow the message
they wish to send (such as buying a cheap stock or whatever) with a paragraph of
text from another innocuous source (such as a news article). Why might this strategy
be effective? How might it be addressed by a text classifier?

Exercise 15.6 [⋆]
What other kinds of features appear as if they would be useful in an email spam
classifier?

15.4 Machine learning methods in ad hoc information retrieval

Rather than coming up with term and document weighting functions by
hand, as we primarily did in Chapter 6, we can view different sources of rele-
vance signal (cosine score, title match, etc.) as features in a learning problem.
A classifier that has been fed examples of relevant and nonrelevant docu-
ments for each of a set of queries can then figure out the relative weights
of these signals. If we configure the problem so that there are pairs of a
document and a query which are assigned a relevance judgment of relevant
or nonrelevant, then we can think of this problem too as a text classification
problem. Taking such a classification approach is not necessarily best, and
we present an alternative in Section 15.4.2. Nevertheless, given the material
we have covered, the simplest place to start is to approach this problem as
a classification problem, by ordering the documents according to the confi-
dence of a two-class classifier in its relevance decision. And this move is not
purely pedagogical; exactly this approach is sometimes used in practice.

15.4.1 A simple example of machine-learned scoring

In this section we generalize the methodology of Section 6.1.2 (page 113) to
machine learning of the scoring function. In Section 6.1.2 we considered a
case where we had to combine Boolean indicators of relevance; here we con-
sider more general factors to further develop the notion of machine-learned
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Example DocID Query Cosine score ω Judgment
Φ1 37 linux operating system 0.032 3 relevant
Φ2 37 penguin logo 0.02 4 nonrelevant
Φ3 238 operating system 0.043 2 relevant
Φ4 238 runtime environment 0.004 2 nonrelevant
Φ5 1741 kernel layer 0.022 3 relevant
Φ6 2094 device driver 0.03 2 relevant
Φ7 3191 device driver 0.027 5 nonrelevant
· · · · · · · · · · · · · · · · · ·

◮ Table 15.3 Training examples for machine-learned scoring.

relevance. In particular, the factors we now consider go beyond Boolean
functions of query term presence in document zones, as in Section 6.1.2.

We develop the ideas in a setting where the scoring function is a linear
combination of two factors: (1) the vector space cosine similarity between
query and document and (2) the minimum window width ω within which
the query terms lie. As we noted in Section 7.2.2 (page 144), query term
proximity is often very indicative of a document being on topic, especially
with longer documents and on the web. Among other things, this quantity
gives us an implementation of implicit phrases. Thus we have one factor that
depends on the statistics of query terms in the document as a bag of words,
and another that depends on proximity weighting. We consider only two
features in the development of the ideas because a two-feature exposition
remains simple enough to visualize. The technique can be generalized to
many more features.

As in Section 6.1.2, we are provided with a set of training examples, each
of which is a pair consisting of a query and a document, together with a
relevance judgment for that document on that query that is either relevant or
nonrelevant. For each such example we can compute the vector space cosine
similarity, as well as the window width ω. The result is a training set as
shown in Table 15.3, which resembles Figure 6.5 (page 115) from Section 6.1.2.

Here, the two features (cosine score denoted α and window width ω) are
real-valued predictors. If we once again quantify the judgment relevant as 1
and nonrelevant as 0, we seek a scoring function that combines the values of
the features to generate a value that is (close to) 0 or 1. We wish this func-
tion to be in agreement with our set of training examples as far as possible.
Without loss of generality, a linear classifier will use a linear combination of
features of the form

Score(d, q) = Score(α, ω) = aα + bω + c,(15.17)

with the coefficients a, b, c to be learned from the training data. While it is
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◮ Figure 15.7 A collection of training examples. Each R denotes a training example
labeled relevant, while each N is a training example labeled nonrelevant.

possible to formulate this as an error minimization problem as we did in
Section 6.1.2, it is instructive to visualize the geometry of Equation (15.17).
The examples in Table 15.3 can be plotted on a two-dimensional plane with
axes corresponding to the cosine score α and the window width ω. This is
depicted in Figure 15.7.

In this setting, the function Score(α, ω) from Equation (15.17) represents
a plane “hanging above” Figure 15.7. Ideally this plane (in the direction
perpendicular to the page containing Figure 15.7) assumes values close to
1 above the points marked R, and values close to 0 above the points marked
N. Since a plane is unlikely to assume only values close to 0 or 1 above the
training sample points, we make use of thresholding: given any query and
document for which we wish to determine relevance, we pick a value θ and
if Score(α, ω) > θ we declare the document to be relevant, else we declare
the document to be nonrelevant. As we know from Figure 14.8 (page 301),
all points that satisfy Score(α, ω) = θ form a line (shown as a dashed line
in Figure 15.7) and we thus have a linear classifier that separates relevant
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from nonrelevant instances. Geometrically, we can find the separating line
as follows. Consider the line passing through the plane Score(α, ω) whose
height is θ above the page containing Figure 15.7. Project this line down onto
Figure 15.7; this will be the dashed line in Figure 15.7. Then, any subse-
quent query/document pair that falls below the dashed line in Figure 15.7 is
deemed nonrelevant; above the dashed line, relevant.

Thus, the problem of making a binary relevant/nonrelevant judgment given
training examples as above turns into one of learning the dashed line in Fig-
ure 15.7 separating relevant training examples from the nonrelevant ones. Be-
ing in the α-ω plane, this line can be written as a linear equation involving
α and ω, with two parameters (slope and intercept). The methods of lin-
ear classification that we have already looked at in Chapters 13–15 provide
methods for choosing this line. Provided we can build a sufficiently rich col-
lection of training samples, we can thus altogether avoid hand-tuning score
functions as in Section 7.2.3 (page 145). The bottleneck of course is the ability
to maintain a suitably representative set of training examples, whose rele-
vance assessments must be made by experts.

15.4.2 Result ranking by machine learning

The above ideas can be readily generalized to functions of many more than
two variables. There are lots of other scores that are indicative of the rel-
evance of a document to a query, including static quality (PageRank-style
measures, discussed in Chapter 21), document age, zone contributions, doc-
ument length, and so on. Providing that these measures can be calculated
for a training document collection with relevance judgments, any number
of such measures can be used to train a machine learning classifier. For in-
stance, we could train an SVM over binary relevance judgments, and order
documents based on their probability of relevance, which is monotonic with
the documents’ signed distance from the decision boundary.

However, approaching IR result ranking like this is not necessarily the
right way to think about the problem. Statisticians normally first divide
problems into classification problems (where a categorical variable is pre-
dicted) versus regression problems (where a real number is predicted). InREGRESSION

between is the specialized field of ordinal regression where a ranking is pre-ORDINAL REGRESSION

dicted. Machine learning for ad hoc retrieval is most properly thought of as
an ordinal regression problem, where the goal is to rank a set of documents
for a query, given training data of the same sort. This formulation gives
some additional power, since documents can be evaluated relative to other
candidate documents for the same query, rather than having to be mapped
to a global scale of goodness, while also weakening the problem space, since
just a ranking is required rather than an absolute measure of relevance. Is-
sues of ranking are especially germane in web search, where the ranking at
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the very top of the results list is exceedingly important, whereas decisions
of relevance of a document to a query may be much less important. Such
work can and has been pursued using the structural SVM framework which
we mentioned in Section 15.2.2, where the class being predicted is a ranking
of results for a query, but here we will present the slightly simpler ranking
SVM.

The construction of a ranking SVM proceeds as follows. We begin with aRANKING SVM

set of judged queries. For each training query q, we have a set of documents
returned in response to the query, which have been totally ordered by a per-
son for relevance to the query. We construct a vector of features ψj = ψ(dj, q)
for each document/query pair, using features such as those discussed in Sec-
tion 15.4.1, and many more. For two documents di and dj, we then form the
vector of feature differences:

Φ(di, dj, q) = ψ(di, q)− ψ(dj, q)(15.18)

By hypothesis, one of di and dj has been judged more relevant. If di is
judged more relevant than dj, denoted di ≺ dj (di should precede dj in the
results ordering), then we will assign the vector Φ(di, dj, q) the class yijq =
+1; otherwise −1. The goal then is to build a classifier which will return

~wTΦ(di, dj, q) > 0 iff di ≺ dj(15.19)

This SVM learning task is formalized in a manner much like the other exam-
ples that we saw before:

(15.20) Find ~w, and ξi,j ≥ 0 such that:

• 1
2 ~wT~w + C ∑i,j ξi,j is minimized

• and for all {Φ(di, dj, q) : di ≺ dj}, ~wTΦ(di, dj, q) ≥ 1− ξi,j

We can leave out yijq in the statement of the constraint, since we only need
to consider the constraint for document pairs ordered in one direction, since
≺ is antisymmetric. These constraints are then solved, as before, to give
a linear classifier which can rank pairs of documents. This approach has
been used to build ranking functions which outperform standard hand-built
ranking functions in IR evaluations on standard data sets; see the references
for papers that present such results.

Both of the methods that we have just looked at use a linear weighting
of document features that are indicators of relevance, as has most work in
this area. It is therefore perhaps interesting to note that much of traditional
IR weighting involves nonlinear scaling of basic measurements (such as log-
weighting of term frequency, or idf). At the present time, machine learning is
very good at producing optimal weights for features in a linear combination



Online edition (c)
2009 Cambridge UP

346 15 Support vector machines and machine learning on documents

(or other similar restricted model classes), but it is not good at coming up
with good nonlinear scalings of basic measurements. This area remains the
domain of human feature engineering.

The idea of learning ranking functions has been around for a number of
years, but it is only very recently that sufficient machine learning knowledge,
training document collections, and computational power have come together
to make this method practical and exciting. It is thus too early to write some-
thing definitive on machine learning approaches to ranking in information
retrieval, but there is every reason to expect the use and importance of ma-
chine learned ranking approaches to grow over time. While skilled humans
can do a very good job at defining ranking functions by hand, hand tuning
is difficult, and it has to be done again for each new document collection and
class of users.

? Exercise 15.7

Plot the first 7 rows of Table 15.3 in the α-ω plane to produce a figure like that in
Figure 15.7.

Exercise 15.8

Write down the equation of a line in the α-ω plane separating the Rs from the Ns.

Exercise 15.9

Give a training example (consisting of values for α, ω and the relevance judgment)
that when added to the training set makes it impossible to separate the R’s from the
N’s using a line in the α-ω plane.

15.5 References and further reading

The somewhat quirky name support vector machine originates in the neu-
ral networks literature, where learning algorithms were thought of as ar-
chitectures, and often referred to as “machines”. The distinctive element of
this model is that the decision boundary to use is completely decided (“sup-
ported”) by a few training data points, the support vectors.

For a more detailed presentation of SVMs, a good, well-known article-
length introduction is (Burges 1998). Chen et al. (2005) introduce the more
recent ν-SVM, which provides an alternative parameterization for dealing
with inseparable problems, whereby rather than specifying a penalty C, you
specify a parameter ν which bounds the number of examples which can ap-
pear on the wrong side of the decision surface. There are now also several
books dedicated to SVMs, large margin learning, and kernels: (Cristianini
and Shawe-Taylor 2000) and (Schölkopf and Smola 2001) are more math-
ematically oriented, while (Shawe-Taylor and Cristianini 2004) aims to be
more practical. For the foundations by their originator, see (Vapnik 1998).
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Some recent, more general books on statistical learning, such as (Hastie et al.
2001) also give thorough coverage of SVMs.

The construction of multiclass SVMs is discussed in (Weston and Watkins
1999), (Crammer and Singer 2001), and (Tsochantaridis et al. 2005). The last
reference provides an introduction to the general framework of structural
SVMs.

The kernel trick was first presented in (Aizerman et al. 1964). For more
about string kernels and other kernels for structured data, see (Lodhi et al.
2002) and (Gaertner et al. 2002). The Advances in Neural Information Pro-
cessing (NIPS) conferences have become the premier venue for theoretical
machine learning work, such as on SVMs. Other venues such as SIGIR are
much stronger on experimental methodology and using text-specific features
to improve classifier effectiveness.

A recent comparison of most current machine learning classifiers (though
on problems rather different from typical text problems) can be found in
(Caruana and Niculescu-Mizil 2006). (Li and Yang 2003), discussed in Sec-
tion 13.6, is the most recent comparative evaluation of machine learning clas-
sifiers on text classification. Older examinations of classifiers on text prob-
lems can be found in (Yang 1999, Yang and Liu 1999, Dumais et al. 1998).
Joachims (2002a) presents his work on SVMs applied to text problems in de-
tail. Zhang and Oles (2001) present an insightful comparison of Naive Bayes,
regularized logistic regression and SVM classifiers.

Joachims (1999) discusses methods of making SVM learning practical over
large text data sets. Joachims (2006a) improves on this work.

A number of approaches to hierarchical classification have been developed
in order to deal with the common situation where the classes to be assigned
have a natural hierarchical organization (Koller and Sahami 1997, McCal-
lum et al. 1998, Weigend et al. 1999, Dumais and Chen 2000). In a recent
large study on scaling SVMs to the entire Yahoo! directory, Liu et al. (2005)
conclude that hierarchical classification noticeably if still modestly outper-
forms flat classification. Classifier effectiveness remains limited by the very
small number of training documents for many classes. For a more general
approach that can be applied to modeling relations between classes, which
may be arbitrary rather than simply the case of a hierarchy, see Tsochan-
taridis et al. (2005).

Moschitti and Basili (2004) investigate the use of complex nominals, proper
nouns and word senses as features in text classification.

Dietterich (2002) overviews ensemble methods for classifier combination,
while Schapire (2003) focuses particularly on boosting, which is applied to
text classification in (Schapire and Singer 2000).

Chapelle et al. (2006) present an introduction to work in semi-supervised
methods, including in particular chapters on using EM for semi-supervised
text classification (Nigam et al. 2006) and on transductive SVMs (Joachims
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2006b). Sindhwani and Keerthi (2006) present a more efficient implementa-
tion of a transductive SVM for large data sets.

Tong and Koller (2001) explore active learning with SVMs for text classi-
fication; Baldridge and Osborne (2004) point out that examples selected for
annotation with one classifier in an active learning context may be no better
than random examples when used with another classifier.

Machine learning approaches to ranking for ad hoc retrieval were pio-
neered in (Wong et al. 1988), (Fuhr 1992), and (Gey 1994). But limited training
data and poor machine learning techniques meant that these pieces of work
achieved only middling results, and hence they only had limited impact at
the time.

Taylor et al. (2006) study using machine learning to tune the parameters
of the BM25 family of ranking functions (Section 11.4.3, page 232) so as to
maximize NDCG (Section 8.4, page 163). Machine learning approaches to
ordinal regression appear in (Herbrich et al. 2000) and (Burges et al. 2005),
and are applied to clickstream data in (Joachims 2002b). Cao et al. (2006)
study how to make this approach effective in IR, and Qin et al. (2007) suggest
an extension involving using multiple hyperplanes. Yue et al. (2007) study
how to do ranking with a structural SVM approach, and in particular show
how this construction can be effectively used to directly optimize for MAP
(Section 8.4, page 158), rather than using surrogate measures like accuracy or
area under the ROC curve. Geng et al. (2007) study feature selection for the
ranking problem.

Other approaches to learning to rank have also been shown to be effective
for web search, such as (Burges et al. 2005, Richardson et al. 2006).
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16 Flat clustering

Clustering algorithms group a set of documents into subsets or clusters. TheCLUSTER

algorithms’ goal is to create clusters that are coherent internally, but clearly
different from each other. In other words, documents within a cluster should
be as similar as possible; and documents in one cluster should be as dissimi-
lar as possible from documents in other clusters.
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◮ Figure 16.1 An example of a data set with a clear cluster structure.

Clustering is the most common form of unsupervised learning. No super-UNSUPERVISED
LEARNING vision means that there is no human expert who has assigned documents

to classes. In clustering, it is the distribution and makeup of the data that
will determine cluster membership. A simple example is Figure 16.1. It is
visually clear that there are three distinct clusters of points. This chapter and
Chapter 17 introduce algorithms that find such clusters in an unsupervised
fashion.

The difference between clustering and classification may not seem great
at first. After all, in both cases we have a partition of a set of documents
into groups. But as we will see the two problems are fundamentally differ-
ent. Classification is a form of supervised learning (Chapter 13, page 256):
our goal is to replicate a categorical distinction that a human supervisor im-
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poses on the data. In unsupervised learning, of which clustering is the most
important example, we have no such teacher to guide us.

The key input to a clustering algorithm is the distance measure. In Fig-
ure 16.1, the distance measure is distance in the 2D plane. This measure sug-
gests three different clusters in the figure. In document clustering, the dis-
tance measure is often also Euclidean distance. Different distance measures
give rise to different clusterings. Thus, the distance measure is an important
means by which we can influence the outcome of clustering.

Flat clustering creates a flat set of clusters without any explicit structure thatFLAT CLUSTERING

would relate clusters to each other. Hierarchical clustering creates a hierarchy
of clusters and will be covered in Chapter 17. Chapter 17 also addresses the
difficult problem of labeling clusters automatically.

A second important distinction can be made between hard and soft cluster-
ing algorithms. Hard clustering computes a hard assignment – each documentHARD CLUSTERING

is a member of exactly one cluster. The assignment of soft clustering algo-SOFT CLUSTERING

rithms is soft – a document’s assignment is a distribution over all clusters.
In a soft assignment, a document has fractional membership in several clus-
ters. Latent semantic indexing, a form of dimensionality reduction, is a soft
clustering algorithm (Chapter 18, page 417).

This chapter motivates the use of clustering in information retrieval by
introducing a number of applications (Section 16.1), defines the problem
we are trying to solve in clustering (Section 16.2) and discusses measures
for evaluating cluster quality (Section 16.3). It then describes two flat clus-
tering algorithms, K-means (Section 16.4), a hard clustering algorithm, and
the Expectation-Maximization (or EM) algorithm (Section 16.5), a soft clus-
tering algorithm. K-means is perhaps the most widely used flat clustering
algorithm due to its simplicity and efficiency. The EM algorithm is a gen-
eralization of K-means and can be applied to a large variety of document
representations and distributions.

16.1 Clustering in information retrieval

The cluster hypothesis states the fundamental assumption we make when us-CLUSTER HYPOTHESIS

ing clustering in information retrieval.

Cluster hypothesis. Documents in the same cluster behave similarly
with respect to relevance to information needs.

The hypothesis states that if there is a document from a cluster that is rele-
vant to a search request, then it is likely that other documents from the same
cluster are also relevant. This is because clustering puts together documents
that share many terms. The cluster hypothesis essentially is the contiguity
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Application What is Benefit Example
clustered?

Search result clustering search
results

more effective information
presentation to user

Figure 16.2

Scatter-Gather (subsets of)
collection

alternative user interface:
“search without typing”

Figure 16.3

Collection clustering collection effective information pre-
sentation for exploratory
browsing

McKeown et al. (2002),
http://news.google.com

Language modeling collection increased precision and/or
recall Liu and Croft (2004)

Cluster-based retrieval collection higher efficiency: faster
search Salton (1971a)

◮ Table 16.1 Some applications of clustering in information retrieval.

hypothesis in Chapter 14 (page 289). In both cases, we posit that similar
documents behave similarly with respect to relevance.

Table 16.1 shows some of the main applications of clustering in informa-
tion retrieval. They differ in the set of documents that they cluster – search
results, collection or subsets of the collection – and the aspect of an informa-
tion retrieval system they try to improve – user experience, user interface,
effectiveness or efficiency of the search system. But they are all based on the
basic assumption stated by the cluster hypothesis.

The first application mentioned in Table 16.1 is search result clustering whereSEARCH RESULT
CLUSTERING by search results we mean the documents that were returned in response to

a query. The default presentation of search results in information retrieval is
a simple list. Users scan the list from top to bottom until they have found
the information they are looking for. Instead, search result clustering clus-
ters the search results, so that similar documents appear together. It is often
easier to scan a few coherent groups than many individual documents. This
is particularly useful if a search term has different word senses. The example
in Figure 16.2 is jaguar. Three frequent senses on the web refer to the car, the
animal and an Apple operating system. The Clustered Results panel returned
by the Vivísimo search engine (http://vivisimo.com) can be a more effective user
interface for understanding what is in the search results than a simple list of
documents.

A better user interface is also the goal of Scatter-Gather, the second ap-SCATTER-GATHER

plication in Table 16.1. Scatter-Gather clusters the whole collection to get
groups of documents that the user can select or gather. The selected groups
are merged and the resulting set is again clustered. This process is repeated
until a cluster of interest is found. An example is shown in Figure 16.3.
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◮ Figure 16.2 Clustering of search results to improve recall. None of the top hits
cover the animal sense of jaguar, but users can easily access it by clicking on the cat
cluster in the Clustered Results panel on the left (third arrow from the top).

Automatically generated clusters like those in Figure 16.3 are not as neatly
organized as a manually constructed hierarchical tree like the Open Direc-
tory at http://dmoz.org. Also, finding descriptive labels for clusters automati-
cally is a difficult problem (Section 17.7, page 396). But cluster-based navi-
gation is an interesting alternative to keyword searching, the standard infor-
mation retrieval paradigm. This is especially true in scenarios where users
prefer browsing over searching because they are unsure about which search
terms to use.

As an alternative to the user-mediated iterative clustering in Scatter-Gather,
we can also compute a static hierarchical clustering of a collection that is
not influenced by user interactions (“Collection clustering” in Table 16.1).
Google News and its precursor, the Columbia NewsBlaster system, are ex-
amples of this approach. In the case of news, we need to frequently recom-
pute the clustering to make sure that users can access the latest breaking
stories. Clustering is well suited for access to a collection of news stories
since news reading is not really search, but rather a process of selecting a
subset of stories about recent events.
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◮ Figure 16.3 An example of a user session in Scatter-Gather. A collection of New
York Times news stories is clustered (“scattered”) into eight clusters (top row). The
user manually gathers three of these into a smaller collection International Stories and
performs another scattering operation. This process repeats until a small cluster with
relevant documents is found (e.g., Trinidad).

The fourth application of clustering exploits the cluster hypothesis directly
for improving search results, based on a clustering of the entire collection.
We use a standard inverted index to identify an initial set of documents that
match the query, but we then add other documents from the same clusters
even if they have low similarity to the query. For example, if the query is car
and several car documents are taken from a cluster of automobile documents,
then we can add documents from this cluster that use terms other than car
(automobile, vehicle etc). This can increase recall since a group of documents
with high mutual similarity is often relevant as a whole.

More recently this idea has been used for language modeling. Equation (12.10),
page 245, showed that to avoid sparse data problems in the language mod-
eling approach to IR, the model of document d can be interpolated with a
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collection model. But the collection contains many documents with terms
untypical of d. By replacing the collection model with a model derived from
d’s cluster, we get more accurate estimates of the occurrence probabilities of
terms in d.

Clustering can also speed up search. As we saw in Section 6.3.2 (page 123)
search in the vector space model amounts to finding the nearest neighbors
to the query. The inverted index supports fast nearest-neighbor search for
the standard IR setting. However, sometimes we may not be able to use an
inverted index efficiently, e.g., in latent semantic indexing (Chapter 18). In
such cases, we could compute the similarity of the query to every document,
but this is slow. The cluster hypothesis offers an alternative: Find the clus-
ters that are closest to the query and only consider documents from these
clusters. Within this much smaller set, we can compute similarities exhaus-
tively and rank documents in the usual way. Since there are many fewer
clusters than documents, finding the closest cluster is fast; and since the doc-
uments matching a query are all similar to each other, they tend to be in
the same clusters. While this algorithm is inexact, the expected decrease in
search quality is small. This is essentially the application of clustering that
was covered in Section 7.1.6 (page 141).

? Exercise 16.1

Define two documents as similar if they have at least two proper names like Clinton
or Sarkozy in common. Give an example of an information need and two documents,
for which the cluster hypothesis does not hold for this notion of similarity.

Exercise 16.2

Make up a simple one-dimensional example (i.e. points on a line) with two clusters
where the inexactness of cluster-based retrieval shows up. In your example, retriev-
ing clusters close to the query should do worse than direct nearest neighbor search.

16.2 Problem statement

We can define the goal in hard flat clustering as follows. Given (i) a set of
documents D = {d1, . . . , dN}, (ii) a desired number of clusters K, and (iii)
an objective function that evaluates the quality of a clustering, we want toOBJECTIVE FUNCTION

compute an assignment γ : D → {1, . . . , K} that minimizes (or, in other
cases, maximizes) the objective function. In most cases, we also demand that
γ is surjective, i.e., that none of the K clusters is empty.

The objective function is often defined in terms of similarity or distance
between documents. Below, we will see that the objective in K-means clus-
tering is to minimize the average distance between documents and their cen-
troids or, equivalently, to maximize the similarity between documents and
their centroids. The discussion of similarity measures and distance metrics
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in Chapter 14 (page 291) also applies to this chapter. As in Chapter 14, we use
both similarity and distance to talk about relatedness between documents.

For documents, the type of similarity we want is usually topic similarity
or high values on the same dimensions in the vector space model. For exam-
ple, documents about China have high values on dimensions like Chinese,
Beijing, and Mao whereas documents about the UK tend to have high values
for London, Britain and Queen. We approximate topic similarity with cosine
similarity or Euclidean distance in vector space (Chapter 6). If we intend to
capture similarity of a type other than topic, for example, similarity of lan-
guage, then a different representation may be appropriate. When computing
topic similarity, stop words can be safely ignored, but they are important
cues for separating clusters of English (in which the occurs frequently and la
infrequently) and French documents (in which the occurs infrequently and la
frequently).

A note on terminology. An alternative definition of hard clustering is that
a document can be a full member of more than one cluster. Partitional clus-PARTITIONAL

CLUSTERING tering always refers to a clustering where each document belongs to exactly
one cluster. (But in a partitional hierarchical clustering (Chapter 17) all mem-
bers of a cluster are of course also members of its parent.) On the definition
of hard clustering that permits multiple membership, the difference between
soft clustering and hard clustering is that membership values in hard clus-
tering are either 0 or 1, whereas they can take on any non-negative value in
soft clustering.

Some researchers distinguish between exhaustive clusterings that assignEXHAUSTIVE

each document to a cluster and non-exhaustive clusterings, in which some
documents will be assigned to no cluster. Non-exhaustive clusterings in
which each document is a member of either no cluster or one cluster are
called exclusive. We define clustering to be exhaustive in this book.EXCLUSIVE

16.2.1 Cardinality – the number of clusters

A difficult issue in clustering is determining the number of clusters or cardi-CARDINALITY

nality of a clustering, which we denote by K. Often K is nothing more than
a good guess based on experience or domain knowledge. But for K-means,
we will also introduce a heuristic method for choosing K and an attempt to
incorporate the selection of K into the objective function. Sometimes the ap-
plication puts constraints on the range of K. For example, the Scatter-Gather
interface in Figure 16.3 could not display more than about K = 10 clusters
per layer because of the size and resolution of computer monitors in the early
1990s.

Since our goal is to optimize an objective function, clustering is essentially
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a search problem. The brute force solution would be to enumerate all pos-
sible clusterings and pick the best. However, there are exponentially many
partitions, so this approach is not feasible.1 For this reason, most flat clus-
tering algorithms refine an initial partitioning iteratively. If the search starts
at an unfavorable initial point, we may miss the global optimum. Finding a
good starting point is therefore another important problem we have to solve
in flat clustering.

16.3 Evaluation of clustering

Typical objective functions in clustering formalize the goal of attaining high
intra-cluster similarity (documents within a cluster are similar) and low inter-
cluster similarity (documents from different clusters are dissimilar). This is
an internal criterion for the quality of a clustering. But good scores on anINTERNAL CRITERION

OF QUALITY internal criterion do not necessarily translate into good effectiveness in an
application. An alternative to internal criteria is direct evaluation in the ap-
plication of interest. For search result clustering, we may want to measure
the time it takes users to find an answer with different clustering algorithms.
This is the most direct evaluation, but it is expensive, especially if large user
studies are necessary.

As a surrogate for user judgments, we can use a set of classes in an evalua-
tion benchmark or gold standard (see Section 8.5, page 164, and Section 13.6,
page 279). The gold standard is ideally produced by human judges with a
good level of inter-judge agreement (see Chapter 8, page 152). We can then
compute an external criterion that evaluates how well the clustering matchesEXTERNAL CRITERION

OF QUALITY the gold standard classes. For example, we may want to say that the opti-
mal clustering of the search results for jaguar in Figure 16.2 consists of three
classes corresponding to the three senses car, animal, and operating system.
In this type of evaluation, we only use the partition provided by the gold
standard, not the class labels.

This section introduces four external criteria of clustering quality. Purity is
a simple and transparent evaluation measure. Normalized mutual information
can be information-theoretically interpreted. The Rand index penalizes both
false positive and false negative decisions during clustering. The F measure
in addition supports differential weighting of these two types of errors.

To compute purity, each cluster is assigned to the class which is most fre-PURITY

quent in the cluster, and then the accuracy of this assignment is measured
by counting the number of correctly assigned documents and dividing by N.

1. An upper bound on the number of clusterings is KN/K!. The exact number of different
partitions of N documents into K clusters is the Stirling number of the second kind. See
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html or Comtet (1974).
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◮ Figure 16.4 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5
(cluster 1); o, 4 (cluster 2); and ⋄, 3 (cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.

purity NMI RI F5
lower bound 0.0 0.0 0.0 0.0
maximum 1 1 1 1
value for Figure 16.4 0.71 0.36 0.68 0.46

◮ Table 16.2 The four external evaluation measures applied to the clustering in
Figure 16.4.

Formally:

purity(Ω, C) =
1
N ∑

k

max
j
|ωk ∩ cj|(16.1)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is
the set of classes. We interpret ωk as the set of documents in ωk and cj as the
set of documents in cj in Equation (16.1).

We present an example of how to compute purity in Figure 16.4.2 Bad
clusterings have purity values close to 0, a perfect clustering has a purity of
1. Purity is compared with the other three measures discussed in this chapter
in Table 16.2.

High purity is easy to achieve when the number of clusters is large – in
particular, purity is 1 if each document gets its own cluster. Thus, we cannot
use purity to trade off the quality of the clustering against the number of
clusters.

A measure that allows us to make this tradeoff is normalized mutual infor-NORMALIZED MUTUAL
INFORMATION

2. Recall our note of caution from Figure 14.2 (page 291) when looking at this and other 2D
figures in this and the following chapter: these illustrations can be misleading because 2D pro-
jections of length-normalized vectors distort similarities and distances between points.
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mation or NMI:

NMI(Ω, C) =
I(Ω; C)

[H(Ω) + H(C)]/2
(16.2)

I is mutual information (cf. Chapter 13, page 272):

I(Ω; C) = ∑
k

∑
j

P(ωk ∩ cj) log
P(ωk ∩ cj)

P(ωk)P(cj)
(16.3)

= ∑
k

∑
j

|ωk ∩ cj|
N

log
N|ωk ∩ cj|
|ωk||cj|

(16.4)

where P(ωk), P(cj), and P(ωk ∩ cj) are the probabilities of a document being
in cluster ωk, class cj, and in the intersection of ωk and cj, respectively. Equa-
tion (16.4) is equivalent to Equation (16.3) for maximum likelihood estimates
of the probabilities (i.e., the estimate of each probability is the corresponding
relative frequency).

H is entropy as defined in Chapter 5 (page 99):

H(Ω) = −∑
k

P(ωk) log P(ωk)(16.5)

= −∑
k

|ωk|
N

log
|ωk|

N
(16.6)

where, again, the second equation is based on maximum likelihood estimates
of the probabilities.

I(Ω; C) in Equation (16.3) measures the amount of information by which
our knowledge about the classes increases when we are told what the clusters
are. The minimum of I(Ω; C) is 0 if the clustering is random with respect to
class membership. In that case, knowing that a document is in a particular
cluster does not give us any new information about what its class might be.
Maximum mutual information is reached for a clustering Ωexact that perfectly
recreates the classes – but also if clusters in Ωexact are further subdivided into
smaller clusters (Exercise 16.7). In particular, a clustering with K = N one-
document clusters has maximum MI. So MI has the same problem as purity:
it does not penalize large cardinalities and thus does not formalize our bias
that, other things being equal, fewer clusters are better.

The normalization by the denominator [H(Ω)+ H(C)]/2 in Equation (16.2)
fixes this problem since entropy tends to increase with the number of clus-
ters. For example, H(Ω) reaches its maximum log N for K = N, which en-
sures that NMI is low for K = N. Because NMI is normalized, we can use
it to compare clusterings with different numbers of clusters. The particular
form of the denominator is chosen because [H(Ω) + H(C)]/2 is a tight upper
bound on I(Ω; C) (Exercise 16.8). Thus, NMI is always a number between 0
and 1.
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An alternative to this information-theoretic interpretation of clustering is
to view it as a series of decisions, one for each of the N(N − 1)/2 pairs of
documents in the collection. We want to assign two documents to the same
cluster if and only if they are similar. A true positive (TP) decision assigns
two similar documents to the same cluster, a true negative (TN) decision as-
signs two dissimilar documents to different clusters. There are two types
of errors we can commit. A false positive (FP) decision assigns two dissim-
ilar documents to the same cluster. A false negative (FN) decision assigns
two similar documents to different clusters. The Rand index (RI) measuresRAND INDEX

RI the percentage of decisions that are correct. That is, it is simply accuracy
(Section 8.3, page 155).

RI =
TP + TN

TP + FP + FN + TN

As an example, we compute RI for Figure 16.4. We first compute TP + FP.
The three clusters contain 6, 6, and 5 points, respectively, so the total number
of “positives” or pairs of documents that are in the same cluster is:

TP + FP =

(
6
2

)
+

(
6
2

)
+

(
5
2

)
= 40

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the ⋄ pairs in cluster 3,
and the x pair in cluster 3 are true positives:

TP =

(
5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
= 20

Thus, FP = 40− 20 = 20.
FN and TN are computed similarly, resulting in the following contingency

table:

Same cluster Different clusters
Same class TP = 20 FN = 24
Different classes FP = 20 TN = 72

RI is then (20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.
The Rand index gives equal weight to false positives and false negatives.

Separating similar documents is sometimes worse than putting pairs of dis-
similar documents in the same cluster. We can use the F measure (Section 8.3,F MEASURE

page 154) to penalize false negatives more strongly than false positives by
selecting a value β > 1, thus giving more weight to recall.

P =
TP

TP + FP
R =

TP
TP + FN

Fβ =
(β2 + 1)PR

β2P + R
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Based on the numbers in the contingency table, P = 20/40 = 0.5 and R =
20/44 ≈ 0.455. This gives us F1 ≈ 0.48 for β = 1 and F5 ≈ 0.456 for β = 5.
In information retrieval, evaluating clustering with F has the advantage that
the measure is already familiar to the research community.

? Exercise 16.3

Replace every point d in Figure 16.4 with two identical copies of d in the same class.
(i) Is it less difficult, equally difficult or more difficult to cluster this set of 34 points
as opposed to the 17 points in Figure 16.4? (ii) Compute purity, NMI, RI, and F5 for
the clustering with 34 points. Which measures increase and which stay the same after
doubling the number of points? (iii) Given your assessment in (i) and the results in
(ii), which measures are best suited to compare the quality of the two clusterings?

16.4 K-means

K-means is the most important flat clustering algorithm. Its objective is to
minimize the average squared Euclidean distance (Chapter 6, page 131) of
documents from their cluster centers where a cluster center is defined as the
mean or centroid ~µ of the documents in a cluster ω:CENTROID

~µ(ω) =
1
|ω| ∑

~x∈ω

~x

The definition assumes that documents are represented as length-normalized
vectors in a real-valued space in the familiar way. We used centroids for Roc-
chio classification in Chapter 14 (page 292). They play a similar role here.
The ideal cluster in K-means is a sphere with the centroid as its center of
gravity. Ideally, the clusters should not overlap. Our desiderata for classes
in Rocchio classification were the same. The difference is that we have no la-
beled training set in clustering for which we know which documents should
be in the same cluster.

A measure of how well the centroids represent the members of their clus-
ters is the residual sum of squares or RSS, the squared distance of each vectorRESIDUAL SUM OF

SQUARES from its centroid summed over all vectors:

RSSk = ∑
~x∈ωk

|~x−~µ(ωk)|2

RSS =
K

∑
k=1

RSSk(16.7)

RSS is the objective function in K-means and our goal is to minimize it. Since
N is fixed, minimizing RSS is equivalent to minimizing the average squared
distance, a measure of how well centroids represent their documents.



Online edition (c)
2009 Cambridge UP

16.4 K-means 361

K-MEANS({~x1, . . . ,~xN}, K)
1 (~s1,~s2, . . . ,~sK)← SELECTRANDOMSEEDS({~x1, . . . ,~xN}, K)
2 for k← 1 to K
3 do ~µk ←~sk

4 while stopping criterion has not been met
5 do for k← 1 to K
6 do ωk ← {}
7 for n← 1 to N
8 do j← arg minj′ |~µj′ −~xn|
9 ωj ← ωj ∪ {~xn} (reassignment of vectors)

10 for k← 1 to K
11 do ~µk ← 1

|ωk| ∑~x∈ωk
~x (recomputation of centroids)

12 return {~µ1, . . . ,~µK}

◮ Figure 16.5 The K-means algorithm. For most IR applications, the vectors
~xn ∈ RM should be length-normalized. Alternative methods of seed selection and
initialization are discussed on page 364.

The first step of K-means is to select as initial cluster centers K randomly
selected documents, the seeds. The algorithm then moves the cluster centersSEED

around in space in order to minimize RSS. As shown in Figure 16.5, this is
done iteratively by repeating two steps until a stopping criterion is met: reas-
signing documents to the cluster with the closest centroid; and recomputing
each centroid based on the current members of its cluster. Figure 16.6 shows
snapshots from nine iterations of the K-means algorithm for a set of points.
The “centroid” column of Table 17.2 (page 397) shows examples of centroids.

We can apply one of the following termination conditions.

• A fixed number of iterations I has been completed. This condition limits
the runtime of the clustering algorithm, but in some cases the quality of
the clustering will be poor because of an insufficient number of iterations.

• Assignment of documents to clusters (the partitioning function γ) does
not change between iterations. Except for cases with a bad local mini-
mum, this produces a good clustering, but runtimes may be unacceptably
long.

• Centroids ~µk do not change between iterations. This is equivalent to γ not
changing (Exercise 16.5).

• Terminate when RSS falls below a threshold. This criterion ensures that
the clustering is of a desired quality after termination. In practice, we
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◮ Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (~µ’s shown as X’s in the top four panels) converges after nine iterations.
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need to combine it with a bound on the number of iterations to guarantee
termination.

• Terminate when the decrease in RSS falls below a threshold θ. For small θ,
this indicates that we are close to convergence. Again, we need to combine
it with a bound on the number of iterations to prevent very long runtimes.

We now show that K-means converges by proving that RSS monotonically
decreases in each iteration. We will use decrease in the meaning decrease or does
not change in this section. First, RSS decreases in the reassignment step since
each vector is assigned to the closest centroid, so the distance it contributes
to RSS decreases. Second, it decreases in the recomputation step because the
new centroid is the vector ~v for which RSSk reaches its minimum.

RSSk(~v) = ∑
~x∈ωk

|~v−~x|2 = ∑
~x∈ωk

M

∑
m=1

(vm − xm)2(16.8)

∂RSSk(~v)

∂vm
= ∑

~x∈ωk

2(vm − xm)(16.9)

where xm and vm are the mth components of their respective vectors. Setting
the partial derivative to zero, we get:

vm =
1
|ωk| ∑

~x∈ωk

xm(16.10)

which is the componentwise definition of the centroid. Thus, we minimize
RSSk when the old centroid is replaced with the new centroid. RSS, the sum
of the RSSk, must then also decrease during recomputation.

Since there is only a finite set of possible clusterings, a monotonically de-
creasing algorithm will eventually arrive at a (local) minimum. Take care,
however, to break ties consistently, e.g., by assigning a document to the clus-
ter with the lowest index if there are several equidistant centroids. Other-
wise, the algorithm can cycle forever in a loop of clusterings that have the
same cost.

While this proves the convergence of K-means, there is unfortunately no
guarantee that a global minimum in the objective function will be reached.
This is a particular problem if a document set contains many outliers, doc-OUTLIER

uments that are far from any other documents and therefore do not fit well
into any cluster. Frequently, if an outlier is chosen as an initial seed, then no
other vector is assigned to it during subsequent iterations. Thus, we end up
with a singleton cluster (a cluster with only one document) even though thereSINGLETON CLUSTER

is probably a clustering with lower RSS. Figure 16.7 shows an example of a
suboptimal clustering resulting from a bad choice of initial seeds.
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◮ Figure 16.7 The outcome of clustering in K-means depends on the initial seeds.
For seeds d2 and d5, K-means converges to {{d1, d2, d3}, {d4, d5, d6}}, a suboptimal
clustering. For seeds d2 and d3, it converges to {{d1, d2, d4, d5}, {d3, d6}}, the global
optimum for K = 2.

Another type of suboptimal clustering that frequently occurs is one with
empty clusters (Exercise 16.11).

Effective heuristics for seed selection include (i) excluding outliers from
the seed set; (ii) trying out multiple starting points and choosing the cluster-
ing with lowest cost; and (iii) obtaining seeds from another method such as
hierarchical clustering. Since deterministic hierarchical clustering methods
are more predictable than K-means, a hierarchical clustering of a small ran-
dom sample of size iK (e.g., for i = 5 or i = 10) often provides good seeds
(see the description of the Buckshot algorithm, Chapter 17, page 399).

Other initialization methods compute seeds that are not selected from the
vectors to be clustered. A robust method that works well for a large variety
of document distributions is to select i (e.g., i = 10) random vectors for each
cluster and use their centroid as the seed for this cluster. See Section 16.6 for
more sophisticated initializations.

What is the time complexity of K-means? Most of the time is spent on com-
puting vector distances. One such operation costs Θ(M). The reassignment
step computes KN distances, so its overall complexity is Θ(KNM). In the
recomputation step, each vector gets added to a centroid once, so the com-
plexity of this step is Θ(NM). For a fixed number of iterations I, the overall
complexity is therefore Θ(IKNM). Thus, K-means is linear in all relevant
factors: iterations, number of clusters, number of vectors and dimensionality
of the space. This means that K-means is more efficient than the hierarchical
algorithms in Chapter 17. We had to fix the number of iterations I, which can
be tricky in practice. But in most cases, K-means quickly reaches either com-
plete convergence or a clustering that is close to convergence. In the latter
case, a few documents would switch membership if further iterations were
computed, but this has a small effect on the overall quality of the clustering.
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There is one subtlety in the preceding argument. Even a linear algorithm
can be quite slow if one of the arguments of Θ(. . .) is large, and M usually is
large. High dimensionality is not a problem for computing the distance be-
tween two documents. Their vectors are sparse, so that only a small fraction
of the theoretically possible M componentwise differences need to be com-
puted. Centroids, however, are dense since they pool all terms that occur in
any of the documents of their clusters. As a result, distance computations are
time consuming in a naive implementation of K-means. However, there are
simple and effective heuristics for making centroid-document similarities as
fast to compute as document-document similarities. Truncating centroids to
the most significant k terms (e.g., k = 1000) hardly decreases cluster quality
while achieving a significant speedup of the reassignment step (see refer-
ences in Section 16.6).

The same efficiency problem is addressed by K-medoids, a variant of K-K-MEDOIDS

means that computes medoids instead of centroids as cluster centers. We
define the medoid of a cluster as the document vector that is closest to theMEDOID

centroid. Since medoids are sparse document vectors, distance computations
are fast.

✄ 16.4.1 Cluster cardinality in K-means

We stated in Section 16.2 that the number of clusters K is an input to most flat
clustering algorithms. What do we do if we cannot come up with a plausible
guess for K?

A naive approach would be to select the optimal value of K according to
the objective function, namely the value of K that minimizes RSS. Defining
RSSmin(K) as the minimal RSS of all clusterings with K clusters, we observe
that RSSmin(K) is a monotonically decreasing function in K (Exercise 16.13),
which reaches its minimum 0 for K = N where N is the number of doc-
uments. We would end up with each document being in its own cluster.
Clearly, this is not an optimal clustering.

A heuristic method that gets around this problem is to estimate RSSmin(K)
as follows. We first perform i (e.g., i = 10) clusterings with K clusters (each
with a different initialization) and compute the RSS of each. Then we take the
minimum of the i RSS values. We denote this minimum by R̂SSmin(K). Now
we can inspect the values R̂SSmin(K) as K increases and find the “knee” in the
curve – the point where successive decreases in R̂SSmin become noticeably
smaller. There are two such points in Figure 16.8, one at K = 4, where the
gradient flattens slightly, and a clearer flattening at K = 9. This is typical:
there is seldom a single best number of clusters. We still need to employ an
external constraint to choose from a number of possible values of K (4 and 9
in this case).
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◮ Figure 16.8 Estimated minimal residual sum of squares as a function of the num-
ber of clusters in K-means. In this clustering of 1203 Reuters-RCV1 documents, there
are two points where the R̂SSmin curve flattens: at 4 clusters and at 9 clusters. The
documents were selected from the categories China, Germany, Russia and Sports, so
the K = 4 clustering is closest to the Reuters classification.

A second type of criterion for cluster cardinality imposes a penalty for each
new cluster – where conceptually we start with a single cluster containing all
documents and then search for the optimal number of clusters K by succes-
sively incrementing K by one. To determine the cluster cardinality in this
way, we create a generalized objective function that combines two elements:
distortion, a measure of how much documents deviate from the prototype ofDISTORTION

their clusters (e.g., RSS for K-means); and a measure of model complexity. WeMODEL COMPLEXITY

interpret a clustering here as a model of the data. Model complexity in clus-
tering is usually the number of clusters or a function thereof. For K-means,
we then get this selection criterion for K:

K = arg min
K

[RSSmin(K) + λK](16.11)

where λ is a weighting factor. A large value of λ favors solutions with few
clusters. For λ = 0, there is no penalty for more clusters and K = N is the
best solution.
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The obvious difficulty with Equation (16.11) is that we need to determine
λ. Unless this is easier than determining K directly, then we are back to
square one. In some cases, we can choose values of λ that have worked well
for similar data sets in the past. For example, if we periodically cluster news
stories from a newswire, there is likely to be a fixed value of λ that gives us
the right K in each successive clustering. In this application, we would not
be able to determine K based on past experience since K changes.

A theoretical justification for Equation (16.11) is the Akaike Information Cri-AKAIKE INFORMATION
CRITERION terion or AIC, an information-theoretic measure that trades off distortion

against model complexity. The general form of AIC is:

AIC: K = arg min
K

[−2L(K) + 2q(K)](16.12)

where −L(K), the negative maximum log-likelihood of the data for K clus-
ters, is a measure of distortion and q(K), the number of parameters of a
model with K clusters, is a measure of model complexity. We will not at-
tempt to derive the AIC here, but it is easy to understand intuitively. The
first property of a good model of the data is that each data point is modeled
well by the model. This is the goal of low distortion. But models should
also be small (i.e., have low model complexity) since a model that merely
describes the data (and therefore has zero distortion) is worthless. AIC pro-
vides a theoretical justification for one particular way of weighting these two
factors, distortion and model complexity, when selecting a model.

For K-means, the AIC can be stated as follows:

AIC: K = arg min
K

[RSSmin(K) + 2MK](16.13)

Equation (16.13) is a special case of Equation (16.11) for λ = 2M.
To derive Equation (16.13) from Equation (16.12) observe that q(K) = KM

in K-means since each element of the K centroids is a parameter that can be
varied independently; and that L(K) = −(1/2)RSSmin(K) (modulo a con-
stant) if we view the model underlying K-means as a Gaussian mixture with
hard assignment, uniform cluster priors and identical spherical covariance
matrices (see Exercise 16.19).

The derivation of AIC is based on a number of assumptions, e.g., that the
data are independent and identically distributed. These assumptions are
only approximately true for data sets in information retrieval. As a conse-
quence, the AIC can rarely be applied without modification in text clustering.
In Figure 16.8, the dimensionality of the vector space is M ≈ 50,000. Thus,
2MK > 50,000 dominates the smaller RSS-based term (R̂SSmin(1) < 5000,
not shown in the figure) and the minimum of the expression is reached for
K = 1. But as we know, K = 4 (corresponding to the four classes China,
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Germany, Russia and Sports) is a better choice than K = 1. In practice, Equa-
tion (16.11) is often more useful than Equation (16.13) – with the caveat that
we need to come up with an estimate for λ.

? Exercise 16.4

Why are documents that do not use the same term for the concept car likely to end
up in the same cluster in K-means clustering?

Exercise 16.5

Two of the possible termination conditions for K-means were (1) assignment does not
change, (2) centroids do not change (page 361). Do these two conditions imply each
other?

✄ 16.5 Model-based clustering

In this section, we describe a generalization of K-means, the EM algorithm.
It can be applied to a larger variety of document representations and distri-
butions than K-means.

In K-means, we attempt to find centroids that are good representatives. We
can view the set of K centroids as a model that generates the data. Generating
a document in this model consists of first picking a centroid at random and
then adding some noise. If the noise is normally distributed, this procedure
will result in clusters of spherical shape. Model-based clustering assumes thatMODEL-BASED

CLUSTERING the data were generated by a model and tries to recover the original model
from the data. The model that we recover from the data then defines clusters
and an assignment of documents to clusters.

A commonly used criterion for estimating the model parameters is maxi-
mum likelihood. In K-means, the quantity exp(−RSS) is proportional to the
likelihood that a particular model (i.e., a set of centroids) generated the data.
For K-means, maximum likelihood and minimal RSS are equivalent criteria.
We denote the model parameters by Θ. In K-means, Θ = {~µ1, . . . ,~µK}.

More generally, the maximum likelihood criterion is to select the parame-
ters Θ that maximize the log-likelihood of generating the data D:

Θ = arg max
Θ

L(D|Θ) = arg max
Θ

log
N

∏
n=1

P(dn|Θ) = arg max
Θ

N

∑
n=1

log P(dn|Θ)

L(D|Θ) is the objective function that measures the goodness of the cluster-
ing. Given two clusterings with the same number of clusters, we prefer the
one with higher L(D|Θ).

This is the same approach we took in Chapter 12 (page 237) for language
modeling and in Section 13.1 (page 265) for text classification. In text clas-
sification, we chose the class that maximizes the likelihood of generating a
particular document. Here, we choose the clustering Θ that maximizes the
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likelihood of generating a given set of documents. Once we have Θ, we can
compute an assignment probability P(d|ωk; Θ) for each document-cluster
pair. This set of assignment probabilities defines a soft clustering.

An example of a soft assignment is that a document about Chinese cars
may have a fractional membership of 0.5 in each of the two clusters China
and automobiles, reflecting the fact that both topics are pertinent. A hard clus-
tering like K-means cannot model this simultaneous relevance to two topics.

Model-based clustering provides a framework for incorporating our know-
ledge about a domain. K-means and the hierarchical algorithms in Chap-
ter 17 make fairly rigid assumptions about the data. For example, clusters
in K-means are assumed to be spheres. Model-based clustering offers more
flexibility. The clustering model can be adapted to what we know about
the underlying distribution of the data, be it Bernoulli (as in the example
in Table 16.3), Gaussian with non-spherical variance (another model that is
important in document clustering) or a member of a different family.

A commonly used algorithm for model-based clustering is the Expectation-EXPECTATION-
MAXIMIZATION

ALGORITHM
Maximization algorithm or EM algorithm. EM clustering is an iterative algo-
rithm that maximizes L(D|Θ). EM can be applied to many different types of
probabilistic modeling. We will work with a mixture of multivariate Bernoulli
distributions here, the distribution we know from Section 11.3 (page 222) and
Section 13.3 (page 263):

P(d|ωk; Θ) =

(
∏

tm∈d

qmk

)(
∏

tm /∈d

(1− qmk)

)
(16.14)

where Θ = {Θ1, . . . , ΘK}, Θk = (αk, q1k, . . . , qMk), and qmk = P(Um = 1|ωk)
are the parameters of the model.3 P(Um = 1|ωk) is the probability that a
document from cluster ωk contains term tm. The probability αk is the prior of
cluster ωk: the probability that a document d is in ωk if we have no informa-
tion about d.

The mixture model then is:

P(d|Θ) =
K

∑
k=1

αk

(
∏

tm∈d

qmk

)(
∏

tm /∈d

(1− qmk)

)
(16.15)

In this model, we generate a document by first picking a cluster k with prob-
ability αk and then generating the terms of the document according to the
parameters qmk. Recall that the document representation of the multivariate
Bernoulli is a vector of M Boolean values (and not a real-valued vector).

3. Um is the random variable we defined in Section 13.3 (page 266) for the Bernoulli Naive Bayes
model. It takes the values 1 (term tm is present in the document) and 0 (term tm is absent in the
document).
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How do we use EM to infer the parameters of the clustering from the data?
That is, how do we choose parameters Θ that maximize L(D|Θ)? EM is simi-
lar to K-means in that it alternates between an expectation step, correspondingEXPECTATION STEP

to reassignment, and a maximization step, corresponding to recomputation ofMAXIMIZATION STEP

the parameters of the model. The parameters of K-means are the centroids,
the parameters of the instance of EM in this section are the αk and qmk.

The maximization step recomputes the conditional parameters qmk and the
priors αk as follows:

Maximization step: qmk =
∑

N
n=1 rnk I(tm ∈ dn)

∑
N
n=1 rnk

αk =
∑

N
n=1 rnk

N
(16.16)

where I(tm ∈ dn) = 1 if tm ∈ dn and 0 otherwise and rnk is the soft as-
signment of document dn to cluster k as computed in the preceding iteration.
(We’ll address the issue of initialization in a moment.) These are the max-
imum likelihood estimates for the parameters of the multivariate Bernoulli
from Table 13.3 (page 268) except that documents are assigned fractionally to
clusters here. These maximum likelihood estimates maximize the likelihood
of the data given the model.

The expectation step computes the soft assignment of documents to clus-
ters given the current parameters qmk and αk:

Expectation step : rnk =
αk(∏tm∈dn

qmk)(∏tm /∈dn
(1− qmk))

∑
K
k=1 αk(∏tm∈dn

qmk)(∏tm /∈dn
(1− qmk))

(16.17)

This expectation step applies Equations (16.14) and (16.15) to computing the
likelihood that ωk generated document dn. It is the classification procedure
for the multivariate Bernoulli in Table 13.3. Thus, the expectation step is
nothing else but Bernoulli Naive Bayes classification (including normaliza-
tion, i.e. dividing by the denominator, to get a probability distribution over
clusters).

We clustered a set of 11 documents into two clusters using EM in Ta-
ble 16.3. After convergence in iteration 25, the first 5 documents are assigned
to cluster 1 (ri,1 = 1.00) and the last 6 to cluster 2 (ri,1 = 0.00). Somewhat
atypically, the final assignment is a hard assignment here. EM usually con-
verges to a soft assignment. In iteration 25, the prior α1 for cluster 1 is
5/11 ≈ 0.45 because 5 of the 11 documents are in cluster 1. Some terms
are quickly associated with one cluster because the initial assignment can
“spread” to them unambiguously. For example, membership in cluster 2
spreads from document 7 to document 8 in the first iteration because they
share sugar (r8,1 = 0 in iteration 1). For parameters of terms occurring
in ambiguous contexts, convergence takes longer. Seed documents 6 and 7
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(a) docID document text docID document text
1 hot chocolate cocoa beans 7 sweet sugar
2 cocoa ghana africa 8 sugar cane brazil
3 beans harvest ghana 9 sweet sugar beet
4 cocoa butter 10 sweet cake icing
5 butter truffles 11 cake black forest
6 sweet chocolate

(b) Parameter Iteration of clustering
0 1 2 3 4 5 15 25

α1 0.50 0.45 0.53 0.57 0.58 0.54 0.45
r1,1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r2,1 0.50 0.79 0.99 1.00 1.00 1.00 1.00
r3,1 0.50 0.84 1.00 1.00 1.00 1.00 1.00
r4,1 0.50 0.75 0.94 1.00 1.00 1.00 1.00
r5,1 0.50 0.52 0.66 0.91 1.00 1.00 1.00
r6,1 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.00
r7,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r8,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r9,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r10,1 0.50 0.40 0.14 0.01 0.00 0.00 0.00
r11,1 0.50 0.57 0.58 0.41 0.07 0.00 0.00
qafrica,1 0.000 0.100 0.134 0.158 0.158 0.169 0.200
qafrica,2 0.000 0.083 0.042 0.001 0.000 0.000 0.000
qbrazil,1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
qbrazil,2 0.000 0.167 0.195 0.213 0.214 0.196 0.167
qcocoa,1 0.000 0.400 0.432 0.465 0.474 0.508 0.600
qcocoa,2 0.000 0.167 0.090 0.014 0.001 0.000 0.000
qsugar,1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
qsugar,2 1.000 0.500 0.585 0.640 0.642 0.589 0.500
qsweet,1 1.000 0.300 0.238 0.180 0.159 0.153 0.000
qsweet,2 1.000 0.417 0.507 0.610 0.640 0.608 0.667

◮ Table 16.3 The EM clustering algorithm. The table shows a set of documents
(a) and parameter values for selected iterations during EM clustering (b). Parameters
shown are prior α1, soft assignment scores rn,1 (both omitted for cluster 2), and lexical
parameters qm,k for a few terms. The authors initially assigned document 6 to clus-
ter 1 and document 7 to cluster 2 (iteration 0). EM converges after 25 iterations. For
smoothing, the rnk in Equation (16.16) were replaced with rnk + ǫ where ǫ = 0.0001.
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both contain sweet. As a result, it takes 25 iterations for the term to be unam-
biguously associated with cluster 2. (qsweet,1 = 0 in iteration 25.)

Finding good seeds is even more critical for EM than for K-means. EM is
prone to get stuck in local optima if the seeds are not chosen well. This is a
general problem that also occurs in other applications of EM.4 Therefore, as
with K-means, the initial assignment of documents to clusters is often com-
puted by a different algorithm. For example, a hard K-means clustering may
provide the initial assignment, which EM can then “soften up.”

? Exercise 16.6

We saw above that the time complexity of K-means is Θ(IKNM). What is the time
complexity of EM?

16.6 References and further reading

Berkhin (2006b) gives a general up-to-date survey of clustering methods with
special attention to scalability. The classic reference for clustering in pat-
tern recognition, covering both K-means and EM, is (Duda et al. 2000). Ras-
mussen (1992) introduces clustering from an information retrieval perspec-
tive. Anderberg (1973) provides a general introduction to clustering for ap-
plications. In addition to Euclidean distance and cosine similarity, Kullback-
Leibler divergence is often used in clustering as a measure of how (dis)similar
documents and clusters are (Xu and Croft 1999, Muresan and Harper 2004,
Kurland and Lee 2004).

The cluster hypothesis is due to Jardine and van Rijsbergen (1971) who
state it as follows: Associations between documents convey information about the
relevance of documents to requests. Salton (1971a; 1975), Croft (1978), Voorhees
(1985a), Can and Ozkarahan (1990), Cacheda et al. (2003), Can et al. (2004),
Singitham et al. (2004) and Altingövde et al. (2008) investigate the efficiency
and effectiveness of cluster-based retrieval. While some of these studies
show improvements in effectiveness, efficiency or both, there is no consensus
that cluster-based retrieval works well consistently across scenarios. Cluster-
based language modeling was pioneered by Liu and Croft (2004).

There is good evidence that clustering of search results improves user ex-
perience and search result quality (Hearst and Pedersen 1996, Zamir and Et-
zioni 1999, Tombros et al. 2002, Käki 2005, Toda and Kataoka 2005), although
not as much as search result structuring based on carefully edited category
hierarchies (Hearst 2006). The Scatter-Gather interface for browsing collec-
tions was presented by Cutting et al. (1992). A theoretical framework for an-

4. For example, this problem is common when EM is used to estimate parameters of hidden
Markov models, probabilistic grammars, and machine translation models in natural language
processing (Manning and Schütze 1999).
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alyzing the properties of Scatter/Gather and other information seeking user
interfaces is presented by Pirolli (2007). Schütze and Silverstein (1997) eval-
uate LSI (Chapter 18) and truncated representations of centroids for efficient
K-means clustering.

The Columbia NewsBlaster system (McKeown et al. 2002), a forerunner to
the now much more famous and refined Google News (http://news.google.com),
used hierarchical clustering (Chapter 17) to give two levels of news topic
granularity. See Hatzivassiloglou et al. (2000) for details, and Chen and Lin
(2000) and Radev et al. (2001) for related systems. Other applications of
clustering in information retrieval are duplicate detection (Yang and Callan
(2006), Section 19.6, page 438), novelty detection (see references in Section 17.9,
page 399) and metadata discovery on the semantic web (Alonso et al. 2006).

The discussion of external evaluation measures is partially based on Strehl
(2002). Dom (2002) proposes a measure Q0 that is better motivated theoret-
ically than NMI. Q0 is the number of bits needed to transmit class member-
ships assuming cluster memberships are known. The Rand index is due to
Rand (1971). Hubert and Arabie (1985) propose an adjusted Rand index thatADJUSTED RAND INDEX

ranges between −1 and 1 and is 0 if there is only chance agreement between
clusters and classes (similar to κ in Chapter 8, page 165). Basu et al. (2004) ar-
gue that the three evaluation measures NMI, Rand index and F measure give
very similar results. Stein et al. (2003) propose expected edge density as an in-
ternal measure and give evidence that it is a good predictor of the quality of a
clustering. Kleinberg (2002) and Meilă (2005) present axiomatic frameworks
for comparing clusterings.

Authors that are often credited with the invention of the K-means algo-
rithm include Lloyd (1982) (first distributed in 1957), Ball (1965), MacQueen
(1967), and Hartigan and Wong (1979). Arthur and Vassilvitskii (2006) in-
vestigate the worst-case complexity of K-means. Bradley and Fayyad (1998),
Pelleg and Moore (1999) and Davidson and Satyanarayana (2003) investi-
gate the convergence properties of K-means empirically and how it depends
on initial seed selection. Dhillon and Modha (2001) compare K-means clus-
ters with SVD-based clusters (Chapter 18). The K-medoid algorithm was
presented by Kaufman and Rousseeuw (1990). The EM algorithm was orig-
inally introduced by Dempster et al. (1977). An in-depth treatment of EM is
(McLachlan and Krishnan 1996). See Section 18.5 (page 417) for publications
on latent analysis, which can also be viewed as soft clustering.

AIC is due to Akaike (1974) (see also Burnham and Anderson (2002)). An
alternative to AIC is BIC, which can be motivated as a Bayesian model se-
lection procedure (Schwarz 1978). Fraley and Raftery (1998) show how to
choose an optimal number of clusters based on BIC. An application of BIC to
K-means is (Pelleg and Moore 2000). Hamerly and Elkan (2003) propose an
alternative to BIC that performs better in their experiments. Another influ-
ential Bayesian approach for determining the number of clusters (simultane-
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ously with cluster assignment) is described by Cheeseman and Stutz (1996).
Two methods for determining cardinality without external criteria are pre-
sented by Tibshirani et al. (2001).

We only have space here for classical completely unsupervised clustering.
An important current topic of research is how to use prior knowledge to
guide clustering (e.g., Ji and Xu (2006)) and how to incorporate interactive
feedback during clustering (e.g., Huang and Mitchell (2006)). Fayyad et al.
(1998) propose an initialization for EM clustering. For algorithms that can
cluster very large data sets in one scan through the data see Bradley et al.
(1998).

The applications in Table 16.1 all cluster documents. Other information re-
trieval applications cluster words (e.g., Crouch 1988), contexts of words (e.g.,
Schütze and Pedersen 1995) or words and documents simultaneously (e.g.,
Tishby and Slonim 2000, Dhillon 2001, Zha et al. 2001). Simultaneous clus-
tering of words and documents is an example of co-clustering or biclustering.CO-CLUSTERING

16.7 Exercises

? Exercise 16.7

Let Ω be a clustering that exactly reproduces a class structure C and Ω′ a clustering
that further subdivides some clusters in Ω. Show that I(Ω; C) = I(Ω′; C).

Exercise 16.8

Show that I(Ω; C) ≤ [H(Ω) + H(C)]/2.

Exercise 16.9

Mutual information is symmetric in the sense that its value does not change if the
roles of clusters and classes are switched: I(Ω; C) = I(C; Ω). Which of the other
three evaluation measures are symmetric in this sense?

Exercise 16.10

Compute RSS for the two clusterings in Figure 16.7.

Exercise 16.11

(i) Give an example of a set of points and three initial centroids (which need not be
members of the set of points) for which 3-means converges to a clustering with an
empty cluster. (ii) Can a clustering with an empty cluster be the global optimum with
respect to RSS?

Exercise 16.12

Download Reuters-21578. Discard documents that do not occur in one of the 10
classes acquisitions, corn, crude, earn, grain, interest, money-fx, ship, trade, and wheat.
Discard documents that occur in two of these 10 classes. (i) Compute a K-means clus-
tering of this subset into 10 clusters. There are a number of software packages that
implement K-means, such as WEKA (Witten and Frank 2005) and R (R Development
Core Team 2005). (ii) Compute purity, normalized mutual information, F1 and RI for
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the clustering with respect to the 10 classes. (iii) Compile a confusion matrix (Ta-
ble 14.5, page 308) for the 10 classes and 10 clusters. Identify classes that give rise to
false positives and false negatives.

Exercise 16.13

Prove that RSSmin(K) is monotonically decreasing in K.

Exercise 16.14

There is a soft version of K-means that computes the fractional membership of a doc-
ument in a cluster as a monotonically decreasing function of the distance ∆ from its
centroid, e.g., as e−∆. Modify reassignment and recomputation steps of hard K-means
for this soft version.

Exercise 16.15

In the last iteration in Table 16.3, document 6 is in cluster 2 even though it was the
initial seed for cluster 1. Why does the document change membership?

Exercise 16.16

The values of the parameters qmk in iteration 25 in Table 16.3 are rounded. What are
the exact values that EM will converge to?

Exercise 16.17

Perform a K-means clustering for the documents in Table 16.3. After how many
iterations does K-means converge? Compare the result with the EM clustering in
Table 16.3 and discuss the differences.

Exercise 16.18 [⋆ ⋆ ⋆]

Modify the expectation and maximization steps of EM for a Gaussian mixture. The
maximization step computes the maximum likelihood parameter estimates αk, ~µk,
and Σk for each of the clusters. The expectation step computes for each vector a soft
assignment to clusters (Gaussians) based on their current parameters. Write down
the equations for Gaussian mixtures corresponding to Equations (16.16) and (16.17).

Exercise 16.19 [⋆ ⋆ ⋆]

Show that K-means can be viewed as the limiting case of EM for Gaussian mixtures
if variance is very small and all covariances are 0.

Exercise 16.20 [⋆ ⋆ ⋆]

The within-point scatter of a clustering is defined as ∑k
1
2 ∑~xi∈ωk

∑~xj∈ωk
|~xi−~xj|2. ShowWITHIN-POINT

SCATTER that minimizing RSS and minimizing within-point scatter are equivalent.

Exercise 16.21 [⋆ ⋆ ⋆]

Derive an AIC criterion for the multivariate Bernoulli mixture model from Equa-
tion (16.12).
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17 Hierarchical clustering

Flat clustering is efficient and conceptually simple, but as we saw in Chap-
ter 16 it has a number of drawbacks. The algorithms introduced in Chap-
ter 16 return a flat unstructured set of clusters, require a prespecified num-
ber of clusters as input and are nondeterministic. Hierarchical clustering (orHIERARCHICAL

CLUSTERING hierarchic clustering) outputs a hierarchy, a structure that is more informative
than the unstructured set of clusters returned by flat clustering.1 Hierarchical
clustering does not require us to prespecify the number of clusters and most
hierarchical algorithms that have been used in IR are deterministic. These ad-
vantages of hierarchical clustering come at the cost of lower efficiency. The
most common hierarchical clustering algorithms have a complexity that is at
least quadratic in the number of documents compared to the linear complex-
ity of K-means and EM (cf. Section 16.4, page 364).

This chapter first introduces agglomerative hierarchical clustering (Section 17.1)
and presents four different agglomerative algorithms, in Sections 17.2–17.4,
which differ in the similarity measures they employ: single-link, complete-
link, group-average, and centroid similarity. We then discuss the optimality
conditions of hierarchical clustering in Section 17.5. Section 17.6 introduces
top-down (or divisive) hierarchical clustering. Section 17.7 looks at labeling
clusters automatically, a problem that must be solved whenever humans in-
teract with the output of clustering. We discuss implementation issues in
Section 17.8. Section 17.9 provides pointers to further reading, including ref-
erences to soft hierarchical clustering, which we do not cover in this book.

There are few differences between the applications of flat and hierarchi-
cal clustering in information retrieval. In particular, hierarchical clustering
is appropriate for any of the applications shown in Table 16.1 (page 351; see
also Section 16.6, page 372). In fact, the example we gave for collection clus-
tering is hierarchical. In general, we select flat clustering when efficiency
is important and hierarchical clustering when one of the potential problems

1. In this chapter, we only consider hierarchies that are binary trees like the one shown in Fig-
ure 17.1 – but hierarchical clustering can be easily extended to other types of trees.
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of flat clustering (not enough structure, predetermined number of clusters,
non-determinism) is a concern. In addition, many researchers believe that hi-
erarchical clustering produces better clusters than flat clustering. However,
there is no consensus on this issue (see references in Section 17.9).

17.1 Hierarchical agglomerative clustering

Hierarchical clustering algorithms are either top-down or bottom-up. Bottom-
up algorithms treat each document as a singleton cluster at the outset and
then successively merge (or agglomerate) pairs of clusters until all clusters
have been merged into a single cluster that contains all documents. Bottom-
up hierarchical clustering is therefore called hierarchical agglomerative cluster-HIERARCHICAL

AGGLOMERATIVE
CLUSTERING

ing or HAC. Top-down clustering requires a method for splitting a cluster.

HAC
It proceeds by splitting clusters recursively until individual documents are
reached. See Section 17.6. HAC is more frequently used in IR than top-down
clustering and is the main subject of this chapter.

Before looking at specific similarity measures used in HAC in Sections
17.2–17.4, we first introduce a method for depicting hierarchical clusterings
graphically, discuss a few key properties of HACs and present a simple algo-
rithm for computing an HAC.

An HAC clustering is typically visualized as a dendrogram as shown inDENDROGRAM

Figure 17.1. Each merge is represented by a horizontal line. The y-coordinate
of the horizontal line is the similarity of the two clusters that were merged,
where documents are viewed as singleton clusters. We call this similarity the
combination similarity of the merged cluster. For example, the combinationCOMBINATION

SIMILARITY similarity of the cluster consisting of Lloyd’s CEO questioned and Lloyd’s chief
/ U.S. grilling in Figure 17.1 is ≈ 0.56. We define the combination similarity
of a singleton cluster as its document’s self-similarity (which is 1.0 for cosine
similarity).

By moving up from the bottom layer to the top node, a dendrogram al-
lows us to reconstruct the history of merges that resulted in the depicted
clustering. For example, we see that the two documents entitled War hero
Colin Powell were merged first in Figure 17.1 and that the last merge added
Ag trade reform to a cluster consisting of the other 29 documents.

A fundamental assumption in HAC is that the merge operation is mono-MONOTONICITY

tonic. Monotonic means that if s1, s2, . . . , sK−1 are the combination similarities
of the successive merges of an HAC, then s1 ≥ s2 ≥ . . . ≥ sK−1 holds. A non-
monotonic hierarchical clustering contains at least one inversion si < si+1INVERSION

and contradicts the fundamental assumption that we chose the best merge
available at each step. We will see an example of an inversion in Figure 17.12.

Hierarchical clustering does not require a prespecified number of clusters.
However, in some applications we want a partition of disjoint clusters just as
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in flat clustering. In those cases, the hierarchy needs to be cut at some point.
A number of criteria can be used to determine the cutting point:

• Cut at a prespecified level of similarity. For example, we cut the dendro-
gram at 0.4 if we want clusters with a minimum combination similarity
of 0.4. In Figure 17.1, cutting the diagram at y = 0.4 yields 24 clusters
(grouping only documents with high similarity together) and cutting it at
y = 0.1 yields 12 clusters (one large financial news cluster and 11 smaller
clusters).

• Cut the dendrogram where the gap between two successive combination
similarities is largest. Such large gaps arguably indicate “natural” clus-
terings. Adding one more cluster decreases the quality of the clustering
significantly, so cutting before this steep decrease occurs is desirable. This
strategy is analogous to looking for the knee in the K-means graph in Fig-
ure 16.8 (page 366).

• Apply Equation (16.11) (page 366):

K = arg min
K′

[RSS(K′) + λK′]

where K′ refers to the cut of the hierarchy that results in K′ clusters, RSS is
the residual sum of squares and λ is a penalty for each additional cluster.
Instead of RSS, another measure of distortion can be used.

• As in flat clustering, we can also prespecify the number of clusters K and
select the cutting point that produces K clusters.

A simple, naive HAC algorithm is shown in Figure 17.2. We first compute
the N × N similarity matrix C. The algorithm then executes N − 1 steps
of merging the currently most similar clusters. In each iteration, the two
most similar clusters are merged and the rows and columns of the merged
cluster i in C are updated.2 The clustering is stored as a list of merges in
A. I indicates which clusters are still available to be merged. The function
SIM(i, m, j) computes the similarity of cluster j with the merge of clusters i
and m. For some HAC algorithms, SIM(i, m, j) is simply a function of C[j][i]
and C[j][m], for example, the maximum of these two values for single-link.

We will now refine this algorithm for the different similarity measures
of single-link and complete-link clustering (Section 17.2) and group-average
and centroid clustering (Sections 17.3 and 17.4). The merge criteria of these
four variants of HAC are shown in Figure 17.3.

2. We assume that we use a deterministic method for breaking ties, such as always choose the
merge that is the first cluster with respect to a total ordering of the subsets of the document set
D.
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SIMPLEHAC(d1, . . . , dN)
1 for n← 1 to N
2 do for i← 1 to N
3 do C[n][i]← SIM(dn, di)
4 I[n]← 1 (keeps track of active clusters)
5 A← [] (assembles clustering as a sequence of merges)
6 for k← 1 to N − 1
7 do 〈i, m〉 ← arg max{〈i,m〉:i 6=m∧I[i]=1∧I[m]=1}C[i][m]

8 A.APPEND(〈i, m〉) (store merge)
9 for j← 1 to N

10 do C[i][j]← SIM(i, m, j)
11 C[j][i]← SIM(i, m, j)
12 I[m]← 0 (deactivate cluster)
13 return A

◮ Figure 17.2 A simple, but inefficient HAC algorithm.

b

b

b

b

(a) single-link: maximum similarity

b

b

b

b

(b) complete-link: minimum similarity

b

b

b

b

(c) centroid: average inter-similarity

b

b

b

b

(d) group-average: average of all similarities

◮ Figure 17.3 The different notions of cluster similarity used by the four HAC al-
gorithms. An inter-similarity is a similarity between two documents from different
clusters.
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◮ Figure 17.4 A single-link (left) and complete-link (right) clustering of eight doc-
uments. The ellipses correspond to successive clustering stages. Left: The single-link
similarity of the two upper two-point clusters is the similarity of d2 and d3 (solid
line), which is greater than the single-link similarity of the two left two-point clusters
(dashed line). Right: The complete-link similarity of the two upper two-point clusters
is the similarity of d1 and d4 (dashed line), which is smaller than the complete-link
similarity of the two left two-point clusters (solid line).

17.2 Single-link and complete-link clustering

In single-link clustering or single-linkage clustering, the similarity of two clus-SINGLE-LINK
CLUSTERING ters is the similarity of their most similar members (see Figure 17.3, (a))3. This

single-link merge criterion is local. We pay attention solely to the area where
the two clusters come closest to each other. Other, more distant parts of the
cluster and the clusters’ overall structure are not taken into account.

In complete-link clustering or complete-linkage clustering, the similarity of twoCOMPLETE-LINK
CLUSTERING clusters is the similarity of their most dissimilar members (see Figure 17.3, (b)).

This is equivalent to choosing the cluster pair whose merge has the smallest
diameter. This complete-link merge criterion is non-local; the entire structure
of the clustering can influence merge decisions. This results in a preference
for compact clusters with small diameters over long, straggly clusters, but
also causes sensitivity to outliers. A single document far from the center can
increase diameters of candidate merge clusters dramatically and completely
change the final clustering.

Figure 17.4 depicts a single-link and a complete-link clustering of eight
documents. The first four steps, each producing a cluster consisting of a pair
of two documents, are identical. Then single-link clustering joins the up-
per two pairs (and after that the lower two pairs) because on the maximum-
similarity definition of cluster similarity, those two clusters are closest. Complete-

3. Throughout this chapter, we equate similarity with proximity in 2D depictions of clustering.
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◮ Figure 17.6 Chaining in single-link clustering. The local criterion in single-link
clustering can cause undesirable elongated clusters.

link clustering joins the left two pairs (and then the right two pairs) because
those are the closest pairs according to the minimum-similarity definition of
cluster similarity.4

Figure 17.1 is an example of a single-link clustering of a set of documents
and Figure 17.5 is the complete-link clustering of the same set. When cutting
the last merge in Figure 17.5, we obtain two clusters of similar size (doc-
uments 1–16, from NYSE closing averages to Lloyd’s chief / U.S. grilling, and
documents 17–30, from Ohio Blue Cross to Clinton signs law). There is no cut
of the dendrogram in Figure 17.1 that would give us an equally balanced
clustering.

Both single-link and complete-link clustering have graph-theoretic inter-
pretations. Define sk to be the combination similarity of the two clusters
merged in step k, and G(sk) the graph that links all data points with a similar-
ity of at least sk. Then the clusters after step k in single-link clustering are the
connected components of G(sk) and the clusters after step k in complete-link
clustering are maximal cliques of G(sk). A connected component is a maximalCONNECTED

COMPONENT set of connected points such that there is a path connecting each pair. A clique
CLIQUE is a set of points that are completely linked with each other.

These graph-theoretic interpretations motivate the terms single-link and
complete-link clustering. Single-link clusters at step k are maximal sets of
points that are linked via at least one link (a single link) of similarity s ≥ sk;
complete-link clusters at step k are maximal sets of points that are completely
linked with each other via links of similarity s ≥ sk.

Single-link and complete-link clustering reduce the assessment of cluster
quality to a single similarity between a pair of documents: the two most sim-
ilar documents in single-link clustering and the two most dissimilar docu-
ments in complete-link clustering. A measurement based on one pair cannot
fully reflect the distribution of documents in a cluster. It is therefore not sur-
prising that both algorithms often produce undesirable clusters. Single-link
clustering can produce straggling clusters as shown in Figure 17.6. Since the
merge criterion is strictly local, a chain of points can be extended for long

4. If you are bothered by the possibility of ties, assume that d1 has coordinates (1 + ǫ, 3− ǫ) and
that all other points have integer coordinates.
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◮ Figure 17.7 Outliers in complete-link clustering. The five documents have
the x-coordinates 1 + 2ǫ, 4, 5 + 2ǫ, 6 and 7 − ǫ. Complete-link clustering cre-
ates the two clusters shown as ellipses. The most intuitive two-cluster cluster-
ing is {{d1}, {d2, d3, d4, d5}}, but in complete-link clustering, the outlier d1 splits
{d2, d3, d4, d5} as shown.

distances without regard to the overall shape of the emerging cluster. This
effect is called chaining.CHAINING

The chaining effect is also apparent in Figure 17.1. The last eleven merges
of the single-link clustering (those above the 0.1 line) add on single docu-
ments or pairs of documents, corresponding to a chain. The complete-link
clustering in Figure 17.5 avoids this problem. Documents are split into two
groups of roughly equal size when we cut the dendrogram at the last merge.
In general, this is a more useful organization of the data than a clustering
with chains.

However, complete-link clustering suffers from a different problem. It
pays too much attention to outliers, points that do not fit well into the global
structure of the cluster. In the example in Figure 17.7 the four documents
d2, d3, d4, d5 are split because of the outlier d1 at the left edge (Exercise 17.1).
Complete-link clustering does not find the most intuitive cluster structure in
this example.

17.2.1 Time complexity of HAC

The complexity of the naive HAC algorithm in Figure 17.2 is Θ(N3) because
we exhaustively scan the N × N matrix C for the largest similarity in each of
N − 1 iterations.

For the four HAC methods discussed in this chapter a more efficient algo-
rithm is the priority-queue algorithm shown in Figure 17.8. Its time complex-
ity is Θ(N2 log N). The rows C[k] of the N× N similarity matrix C are sorted
in decreasing order of similarity in the priority queues P. P[k].MAX() then
returns the cluster in P[k] that currently has the highest similarity with ωk,
where we use ωk to denote the kth cluster as in Chapter 16. After creating the
merged cluster of ωk1

and ωk2 , ωk1
is used as its representative. The function

SIM computes the similarity function for potential merge pairs: largest simi-
larity for single-link, smallest similarity for complete-link, average similarity
for GAAC (Section 17.3), and centroid similarity for centroid clustering (Sec-



Online edition (c)
2009 Cambridge UP

386 17 Hierarchical clustering

EFFICIENTHAC(~d1, . . . , ~dN)
1 for n← 1 to N
2 do for i ← 1 to N
3 do C[n][i].sim← ~dn · ~di

4 C[n][i].index← i
5 I[n]← 1
6 P[n]← priority queue for C[n] sorted on sim
7 P[n].DELETE(C[n][n]) (don’t want self-similarities)
8 A ← []
9 for k← 1 to N − 1

10 do k1 ← arg max{k:I[k]=1} P[k].MAX().sim
11 k2 ← P[k1].MAX().index
12 A.APPEND(〈k1, k2〉)
13 I[k2]← 0
14 P[k1]← []
15 for each i with I[i] = 1 ∧ i 6= k1
16 do P[i].DELETE(C[i][k1])
17 P[i].DELETE(C[i][k2])
18 C[i][k1].sim← SIM(i, k1, k2)
19 P[i].INSERT(C[i][k1])
20 C[k1][i].sim← SIM(i, k1, k2)
21 P[k1].INSERT(C[k1][i])
22 return A

clustering algorithm SIM(i, k1, k2)
single-link max(SIM(i, k1), SIM(i, k2))
complete-link min(SIM(i, k1), SIM(i, k2))
centroid ( 1

Nm
~vm) · ( 1

Ni
~vi)

group-average 1
(Nm+Ni)(Nm+Ni−1)

[(~vm +~vi)
2 − (Nm + Ni)]

compute C[5]
1 2 3 4 5
0.2 0.8 0.6 0.4 1.0

create P[5] (by sorting)
2 3 4 1
0.8 0.6 0.4 0.2

merge 2 and 3, update
similarity of 2, delete 3

2 4 1
0.3 0.4 0.2

delete and reinsert 2
4 2 1
0.4 0.3 0.2

◮ Figure 17.8 The priority-queue algorithm for HAC. Top: The algorithm. Center:
Four different similarity measures. Bottom: An example for processing steps 6 and
16–19. This is a made up example showing P[5] for a 5× 5 matrix C.
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SINGLELINKCLUSTERING(d1, . . . , dN)
1 for n← 1 to N
2 do for i← 1 to N
3 do C[n][i].sim← SIM(dn, di)
4 C[n][i].index← i
5 I[n]← n
6 NBM[n]← arg maxX∈{C[n][i]:n 6=i}X.sim
7 A← []
8 for n← 1 to N − 1
9 do i1 ← arg max{i:I[i]=i}NBM[i].sim

10 i2 ← I[NBM[i1].index]
11 A.APPEND(〈i1, i2〉)
12 for i← 1 to N
13 do if I[i] = i ∧ i 6= i1 ∧ i 6= i2
14 then C[i1][i].sim← C[i][i1].sim← max(C[i1][i].sim, C[i2][i].sim)
15 if I[i] = i2
16 then I[i]← i1
17 NBM[i1]← arg maxX∈{C[i1][i]:I[i]=i∧i 6=i1} X.sim
18 return A

◮ Figure 17.9 Single-link clustering algorithm using an NBM array. After merging
two clusters i1 and i2, the first one (i1) represents the merged cluster. If I[i] = i, then i
is the representative of its current cluster. If I[i] 6= i, then i has been merged into the
cluster represented by I[i] and will therefore be ignored when updating NBM[i1].

tion 17.4). We give an example of how a row of C is processed (Figure 17.8,
bottom panel). The loop in lines 1–7 is Θ(N2) and the loop in lines 9–21 is
Θ(N2 log N) for an implementation of priority queues that supports deletion
and insertion in Θ(log N). The overall complexity of the algorithm is there-
fore Θ(N2 log N). In the definition of the function SIM, ~vm and ~vi are the
vector sums of ωk1

∪ωk2 and ωi, respectively, and Nm and Ni are the number
of documents in ωk1

∪ωk2
and ωi, respectively.

The argument of EFFICIENTHAC in Figure 17.8 is a set of vectors (as op-
posed to a set of generic documents) because GAAC and centroid clustering
(Sections 17.3 and 17.4) require vectors as input. The complete-link version
of EFFICIENTHAC can also be applied to documents that are not represented
as vectors.

For single-link, we can introduce a next-best-merge array (NBM) as a fur-
ther optimization as shown in Figure 17.9. NBM keeps track of what the best
merge is for each cluster. Each of the two top level for-loops in Figure 17.9
are Θ(N2), thus the overall complexity of single-link clustering is Θ(N2).
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◮ Figure 17.10 Complete-link clustering is not best-merge persistent. At first, d2 is
the best-merge cluster for d3. But after merging d1 and d2, d4 becomes d3’s best-merge
candidate. In a best-merge persistent algorithm like single-link, d3’s best-merge clus-
ter would be {d1, d2}.

Can we also speed up the other three HAC algorithms with an NBM ar-
ray? We cannot because only single-link clustering is best-merge persistent.BEST-MERGE

PERSISTENCE Suppose that the best merge cluster for ωk is ωj in single-link clustering.
Then after merging ωj with a third cluster ωi 6= ωk, the merge of ωi and ωj

will be ωk’s best merge cluster (Exercise 17.6). In other words, the best-merge
candidate for the merged cluster is one of the two best-merge candidates of
its components in single-link clustering. This means that C can be updated
in Θ(N) in each iteration – by taking a simple max of two values on line 14
in Figure 17.9 for each of the remaining ≤ N clusters.

Figure 17.10 demonstrates that best-merge persistence does not hold for
complete-link clustering, which means that we cannot use an NBM array to
speed up clustering. After merging d3’s best merge candidate d2 with cluster
d1, an unrelated cluster d4 becomes the best merge candidate for d3. This is
because the complete-link merge criterion is non-local and can be affected by
points at a great distance from the area where two merge candidates meet.

In practice, the efficiency penalty of the Θ(N2 log N) algorithm is small
compared with the Θ(N2) single-link algorithm since computing the similar-
ity between two documents (e.g., as a dot product) is an order of magnitude
slower than comparing two scalars in sorting. All four HAC algorithms in
this chapter are Θ(N2) with respect to similarity computations. So the differ-
ence in complexity is rarely a concern in practice when choosing one of the
algorithms.

? Exercise 17.1

Show that complete-link clustering creates the two-cluster clustering depicted in Fig-
ure 17.7.

17.3 Group-average agglomerative clustering

Group-average agglomerative clustering or GAAC (see Figure 17.3, (d)) evaluatesGROUP-AVERAGE
AGGLOMERATIVE

CLUSTERING
cluster quality based on all similarities between documents, thus avoiding
the pitfalls of the single-link and complete-link criteria, which equate cluster
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similarity with the similarity of a single pair of documents. GAAC is also
called group-average clustering and average-link clustering. GAAC computes
the average similarity SIM-GA of all pairs of documents, including pairs from
the same cluster. But self-similarities are not included in the average:

SIM-GA(ωi, ωj) =
1

(Ni + Nj)(Ni + Nj − 1) ∑
dm∈ωi∪ωj

∑
dn∈ωi∪ωj,dn 6=dm

~dm · ~dn(17.1)

where ~d is the length-normalized vector of document d, · denotes the dot
product, and Ni and Nj are the number of documents in ωi and ωj, respec-
tively.

The motivation for GAAC is that our goal in selecting two clusters ωi

and ωj as the next merge in HAC is that the resulting merge cluster ωk =
ωi ∪ ωj should be coherent. To judge the coherence of ωk, we need to look
at all document-document similarities within ωk, including those that occur
within ωi and those that occur within ωj.

We can compute the measure SIM-GA efficiently because the sum of indi-
vidual vector similarities is equal to the similarities of their sums:

∑
dm∈ωi

∑
dn∈ωj

(~dm · ~dn) = ( ∑
dm∈ωi

~dm) · ( ∑
dn∈ωj

~dn)(17.2)

With (17.2), we have:

SIM-GA(ωi, ωj) =
1

(Ni + Nj)(Ni + Nj − 1)
[( ∑

dm∈ωi∪ωj

~dm)2 − (Ni + Nj)](17.3)

The term (Ni + Nj) on the right is the sum of Ni + Nj self-similarities of value
1.0. With this trick we can compute cluster similarity in constant time (as-
suming we have available the two vector sums ∑dm∈ωi

~dm and ∑dm∈ωj
~dm)

instead of in Θ(NiNj). This is important because we need to be able to com-
pute the function SIM on lines 18 and 20 in EFFICIENTHAC (Figure 17.8)
in constant time for efficient implementations of GAAC. Note that for two
singleton clusters, Equation (17.3) is equivalent to the dot product.

Equation (17.2) relies on the distributivity of the dot product with respect
to vector addition. Since this is crucial for the efficient computation of a
GAAC clustering, the method cannot be easily applied to representations of
documents that are not real-valued vectors. Also, Equation (17.2) only holds
for the dot product. While many algorithms introduced in this book have
near-equivalent descriptions in terms of dot product, cosine similarity and
Euclidean distance (cf. Section 14.1, page 291), Equation (17.2) can only be
expressed using the dot product. This is a fundamental difference between
single-link/complete-link clustering and GAAC. The first two only require a
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square matrix of similarities as input and do not care how these similarities
were computed.

To summarize, GAAC requires (i) documents represented as vectors, (ii)
length normalization of vectors, so that self-similarities are 1.0, and (iii) the
dot product as the measure of similarity between vectors and sums of vec-
tors.

The merge algorithms for GAAC and complete-link clustering are the same
except that we use Equation (17.3) as similarity function in Figure 17.8. There-
fore, the overall time complexity of GAAC is the same as for complete-link
clustering: Θ(N2 log N). Like complete-link clustering, GAAC is not best-
merge persistent (Exercise 17.6). This means that there is no Θ(N2) algorithm
for GAAC that would be analogous to the Θ(N2) algorithm for single-link in
Figure 17.9.

We can also define group-average similarity as including self-similarities:

SIM-GA′(ωi, ωj) =
1

(Ni+Nj)2 ( ∑
dm∈ωi∪ωj

~dm)2 =
1

Ni+Nj
∑

dm∈ωi∪ωj

[~dm ·~µ(ωi∪ωj)](17.4)

where the centroid ~µ(ω) is defined as in Equation (14.1) (page 292). This
definition is equivalent to the intuitive definition of cluster quality as average
similarity of documents ~dm to the cluster’s centroid ~µ.

Self-similarities are always equal to 1.0, the maximum possible value for
length-normalized vectors. The proportion of self-similarities in Equation (17.4)
is i/i2 = 1/i for a cluster of size i. This gives an unfair advantage to small
clusters since they will have proportionally more self-similarities. For two
documents d1, d2 with a similarity s, we have SIM-GA′(d1, d2) = (1 + s)/2.
In contrast, SIM-GA(d1, d2) = s ≤ (1 + s)/2. This similarity SIM-GA(d1, d2)
of two documents is the same as in single-link, complete-link and centroid
clustering. We prefer the definition in Equation (17.3), which excludes self-
similarities from the average, because we do not want to penalize large clus-
ters for their smaller proportion of self-similarities and because we want a
consistent similarity value s for document pairs in all four HAC algorithms.

? Exercise 17.2

Apply group-average clustering to the points in Figures 17.6 and 17.7. Map them onto
the surface of the unit sphere in a three-dimensional space to get length-normalized
vectors. Is the group-average clustering different from the single-link and complete-
link clusterings?
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◮ Figure 17.11 Three iterations of centroid clustering. Each iteration merges the
two clusters whose centroids are closest.

17.4 Centroid clustering

In centroid clustering, the similarity of two clusters is defined as the similar-
ity of their centroids:

SIM-CENT(ωi, ωj) = ~µ(ωi) ·~µ(ωj)(17.5)

= (
1
Ni

∑
dm∈ωi

~dm) · ( 1
Nj

∑
dn∈ωj

~dn)

=
1

NiNj
∑

dm∈ωi

∑
dn∈ωj

~dm · ~dn(17.6)

Equation (17.5) is centroid similarity. Equation (17.6) shows that centroid
similarity is equivalent to average similarity of all pairs of documents from
different clusters. Thus, the difference between GAAC and centroid clustering
is that GAAC considers all pairs of documents in computing average pair-
wise similarity (Figure 17.3, (d)) whereas centroid clustering excludes pairs
from the same cluster (Figure 17.3, (c)).

Figure 17.11 shows the first three steps of a centroid clustering. The first
two iterations form the clusters {d5, d6} with centroid µ1 and {d1, d2} with
centroid µ2 because the pairs 〈d5, d6〉 and 〈d1, d2〉 have the highest centroid
similarities. In the third iteration, the highest centroid similarity is between
µ1 and d4 producing the cluster {d4, d5, d6} with centroid µ3.

Like GAAC, centroid clustering is not best-merge persistent and therefore
Θ(N2 log N) (Exercise 17.6).

In contrast to the other three HAC algorithms, centroid clustering is not
monotonic. So-called inversions can occur: Similarity can increase duringINVERSION
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◮ Figure 17.12 Centroid clustering is not monotonic. The documents d1 at (1 + ǫ, 1),
d2 at (5, 1), and d3 at (3, 1 + 2

√
3) are almost equidistant, with d1 and d2 closer to

each other than to d3. The non-monotonic inversion in the hierarchical clustering
of the three points appears as an intersecting merge line in the dendrogram. The
intersection is circled.

clustering as in the example in Figure 17.12, where we define similarity as
negative distance. In the first merge, the similarity of d1 and d2 is−(4− ǫ). In
the second merge, the similarity of the centroid of d1 and d2 (the circle) and d3

is ≈ − cos(π/6)× 4 = −
√

3/2× 4 ≈ −3.46 > −(4− ǫ). This is an example
of an inversion: similarity increases in this sequence of two clustering steps.
In a monotonic HAC algorithm, similarity is monotonically decreasing from
iteration to iteration.

Increasing similarity in a series of HAC clustering steps contradicts the
fundamental assumption that small clusters are more coherent than large
clusters. An inversion in a dendrogram shows up as a horizontal merge line
that is lower than the previous merge line. All merge lines in Figures 17.1
and 17.5 are higher than their predecessors because single-link and complete-
link clustering are monotonic clustering algorithms.

Despite its non-monotonicity, centroid clustering is often used because its
similarity measure – the similarity of two centroids – is conceptually simpler
than the average of all pairwise similarities in GAAC. Figure 17.11 is all one
needs to understand centroid clustering. There is no equally simple graph
that would explain how GAAC works.

? Exercise 17.3

For a fixed set of N documents there are up to N2 distinct similarities between clusters
in single-link and complete-link clustering. How many distinct cluster similarities are
there in GAAC and centroid clustering?
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✄ 17.5 Optimality of HAC

To state the optimality conditions of hierarchical clustering precisely, we first
define the combination similarity COMB-SIM of a clustering Ω = {ω1, . . . , ωK}
as the smallest combination similarity of any of its K clusters:

COMB-SIM({ω1, . . . , ωK}) = min
k

COMB-SIM(ωk)

Recall that the combination similarity of a cluster ω that was created as the
merge of ω1 and ω2 is the similarity of ω1 and ω2 (page 378).

We then define Ω = {ω1, . . . , ωK} to be optimal if all clusterings Ω′ with kOPTIMAL CLUSTERING

clusters, k ≤ K, have lower combination similarities:

|Ω′| ≤ |Ω| ⇒ COMB-SIM(Ω′) ≤ COMB-SIM(Ω)

Figure 17.12 shows that centroid clustering is not optimal. The cluster-
ing {{d1, d2}, {d3}} (for K = 2) has combination similarity −(4 − ǫ) and
{{d1, d2, d3}} (for K = 1) has combination similarity -3.46. So the cluster-
ing {{d1, d2}, {d3}} produced in the first merge is not optimal since there is
a clustering with fewer clusters ({{d1, d2, d3}}) that has higher combination
similarity. Centroid clustering is not optimal because inversions can occur.

The above definition of optimality would be of limited use if it was only
applicable to a clustering together with its merge history. However, we can
show (Exercise 17.4) that combination similarity for the three non-inversionCOMBINATION

SIMILARITY algorithms can be read off from the cluster without knowing its history. These
direct definitions of combination similarity are as follows.

single-link The combination similarity of a cluster ω is the smallest similar-
ity of any bipartition of the cluster, where the similarity of a bipartition is
the largest similarity between any two documents from the two parts:

COMB-SIM(ω) = min
{ω′:ω′⊂ω}

max
di∈ω′

max
d j∈ω−ω′

SIM(di, dj)

where each 〈ω′, ω− ω′〉 is a bipartition of ω.

complete-link The combination similarity of a cluster ω is the smallest sim-
ilarity of any two points in ω: mindi∈ω mind j∈ω SIM(di, dj).

GAAC The combination similarity of a cluster ω is the average of all pair-
wise similarities in ω (where self-similarities are not included in the aver-
age): Equation (17.3).

If we use these definitions of combination similarity, then optimality is a
property of a set of clusters and not of a process that produces a set of clus-
ters.
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We can now prove the optimality of single-link clustering by induction
over the number of clusters K. We will give a proof for the case where no two
pairs of documents have the same similarity, but it can easily be extended to
the case with ties.

The inductive basis of the proof is that a clustering with K = N clusters has
combination similarity 1.0, which is the largest value possible. The induc-
tion hypothesis is that a single-link clustering ΩK with K clusters is optimal:
COMB-SIM(ΩK) ≥ COMB-SIM(Ω′K) for all Ω′K. Assume for contradiction that
the clustering ΩK−1 we obtain by merging the two most similar clusters in
ΩK is not optimal and that instead a different sequence of merges Ω′K, Ω′K−1
leads to the optimal clustering with K − 1 clusters. We can write the as-
sumption that Ω′K−1 is optimal and that ΩK−1 is not as COMB-SIM(Ω′K−1) >

COMB-SIM(ΩK−1).
Case 1: The two documents linked by s = COMB-SIM(Ω′K−1) are in the

same cluster in ΩK. They can only be in the same cluster if a merge with sim-
ilarity smaller than s has occurred in the merge sequence producing ΩK. This
implies s > COMB-SIM(ΩK). Thus, COMB-SIM(Ω′K−1) = s > COMB-SIM(ΩK) >

COMB-SIM(Ω′K) > COMB-SIM(Ω′K−1). Contradiction.
Case 2: The two documents linked by s = COMB-SIM(Ω′K−1) are not in

the same cluster in ΩK. But s = COMB-SIM(Ω′K−1) > COMB-SIM(ΩK−1), so
the single-link merging rule should have merged these two clusters when
processing ΩK. Contradiction.

Thus, ΩK−1 is optimal.
In contrast to single-link clustering, complete-link clustering and GAAC

are not optimal as this example shows:

× × × ×13 3
d1 d2 d3 d4

Both algorithms merge the two points with distance 1 (d2 and d3) first and
thus cannot find the two-cluster clustering {{d1, d2}, {d3, d4}}. But {{d1, d2}, {d3, d4}}
is optimal on the optimality criteria of complete-link clustering and GAAC.

However, the merge criteria of complete-link clustering and GAAC ap-
proximate the desideratum of approximate sphericity better than the merge
criterion of single-link clustering. In many applications, we want spheri-
cal clusters. Thus, even though single-link clustering may seem preferable at
first because of its optimality, it is optimal with respect to the wrong criterion
in many document clustering applications.

Table 17.1 summarizes the properties of the four HAC algorithms intro-
duced in this chapter. We recommend GAAC for document clustering be-
cause it is generally the method that produces the clustering with the best
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method combination similarity time compl. optimal? comment
single-link max inter-similarity of any 2 docs Θ(N2) yes chaining effect

complete-link min inter-similarity of any 2 docs Θ(N2 log N) no sensitive to outliers

group-average average of all sims Θ(N2 log N) no
best choice for
most applications

centroid average inter-similarity Θ(N2 log N) no inversions can occur

◮ Table 17.1 Comparison of HAC algorithms.

properties for applications. It does not suffer from chaining, from sensitivity
to outliers and from inversions.

There are two exceptions to this recommendation. First, for non-vector
representations, GAAC is not applicable and clustering should typically be
performed with the complete-link method.

Second, in some applications the purpose of clustering is not to create a
complete hierarchy or exhaustive partition of the entire document set. For
instance, first story detection or novelty detection is the task of detecting the firstFIRST STORY

DETECTION occurrence of an event in a stream of news stories. One approach to this task
is to find a tight cluster within the documents that were sent across the wire
in a short period of time and are dissimilar from all previous documents. For
example, the documents sent over the wire in the minutes after the World
Trade Center attack on September 11, 2001 form such a cluster. Variations of
single-link clustering can do well on this task since it is the structure of small
parts of the vector space – and not global structure – that is important in this
case.

Similarly, we will describe an approach to duplicate detection on the web
in Section 19.6 (page 440) where single-link clustering is used in the guise of
the union-find algorithm. Again, the decision whether a group of documents
are duplicates of each other is not influenced by documents that are located
far away and single-link clustering is a good choice for duplicate detection.

? Exercise 17.4

Show the equivalence of the two definitions of combination similarity: the process
definition on page 378 and the static definition on page 393.

17.6 Divisive clustering

So far we have only looked at agglomerative clustering, but a cluster hierar-
chy can also be generated top-down. This variant of hierarchical clustering
is called top-down clustering or divisive clustering. We start at the top with allTOP-DOWN

CLUSTERING documents in one cluster. The cluster is split using a flat clustering algo-
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rithm. This procedure is applied recursively until each document is in its
own singleton cluster.

Top-down clustering is conceptually more complex than bottom-up clus-
tering since we need a second, flat clustering algorithm as a “subroutine”. It
has the advantage of being more efficient if we do not generate a complete
hierarchy all the way down to individual document leaves. For a fixed num-
ber of top levels, using an efficient flat algorithm like K-means, top-down
algorithms are linear in the number of documents and clusters. So they run
much faster than HAC algorithms, which are at least quadratic.

There is evidence that divisive algorithms produce more accurate hierar-
chies than bottom-up algorithms in some circumstances. See the references
on bisecting K-means in Section 17.9. Bottom-up methods make cluster-
ing decisions based on local patterns without initially taking into account
the global distribution. These early decisions cannot be undone. Top-down
clustering benefits from complete information about the global distribution
when making top-level partitioning decisions.

17.7 Cluster labeling

In many applications of flat clustering and hierarchical clustering, particu-
larly in analysis tasks and in user interfaces (see applications in Table 16.1,
page 351), human users interact with clusters. In such settings, we must label
clusters, so that users can see what a cluster is about.

Differential cluster labeling selects cluster labels by comparing the distribu-DIFFERENTIAL CLUSTER
LABELING tion of terms in one cluster with that of other clusters. The feature selection

methods we introduced in Section 13.5 (page 271) can all be used for differen-
tial cluster labeling.5 In particular, mutual information (MI) (Section 13.5.1,
page 272) or, equivalently, information gain and the χ2-test (Section 13.5.2,
page 275) will identify cluster labels that characterize one cluster in contrast
to other clusters. A combination of a differential test with a penalty for rare
terms often gives the best labeling results because rare terms are not neces-
sarily representative of the cluster as a whole.

We apply three labeling methods to a K-means clustering in Table 17.2. In
this example, there is almost no difference between MI and χ2. We therefore
omit the latter.

Cluster-internal labeling computes a label that solely depends on the clusterCLUSTER-INTERNAL
LABELING itself, not on other clusters. Labeling a cluster with the title of the document

closest to the centroid is one cluster-internal method. Titles are easier to read
than a list of terms. A full title can also contain important context that didn’t
make it into the top 10 terms selected by MI. On the web, anchor text can

5. Selecting the most frequent terms is a non-differential feature selection technique we dis-
cussed in Section 13.5. It can also be used for labeling clusters.
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labeling method
# docs centroid mutual information title

4 622
oil plant mexico pro-
duction crude power
000 refinery gas bpd

plant oil production
barrels crude bpd
mexico dolly capacity
petroleum

MEXICO: Hurri-
cane Dolly heads for
Mexico coast

9 1017

police security russian
people military peace
killed told grozny
court

police killed military
security peace told
troops forces rebels
people

RUSSIA: Russia’s
Lebed meets rebel
chief in Chechnya

10 1259

00 000 tonnes traders
futures wheat prices
cents september
tonne

delivery traders
futures tonne tonnes
desk wheat prices 000
00

USA: Export Business
- Grain/oilseeds com-
plex

◮ Table 17.2 Automatically computed cluster labels. This is for three of ten clusters
(4, 9, and 10) in a K-means clustering of the first 10,000 documents in Reuters-RCV1.
The last three columns show cluster summaries computed by three labeling methods:
most highly weighted terms in centroid (centroid), mutual information, and the title
of the document closest to the centroid of the cluster (title). Terms selected by only
one of the first two methods are in bold.

play a role similar to a title since the anchor text pointing to a page can serve
as a concise summary of its contents.

In Table 17.2, the title for cluster 9 suggests that many of its documents are
about the Chechnya conflict, a fact the MI terms do not reveal. However, a
single document is unlikely to be representative of all documents in a cluster.
An example is cluster 4, whose selected title is misleading. The main topic of
the cluster is oil. Articles about hurricane Dolly only ended up in this cluster
because of its effect on oil prices.

We can also use a list of terms with high weights in the centroid of the clus-
ter as a label. Such highly weighted terms (or, even better, phrases, especially
noun phrases) are often more representative of the cluster than a few titles
can be, even if they are not filtered for distinctiveness as in the differential
methods. However, a list of phrases takes more time to digest for users than
a well crafted title.

Cluster-internal methods are efficient, but they fail to distinguish terms
that are frequent in the collection as a whole from those that are frequent only
in the cluster. Terms like year or Tuesday may be among the most frequent in
a cluster, but they are not helpful in understanding the contents of a cluster
with a specific topic like oil.

In Table 17.2, the centroid method selects a few more uninformative terms
(000, court, cents, september) than MI (forces, desk), but most of the terms se-
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lected by either method are good descriptors. We get a good sense of the
documents in a cluster from scanning the selected terms.

For hierarchical clustering, additional complications arise in cluster label-
ing. Not only do we need to distinguish an internal node in the tree from
its siblings, but also from its parent and its children. Documents in child
nodes are by definition also members of their parent node, so we cannot use
a naive differential method to find labels that distinguish the parent from
its children. However, more complex criteria, based on a combination of
overall collection frequency and prevalence in a given cluster, can determine
whether a term is a more informative label for a child node or a parent node
(see Section 17.9).

17.8 Implementation notes

Most problems that require the computation of a large number of dot prod-
ucts benefit from an inverted index. This is also the case for HAC clustering.
Computational savings due to the inverted index are large if there are many
zero similarities – either because many documents do not share any terms or
because an aggressive stop list is used.

In low dimensions, more aggressive optimizations are possible that make
the computation of most pairwise similarities unnecessary (Exercise 17.10).
However, no such algorithms are known in higher dimensions. We encoun-
tered the same problem in kNN classification (see Section 14.7, page 314).

When using GAAC on a large document set in high dimensions, we have
to take care to avoid dense centroids. For dense centroids, clustering can
take time Θ(MN2 log N) where M is the size of the vocabulary, whereas
complete-link clustering is Θ(MaveN2 log N) where Mave is the average size
of the vocabulary of a document. So for large vocabularies complete-link
clustering can be more efficient than an unoptimized implementation of GAAC.
We discussed this problem in the context of K-means clustering in Chap-
ter 16 (page 365) and suggested two solutions: truncating centroids (keeping
only highly weighted terms) and representing clusters by means of sparse
medoids instead of dense centroids. These optimizations can also be applied
to GAAC and centroid clustering.

Even with these optimizations, HAC algorithms are all Θ(N2) or Θ(N2 log N)
and therefore infeasible for large sets of 1,000,000 or more documents. For
such large sets, HAC can only be used in combination with a flat clustering
algorithm like K-means. Recall that K-means requires a set of seeds as initial-
ization (Figure 16.5, page 361). If these seeds are badly chosen, then the re-
sulting clustering will be of poor quality. We can employ an HAC algorithm
to compute seeds of high quality. If the HAC algorithm is applied to a docu-
ment subset of size

√
N, then the overall runtime of K-means cum HAC seed
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generation is Θ(N). This is because the application of a quadratic algorithm
to a sample of size

√
N has an overall complexity of Θ(N). An appropriate

adjustment can be made for an Θ(N2 log N) algorithm to guarantee linear-
ity. This algorithm is referred to as the Buckshot algorithm. It combines theBUCKSHOT

ALGORITHM determinism and higher reliability of HAC with the efficiency of K-means.

17.9 References and further reading

An excellent general review of clustering is (Jain et al. 1999). Early references
for specific HAC algorithms are (King 1967) (single-link), (Sneath and Sokal
1973) (complete-link, GAAC) and (Lance and Williams 1967) (discussing a
large variety of hierarchical clustering algorithms). The single-link algorithm
in Figure 17.9 is similar to Kruskal’s algorithm for constructing a minimumKRUSKAL’S

ALGORITHM spanning tree. A graph-theoretical proof of the correctness of Kruskal’s al-
gorithm (which is analogous to the proof in Section 17.5) is provided by Cor-
men et al. (1990, Theorem 23.1). See Exercise 17.5 for the connection between
minimum spanning trees and single-link clusterings.

It is often claimed that hierarchical clustering algorithms produce better
clusterings than flat algorithms (Jain and Dubes (1988, p. 140), Cutting et al.
(1992), Larsen and Aone (1999)) although more recently there have been ex-
perimental results suggesting the opposite (Zhao and Karypis 2002). Even
without a consensus on average behavior, there is no doubt that results of
EM and K-means are highly variable since they will often converge to a local
optimum of poor quality. The HAC algorithms we have presented here are
deterministic and thus more predictable.

The complexity of complete-link, group-average and centroid clustering
is sometimes given as Θ(N2) (Day and Edelsbrunner 1984, Voorhees 1985b,
Murtagh 1983) because a document similarity computation is an order of
magnitude more expensive than a simple comparison, the main operation
executed in the merging steps after the N × N similarity matrix has been
computed.

The centroid algorithm described here is due to Voorhees (1985b). Voorhees
recommends complete-link and centroid clustering over single-link for a re-
trieval application. The Buckshot algorithm was originally published by Cut-
ting et al. (1993). Allan et al. (1998) apply single-link clustering to first story
detection.

An important HAC technique not discussed here is Ward’s method (WardWARD’S METHOD

Jr. 1963, El-Hamdouchi and Willett 1986), also called minimum variance clus-
tering. In each step, it selects the merge with the smallest RSS (Chapter 16,
page 360). The merge criterion in Ward’s method (a function of all individual
distances from the centroid) is closely related to the merge criterion in GAAC
(a function of all individual similarities to the centroid).
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Despite its importance for making the results of clustering useful, compar-
atively little work has been done on labeling clusters. Popescul and Ungar
(2000) obtain good results with a combination of χ2 and collection frequency
of a term. Glover et al. (2002b) use information gain for labeling clusters of
web pages. Stein and zu Eissen’s approach is ontology-based (2004). The
more complex problem of labeling nodes in a hierarchy (which requires dis-
tinguishing more general labels for parents from more specific labels for chil-
dren) is tackled by Glover et al. (2002a) and Treeratpituk and Callan (2006).
Some clustering algorithms attempt to find a set of labels first and then build
(often overlapping) clusters around the labels, thereby avoiding the problem
of labeling altogether (Zamir and Etzioni 1999, Käki 2005, Osiński and Weiss
2005). We know of no comprehensive study that compares the quality of
such “label-based” clustering to the clustering algorithms discussed in this
chapter and in Chapter 16. In principle, work on multi-document summa-
rization (McKeown and Radev 1995) is also applicable to cluster labeling, but
multi-document summaries are usually longer than the short text fragments
needed when labeling clusters (cf. Section 8.7, page 170). Presenting clusters
in a way that users can understand is a UI problem. We recommend read-
ing (Baeza-Yates and Ribeiro-Neto 1999, ch. 10) for an introduction to user
interfaces in IR.

An example of an efficient divisive algorithm is bisecting K-means (Stein-
bach et al. 2000). Spectral clustering algorithms (Kannan et al. 2000, DhillonSPECTRAL CLUSTERING

2001, Zha et al. 2001, Ng et al. 2001a), including principal direction divisive
partitioning (PDDP) (whose bisecting decisions are based on SVD, see Chap-
ter 18) (Boley 1998, Savaresi and Boley 2004), are computationally more ex-
pensive than bisecting K-means, but have the advantage of being determin-
istic.

Unlike K-means and EM, most hierarchical clustering algorithms do not
have a probabilistic interpretation. Model-based hierarchical clustering (Vaithyanathan
and Dom 2000, Kamvar et al. 2002, Castro et al. 2004) is an exception.

The evaluation methodology described in Section 16.3 (page 356) is also
applicable to hierarchical clustering. Specialized evaluation measures for hi-
erarchies are discussed by Fowlkes and Mallows (1983), Larsen and Aone
(1999) and Sahoo et al. (2006).

The R environment (R Development Core Team 2005) offers good support
for hierarchical clustering. The R function hclust implements single-link,
complete-link, group-average, and centroid clustering; and Ward’s method.
Another option provided is median clustering which represents each cluster
by its medoid (cf. k-medoids in Chapter 16, page 365). Support for cluster-
ing vectors in high-dimensional spaces is provided by the software package
CLUTO (http://glaros.dtc.umn.edu/gkhome/views/cluto).
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17.10 Exercises

? Exercise 17.5

A single-link clustering can also be computed from the minimum spanning tree of aMINIMUM SPANNING
TREE graph. The minimum spanning tree connects the vertices of a graph at the smallest

possible cost, where cost is defined as the sum over all edges of the graph. In our
case the cost of an edge is the distance between two documents. Show that if ∆k−1 >

∆k > . . . > ∆1 are the costs of the edges of a minimum spanning tree, then these
edges correspond to the k− 1 merges in constructing a single-link clustering.

Exercise 17.6

Show that single-link clustering is best-merge persistent and that GAAC and centroid
clustering are not best-merge persistent.

Exercise 17.7

a. Consider running 2-means clustering on a collection with documents from two
different languages. What result would you expect?

b. Would you expect the same result when running an HAC algorithm?

Exercise 17.8

Download Reuters-21578. Keep only documents that are in the classes crude, inter-
est, and grain. Discard documents that are members of more than one of these three
classes. Compute a (i) single-link, (ii) complete-link, (iii) GAAC, (iv) centroid cluster-
ing of the documents. (v) Cut each dendrogram at the second branch from the top to
obtain K = 3 clusters. Compute the Rand index for each of the 4 clusterings. Which
clustering method performs best?

Exercise 17.9

Suppose a run of HAC finds the clustering with K = 7 to have the highest value on
some prechosen goodness measure of clustering. Have we found the highest-value
clustering among all clusterings with K = 7?

Exercise 17.10

Consider the task of producing a single-link clustering of N points on a line:

× × × × × × × × × ×

Show that we only need to compute a total of about N similarities. What is the overall
complexity of single-link clustering for a set of points on a line?

Exercise 17.11

Prove that single-link, complete-link, and group-average clustering are monotonic in
the sense defined on page 378.

Exercise 17.12

For N points, there are ≤ NK different flat clusterings into K clusters (Section 16.2,
page 356). What is the number of different hierarchical clusterings (or dendrograms)
of N documents? Are there more flat clusterings or more hierarchical clusterings for
given K and N?
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18 Matrix decompositions and latent

semantic indexing

On page 123 we introduced the notion of a term-document matrix: an M× N
matrix C, each of whose rows represents a term and each of whose columns
represents a document in the collection. Even for a collection of modest size,
the term-document matrix C is likely to have several tens of thousands of
rows and columns. In Section 18.1.1 we first develop a class of operations
from linear algebra, known as matrix decomposition. In Section 18.2 we use a
special form of matrix decomposition to construct a low-rank approximation
to the term-document matrix. In Section 18.3 we examine the application
of such low-rank approximations to indexing and retrieving documents, a
technique referred to as latent semantic indexing. While latent semantic in-
dexing has not been established as a significant force in scoring and ranking
for information retrieval, it remains an intriguing approach to clustering in a
number of domains including for collections of text documents (Section 16.6,
page 372). Understanding its full potential remains an area of active research.

Readers who do not require a refresher on linear algebra may skip Sec-
tion 18.1, although Example 18.1 is especially recommended as it highlights
a property of eigenvalues that we exploit later in the chapter.

18.1 Linear algebra review

We briefly review some necessary background in linear algebra. Let C be
an M × N matrix with real-valued entries; for a term-document matrix, all
entries are in fact non-negative. The rank of a matrix is the number of linearlyRANK

independent rows (or columns) in it; thus, rank(C) ≤ min{M, N}. A square
r × r matrix all of whose off-diagonal entries are zero is called a diagonal
matrix; its rank is equal to the number of non-zero diagonal entries. If all
r diagonal entries of such a diagonal matrix are 1, it is called the identity
matrix of dimension r and represented by Ir.

For a square M×M matrix C and a vector ~x that is not all zeros, the values
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of λ satisfying
C~x = λ~x(18.1)

are called the eigenvalues of C . The N-vector ~x satisfying Equation (18.1)EIGENVALUE

for an eigenvalue λ is the corresponding right eigenvector. The eigenvector
corresponding to the eigenvalue of largest magnitude is called the principal
eigenvector. In a similar fashion, the left eigenvectors of C are the M-vectors y
such that

~yT C = λ~yT .(18.2)

The number of non-zero eigenvalues of C is at most rank(C).
The eigenvalues of a matrix are found by solving the characteristic equation,

which is obtained by rewriting Equation (18.1) in the form (C− λIM)~x = 0.
The eigenvalues of C are then the solutions of |(C − λIM)| = 0, where |S|
denotes the determinant of a square matrix S. The equation |(C− λIM)| = 0
is an Mth order polynomial equation in λ and can have at most M roots,
which are the eigenvalues of C. These eigenvalues can in general be complex,
even if all entries of C are real.

We now examine some further properties of eigenvalues and eigenvectors,
to set up the central idea of singular value decompositions in Section 18.2 be-
low. First, we look at the relationship between matrix-vector multiplication
and eigenvalues.

✎ Example 18.1: Consider the matrix

S =




30 0 0
0 20 0
0 0 1


 .

Clearly the matrix has rank 3, and has 3 non-zero eigenvalues λ1 = 30, λ2 = 20 and
λ3 = 1, with the three corresponding eigenvectors

~x1 =




1
0
0


 , ~x2 =




0
1
0


 and ~x3 =




0
0
1


 .

For each of the eigenvectors, multiplication by S acts as if we were multiplying the
eigenvector by a multiple of the identity matrix; the multiple is different for each

eigenvector. Now, consider an arbitrary vector, such as ~v =




2
4
6


 . We can always

express~v as a linear combination of the three eigenvectors of S; in the current example
we have

~v =




2
4
6


 = 2~x1 + 4~x2 + 6~x3.
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Suppose we multiply ~v by S:

S~v = S(2~x1 + 4~x2 + 6~x3)

= 2S~x1 + 4S~x2 + 6S~x3

= 2λ1~x1 + 4λ2~x2 + 6λ3~x3

= 60~x1 + 80~x2 + 6~x3.(18.3)

Example 18.1 shows that even though ~v is an arbitrary vector, the effect of
multiplication by S is determined by the eigenvalues and eigenvectors of S.
Furthermore, it is intuitively apparent from Equation (18.3) that the product
S~v is relatively unaffected by terms arising from the small eigenvalues of S;
in our example, since λ3 = 1, the contribution of the third term on the right
hand side of Equation (18.3) is small. In fact, if we were to completely ignore
the contribution in Equation (18.3) from the third eigenvector corresponding

to λ3 = 1, then the product S~v would be computed to be




60
80
0


 rather than

the correct product which is




60
80
6


; these two vectors are relatively close

to each other by any of various metrics one could apply (such as the length
of their vector difference).

This suggests that the effect of small eigenvalues (and their eigenvectors)
on a matrix-vector product is small. We will carry forward this intuition
when studying matrix decompositions and low-rank approximations in Sec-
tion 18.2. Before doing so, we examine the eigenvectors and eigenvalues of
special forms of matrices that will be of particular interest to us.

For a symmetric matrix S, the eigenvectors corresponding to distinct eigen-
values are orthogonal. Further, if S is both real and symmetric, the eigenvalues
are all real.

✎ Example 18.2: Consider the real, symmetric matrix

S =

(
2 1
1 2

)
.(18.4)

From the characteristic equation |S− λI| = 0, we have the quadratic (2− λ)2 − 1 =
0, whose solutions yield the eigenvalues 3 and 1. The corresponding eigenvectors(

1
−1

)
and

(
1
1

)
are orthogonal.
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18.1.1 Matrix decompositions

In this section we examine ways in which a square matrix can be factored
into the product of matrices derived from its eigenvectors; we refer to this
process as matrix decomposition. Matrix decompositions similar to the onesMATRIX

DECOMPOSITION in this section will form the basis of our principal text-analysis technique
in Section 18.3, where we will look at decompositions of non-square term-
document matrices. The square decompositions in this section are simpler
and can be treated with sufficient mathematical rigor to help the reader un-
derstand how such decompositions work. The detailed mathematical deriva-
tion of the more complex decompositions in Section 18.2 are beyond the
scope of this book.

We begin by giving two theorems on the decomposition of a square ma-
trix into the product of three matrices of a special form. The first of these,
Theorem 18.1, gives the basic factorization of a square real-valued matrix
into three factors. The second, Theorem 18.2, applies to square symmetric
matrices and is the basis of the singular value decomposition described in
Theorem 18.3.

Theorem 18.1. (Matrix diagonalization theorem) Let S be a square real-valued
M × M matrix with M linearly independent eigenvectors. Then there exists an
eigen decompositionEIGEN DECOMPOSITION

S = UΛU−1,(18.5)

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose
diagonal entries are the eigenvalues of S in decreasing order




λ1
λ2
· · ·

λM


 , λi ≥ λi+1.(18.6)

If the eigenvalues are distinct, then this decomposition is unique.

To understand how Theorem 18.1 works, we note that U has the eigenvec-
tors of S as columns

U = (~u1 ~u2 · · · ~uM) .(18.7)

Then we have

SU = S (~u1 ~u2 · · · ~uM)

= (λ1 ~u1 λ2 ~u2 · · ·λM ~uM)

= (~u1 ~u2 · · · ~uM)




λ1
λ2
· · ·

λM


 .
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Thus, we have SU = UΛ, or S = UΛU−1.
We next state a closely related decomposition of a symmetric square matrix

into the product of matrices derived from its eigenvectors. This will pave the
way for the development of our main tool for text analysis, the singular value
decomposition (Section 18.2).

Theorem 18.2. (Symmetric diagonalization theorem) Let S be a square, sym-
metric real-valued M×M matrix with M linearly independent eigenvectors. Then
there exists a symmetric diagonal decompositionSYMMETRIC DIAGONAL

DECOMPOSITION

S = QΛQT,(18.8)

where the columns of Q are the orthogonal and normalized (unit length, real) eigen-
vectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.
Further, all entries of Q are real and we have Q−1 = QT.

We will build on this symmetric diagonal decomposition to build low-rank
approximations to term-document matrices.

? Exercise 18.1

What is the rank of the 3× 3 diagonal matrix below?



1 1 0
0 1 1
1 2 1




Exercise 18.2

Show that λ = 2 is an eigenvalue of

C =

(
6 −2
4 0

)
.

Find the corresponding eigenvector.

Exercise 18.3

Compute the unique eigen decomposition of the 2× 2 matrix in (18.4).

18.2 Term-document matrices and singular value decompositions

The decompositions we have been studying thus far apply to square matri-
ces. However, the matrix we are interested in is the M× N term-document
matrix C where (barring a rare coincidence) M 6= N; furthermore, C is very
unlikely to be symmetric. To this end we first describe an extension of the
symmetric diagonal decomposition known as the singular value decomposi-SINGULAR VALUE

DECOMPOSITION tion. We then show in Section 18.3 how this can be used to construct an ap-
proximate version of C. It is beyond the scope of this book to develop a full
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treatment of the mathematics underlying singular value decompositions; fol-
lowing the statement of Theorem 18.3 we relate the singular value decompo-
sition to the symmetric diagonal decompositions from Section 18.1.1. GivenSYMMETRIC DIAGONAL

DECOMPOSITION C, let U be the M× M matrix whose columns are the orthogonal eigenvec-
tors of CCT , and V be the N × N matrix whose columns are the orthogonal
eigenvectors of CTC. Denote by CT the transpose of a matrix C.

Theorem 18.3. Let r be the rank of the M× N matrix C. Then, there is a singular-
value decomposition (SVD for short) of C of the formSVD

C = UΣVT ,(18.9)

where

1. The eigenvalues λ1, . . . , λr of CCT are the same as the eigenvalues of CTC;

2. For 1 ≤ i ≤ r, let σi =
√

λi, with λi ≥ λi+1. Then the M × N matrix Σ is
composed by setting Σii = σi for 1 ≤ i ≤ r, and zero otherwise.

The values σi are referred to as the singular values of C. It is instructive to
examine the relationship of Theorem 18.3 to Theorem 18.2; we do this rather
than derive the general proof of Theorem 18.3, which is beyond the scope of
this book.

By multiplying Equation (18.9) by its transposed version, we have

CCT = UΣVT VΣUT = UΣ2UT.(18.10)

Note now that in Equation (18.10), the left-hand side is a square symmetric
matrix real-valued matrix, and the right-hand side represents its symmetric
diagonal decomposition as in Theorem 18.2. What does the left-hand side
CCT represent? It is a square matrix with a row and a column correspond-
ing to each of the M terms. The entry (i, j) in the matrix is a measure of the
overlap between the ith and jth terms, based on their co-occurrence in docu-
ments. The precise mathematical meaning depends on the manner in which
C is constructed based on term weighting. Consider the case where C is the
term-document incidence matrix of page 3, illustrated in Figure 1.1. Then the
entry (i, j) in CCT is the number of documents in which both term i and term
j occur.

When writing down the numerical values of the SVD, it is conventional
to represent Σ as an r × r matrix with the singular values on the diagonals,
since all its entries outside this sub-matrix are zeros. Accordingly, it is con-
ventional to omit the rightmost M− r columns of U corresponding to these
omitted rows of Σ; likewise the rightmost N − r columns of V are omitted
since they correspond in VT to the rows that will be multiplied by the N − r
columns of zeros in Σ. This written form of the SVD is sometimes known
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◮ Figure 18.1 Illustration of the singular-value decomposition. In this schematic
illustration of (18.9), we see two cases illustrated. In the top half of the figure, we
have a matrix C for which M > N. The lower half illustrates the case M < N.

as the reduced SVD or truncated SVD and we will encounter it again in Ex-REDUCED SVD
TRUNCATED SVD ercise 18.9. Henceforth, our numerical examples and exercises will use this

reduced form.

✎ Example 18.3: We now illustrate the singular-value decomposition of a 4× 2 ma-
trix of rank 2; the singular values are Σ11 = 2.236 and Σ22 = 1.

C =




1 −1
0 1
1 0
−1 1


 =




−0.632 0.000
0.316 −0.707
−0.316 −0.707
0.632 0.000



(

2.236 0.000
0.000 1.000

)(
−0.707 0.707
−0.707 −0.707

)
.(18.11)

As with the matrix decompositions defined in Section 18.1.1, the singu-
lar value decomposition of a matrix can be computed by a variety of algo-
rithms, many of which have been publicly available software implementa-
tions; pointers to these are given in Section 18.5.

? Exercise 18.4

Let

C =




1 1
0 1
1 0


(18.12)

be the term-document incidence matrix for a collection. Compute the co-occurrence
matrix CCT. What is the interpretation of the diagonal entries of CCT when C is a
term-document incidence matrix?
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Exercise 18.5

Verify that the SVD of the matrix in Equation (18.12) is

U =



−0.816 0.000
−0.408 −0.707
−0.408 0.707


 , Σ =

(
1.732 0.000
0.000 1.000

)
and VT =

(
−0.707 −0.707
0.707 −0.707

)
,(18.13)

by verifying all of the properties in the statement of Theorem 18.3.

Exercise 18.6

Suppose that C is a binary term-document incidence matrix. What do the entries of
CTC represent?

Exercise 18.7

Let

C =




0 2 1
0 3 0
2 1 0


(18.14)

be a term-document matrix whose entries are term frequencies; thus term 1 occurs 2
times in document 2 and once in document 3. Compute CCT; observe that its entries
are largest where two terms have their most frequent occurrences together in the same
document.

18.3 Low-rank approximations

We next state a matrix approximation problem that at first seems to have
little to do with information retrieval. We describe a solution to this matrix
problem using singular-value decompositions, then develop its application
to information retrieval.

Given an M × N matrix C and a positive integer k, we wish to find an
M× N matrix Ck of rank at most k, so as to minimize the Frobenius norm ofFROBENIUS NORM

the matrix difference X = C− Ck, defined to be

‖X‖F =

√√√√
M

∑
i=1

N

∑
j=1

X2
ij.(18.15)

Thus, the Frobenius norm of X measures the discrepancy between Ck and C;
our goal is to find a matrix Ck that minimizes this discrepancy, while con-
straining Ck to have rank at most k. If r is the rank of C, clearly Cr = C
and the Frobenius norm of the discrepancy is zero in this case. When k is far
smaller than r, we refer to Ck as a low-rank approximation.LOW-RANK

APPROXIMATION The singular value decomposition can be used to solve the low-rank ma-
trix approximation problem. We then derive from it an application to ap-
proximating term-document matrices. We invoke the following three-step
procedure to this end:
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Ck = U Σk VT
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◮ Figure 18.2 Illustration of low rank approximation using the singular-value de-
composition. The dashed boxes indicate the matrix entries affected by “zeroing out”
the smallest singular values.

1. Given C, construct its SVD in the form shown in (18.9); thus, C = UΣVT.

2. Derive from Σ the matrix Σk formed by replacing by zeros the r− k small-
est singular values on the diagonal of Σ.

3. Compute and output Ck = UΣkVT as the rank-k approximation to C.

The rank of Ck is at most k: this follows from the fact that Σk has at most
k non-zero values. Next, we recall the intuition of Example 18.1: the effect
of small eigenvalues on matrix products is small. Thus, it seems plausible
that replacing these small eigenvalues by zero will not substantially alter the
product, leaving it “close” to C. The following theorem due to Eckart and
Young tells us that, in fact, this procedure yields the matrix of rank k with
the lowest possible Frobenius error.

Theorem 18.4.

min
Z| rank(Z)=k

‖C− Z‖F = ‖C− Ck‖F = σk+1.(18.16)

Recalling that the singular values are in decreasing order σ1 ≥ σ2 ≥ · · ·,
we learn from Theorem 18.4 that Ck is the best rank-k approximation to C,
incurring an error (measured by the Frobenius norm of C−Ck) equal to σk+1.
Thus the larger k is, the smaller this error (and in particular, for k = r, the
error is zero since Σr = Σ; provided r < M, N, then σr+1 = 0 and thus
Cr = C).

To derive further insight into why the process of truncating the smallest
r− k singular values in Σ helps generate a rank-k approximation of low error,
we examine the form of Ck:

Ck = UΣkVT(18.17)
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= U




σ1 0 0 0 0
0 · · · 0 0 0
0 0 σk 0 0
0 0 0 0 0
0 0 0 0 · · ·




VT(18.18)

=
k

∑
i=1

σi~ui~v
T
i ,(18.19)

where ~ui and ~vi are the ith columns of U and V, respectively. Thus, ~ui~v
T
i is

a rank-1 matrix, so that we have just expressed Ck as the sum of k rank-1
matrices each weighted by a singular value. As i increases, the contribution
of the rank-1 matrix ~ui~v

T
i is weighted by a sequence of shrinking singular

values σi.

? Exercise 18.8

Compute a rank 1 approximation C1 to the matrix C in Example 18.12, using the SVD
as in Exercise 18.13. What is the Frobenius norm of the error of this approximation?

Exercise 18.9

Consider now the computation in Exercise 18.8. Following the schematic in Fig-
ure 18.2, notice that for a rank 1 approximation we have σ1 being a scalar. Denote
by U1 the first column of U and by V1 the first column of V. Show that the rank-1
approximation to C can then be written as U1σ1VT

1 = σ1U1VT
1 .

Exercise 18.10

Exercise 18.9 can be generalized to rank k approximations: we let U′k and V ′k denote
the “reduced” matrices formed by retaining only the first k columns of U and V,
respectively. Thus U′k is an M× k matrix while V ′Tk is a k× N matrix. Then, we have

Ck = U′kΣ′kV ′Tk ,(18.20)

where Σ′k is the square k × k submatrix of Σk with the singular values σ1, . . . , σk on
the diagonal. The primary advantage of using (18.20) is to eliminate a lot of redun-
dant columns of zeros in U and V, thereby explicitly eliminating multiplication by
columns that do not affect the low-rank approximation; this version of the SVD is
sometimes known as the reduced SVD or truncated SVD and is a computationally
simpler representation from which to compute the low rank approximation.

For the matrix C in Example 18.3, write down both Σ2 and Σ′2.

18.4 Latent semantic indexing

We now discuss the approximation of a term-document matrix C by one of
lower rank using the SVD. The low-rank approximation to C yields a new
representation for each document in the collection. We will cast queries
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into this low-rank representation as well, enabling us to compute query-
document similarity scores in this low-rank representation. This process is
known as latent semantic indexing (generally abbreviated LSI).LATENT SEMANTIC

INDEXING But first, we motivate such an approximation. Recall the vector space rep-
resentation of documents and queries introduced in Section 6.3 (page 120).
This vector space representation enjoys a number of advantages including
the uniform treatment of queries and documents as vectors, the induced
score computation based on cosine similarity, the ability to weight differ-
ent terms differently, and its extension beyond document retrieval to such
applications as clustering and classification. The vector space representa-
tion suffers, however, from its inability to cope with two classic problems
arising in natural languages: synonymy and polysemy. Synonymy refers to a
case where two different words (say car and automobile) have the same mean-
ing. Because the vector space representation fails to capture the relationship
between synonymous terms such as car and automobile – according each a
separate dimension in the vector space. Consequently the computed simi-
larity ~q · ~d between a query ~q (say, car) and a document ~d containing both car
and automobile underestimates the true similarity that a user would perceive.
Polysemy on the other hand refers to the case where a term such as charge

has multiple meanings, so that the computed similarity ~q · ~d overestimates
the similarity that a user would perceive. Could we use the co-occurrences
of terms (whether, for instance, charge occurs in a document containing steed
versus in a document containing electron) to capture the latent semantic as-
sociations of terms and alleviate these problems?

Even for a collection of modest size, the term-document matrix C is likely
to have several tens of thousand of rows and columns, and a rank in the
tens of thousands as well. In latent semantic indexing (sometimes referred
to as latent semantic analysis (LSA)), we use the SVD to construct a low-rankLSA

approximation Ck to the term-document matrix, for a value of k that is far
smaller than the original rank of C. In the experimental work cited later
in this section, k is generally chosen to be in the low hundreds. We thus
map each row/column (respectively corresponding to a term/document) to
a k-dimensional space; this space is defined by the k principal eigenvectors
(corresponding to the largest eigenvalues) of CCT and CTC. Note that the
matrix Ck is itself still an M× N matrix, irrespective of k.

Next, we use the new k-dimensional LSI representation as we did the orig-
inal representation – to compute similarities between vectors. A query vector
~q is mapped into its representation in the LSI space by the transformation

~qk = Σ−1
k UT

k ~q.(18.21)

Now, we may use cosine similarities as in Section 6.3.1 (page 120) to com-
pute the similarity between a query and a document, between two docu-
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ments, or between two terms. Note especially that Equation (18.21) does not
in any way depend on ~q being a query; it is simply a vector in the space of
terms. This means that if we have an LSI representation of a collection of
documents, a new document not in the collection can be “folded in” to this
representation using Equation (18.21). This allows us to incrementally add
documents to an LSI representation. Of course, such incremental addition
fails to capture the co-occurrences of the newly added documents (and even
ignores any new terms they contain). As such, the quality of the LSI rep-
resentation will degrade as more documents are added and will eventually
require a recomputation of the LSI representation.

The fidelity of the approximation of Ck to C leads us to hope that the rel-
ative values of cosine similarities are preserved: if a query is close to a doc-
ument in the original space, it remains relatively close in the k-dimensional
space. But this in itself is not sufficiently interesting, especially given that
the sparse query vector ~q turns into a dense query vector ~qk in the low-
dimensional space. This has a significant computational cost, when com-
pared with the cost of processing ~q in its native form.

✎ Example 18.4: Consider the term-document matrix C =

d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
voyage 1 0 0 1 1 0
trip 0 0 0 1 0 1

Its singular value decomposition is the product of three matrices as below. First we
have U which in this example is:

1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
voyage −0.70 0.35 0.15 −0.58 0.16
trip −0.26 0.65 −0.41 0.58 −0.09

When applying the SVD to a term-document matrix, U is known as the SVD term
matrix. The singular values are Σ =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Finally we have VT , which in the context of a term-document matrix is known as
the SVD document matrix:
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d1 d2 d3 d4 d5 d6
1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

By “zeroing out” all but the two largest singular values of Σ, we obtain Σ2 =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

From this, we compute C2 =

d1 d2 d3 d4 d5 d6
1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Notice that the low-rank approximation, unlike the original matrix C, can have
negative entries.

Examination of C2 and Σ2 in Example 18.4 shows that the last 3 rows of
each of these matrices are populated entirely by zeros. This suggests that
the SVD product UΣVT in Equation (18.18) can be carried out with only two
rows in the representations of Σ2 and VT ; we may then replace these matrices
by their truncated versions Σ′2 and (V′)T. For instance, the truncated SVD
document matrix (V′)T in this example is:

d1 d2 d3 d4 d5 d6
1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65

Figure 18.3 illustrates the documents in (V′)T in two dimensions. Note
also that C2 is dense relative to C.

We may in general view the low-rank approximation of C by Ck as a con-
strained optimization problem: subject to the constraint that Ck have rank at
most k, we seek a representation of the terms and documents comprising C
with low Frobenius norm for the error C − Ck. When forced to squeeze the
terms/documents down to a k-dimensional space, the SVD should bring to-
gether terms with similar co-occurrences. This intuition suggests, then, that
not only should retrieval quality not suffer too much from the dimension
reduction, but in fact may improve.
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◮ Figure 18.3 The documents of Example 18.4 reduced to two dimensions in (V ′)T.

Dumais (1993) and Dumais (1995) conducted experiments with LSI on
TREC documents and tasks, using the commonly-used Lanczos algorithm
to compute the SVD. At the time of their work in the early 1990’s, the LSI
computation on tens of thousands of documents took approximately a day
on one machine. On these experiments, they achieved precision at or above
that of the median TREC participant. On about 20% of TREC topics their
system was the top scorer, and reportedly slightly better on average than
standard vector spaces for LSI at about 350 dimensions. Here are some con-
clusions on LSI first suggested by their work, and subsequently verified by
many other experiments.

• The computational cost of the SVD is significant; at the time of this writ-
ing, we know of no successful experiment with over one million docu-
ments. This has been the biggest obstacle to the widespread adoption to
LSI. One approach to this obstacle is to build the LSI representation on a
randomly sampled subset of the documents in the collection, following
which the remaining documents are “folded in” as detailed with Equa-
tion (18.21).
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• As we reduce k, recall tends to increase, as expected.

• Most surprisingly, a value of k in the low hundreds can actually increase
precision on some query benchmarks. This appears to suggest that for a
suitable value of k, LSI addresses some of the challenges of synonymy.

• LSI works best in applications where there is little overlap between queries
and documents.

The experiments also documented some modes where LSI failed to match
the effectiveness of more traditional indexes and score computations. Most
notably (and perhaps obviously), LSI shares two basic drawbacks of vector
space retrieval: there is no good way of expressing negations (find docu-
ments that contain german but not shepherd), and no way of enforcing Boolean
conditions.

LSI can be viewed as soft clustering by interpreting each dimension of theSOFT CLUSTERING

reduced space as a cluster and the value that a document has on that dimen-
sion as its fractional membership in that cluster.

18.5 References and further reading

Strang (1986) provides an excellent introductory overview of matrix decom-
positions including the singular value decomposition. Theorem 18.4 is due
to Eckart and Young (1936). The connection between information retrieval
and low-rank approximations of the term-document matrix was introduced
in Deerwester et al. (1990), with a subsequent survey of results in Berry
et al. (1995). Dumais (1993) and Dumais (1995) describe experiments on
TREC benchmarks giving evidence that at least on some benchmarks, LSI
can produce better precision and recall than standard vector-space retrieval.
http://www.cs.utk.edu/˜ berry/lsi++/ and http://lsi.argreenhouse.com/lsi/LSIpapers.html
offer comprehensive pointers to the literature and software of LSI. Schütze
and Silverstein (1997) evaluate LSI and truncated representations of cen-
troids for efficient K-means clustering (Section 16.4). Bast and Majumdar
(2005) detail the role of the reduced dimension k in LSI and how different
pairs of terms get coalesced together at differing values of k. Applications of
LSI to cross-language information retrieval (where documents in two or moreCROSS-LANGUAGE

INFORMATION
RETRIEVAL

different languages are indexed, and a query posed in one language is ex-
pected to retrieve documents in other languages) are developed in Berry and
Young (1995) and Littman et al. (1998). LSI (referred to as LSA in more gen-
eral settings) has been applied to host of other problems in computer science
ranging from memory modeling to computer vision.

Hofmann (1999a;b) provides an initial probabilistic extension of the basic
latent semantic indexing technique. A more satisfactory formal basis for a
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DocID Document text
1 hello
2 open house
3 mi casa
4 hola Profesor
5 hola y bienvenido
6 hello and welcome

◮ Figure 18.4 Documents for Exercise 18.11.

Spanish English
mi my
casa house
hola hello
profesor professor
y and
bienvenido welcome

◮ Figure 18.5 Glossary for Exercise 18.11.

probabilistic latent variable model for dimensionality reduction is the Latent
Dirichlet Allocation (LDA) model (Blei et al. 2003), which is generative and
assigns probabilities to documents outside of the training set. This model is
extended to a hierarchical clustering by Rosen-Zvi et al. (2004). Wei and Croft
(2006) present the first large scale evaluation of LDA, finding it to signifi-
cantly outperform the query likelihood model of Section 12.2 (page 242), but
to not perform quite as well as the relevance model mentioned in Section 12.4
(page 250) – but the latter does additional per-query processing unlike LDA.
Teh et al. (2006) generalize further by presenting Hierarchical Dirichlet Pro-
cesses, a probabilistic model which allows a group (for us, a document) to
be drawn from an infinite mixture of latent topics, while still allowing these
topics to be shared across documents.

? Exercise 18.11

Assume you have a set of documents each of which is in either English or in Spanish.
The collection is given in Figure 18.4.

Figure 18.5 gives a glossary relating the Spanish and English words above for your
own information. This glossary is NOT available to the retrieval system:

1. Construct the appropriate term-document matrix C to use for a collection con-
sisting of these documents. For simplicity, use raw term frequencies rather than
normalized tf-idf weights. Make sure to clearly label the dimensions of your ma-
trix.
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2. Write down the matrices U2, Σ′2 and V2 and from these derive the rank 2 approxi-
mation C2.

3. State succinctly what the (i, j) entry in the matrix CTC represents.

4. State succinctly what the (i, j) entry in the matrix CT
2 C2 represents, and why it

differs from that in CTC.
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19 Web search basics

In this and the following two chapters, we consider web search engines. Sec-
tions 19.1–19.4 provide some background and history to help the reader ap-
preciate the forces that conspire to make the Web chaotic, fast-changing and
(from the standpoint of information retrieval) very different from the “tradi-
tional” collections studied thus far in this book. Sections 19.5–19.6 deal with
estimating the number of documents indexed by web search engines, and the
elimination of duplicate documents in web indexes, respectively. These two
latter sections serve as background material for the following two chapters.

19.1 Background and history

The Web is unprecedented in many ways: unprecedented in scale, unprece-
dented in the almost-complete lack of coordination in its creation, and un-
precedented in the diversity of backgrounds and motives of its participants.
Each of these contributes to making web search different – and generally far
harder – than searching “traditional” documents.

The invention of hypertext, envisioned by Vannevar Bush in the 1940’s and
first realized in working systems in the 1970’s, significantly precedes the for-
mation of the World Wide Web (which we will simply refer to as the Web), in
the 1990’s. Web usage has shown tremendous growth to the point where it
now claims a good fraction of humanity as participants, by relying on a sim-
ple, open client-server design: (1) the server communicates with the client
via a protocol (the http or hypertext transfer protocol) that is lightweight andHTTP

simple, asynchronously carrying a variety of payloads (text, images and –
over time – richer media such as audio and video files) encoded in a sim-
ple markup language called HTML (for hypertext markup language); (2) theHTML

client – generally a browser, an application within a graphical user environ-
ment – can ignore what it does not understand. Each of these seemingly
innocuous features has contributed enormously to the growth of the Web, so
it is worthwhile to examine them further.
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The basic operation is as follows: a client (such as a browser) sends an http
request to a web server. The browser specifies a URL (for Universal Resource Lo-URL

cator) such as http://www.stanford.edu/home/atoz/contact.html .
In this example URL, the string http refers to the protocol to be used for
transmitting the data. The string www.stanford.edu is known as the do-
main and specifies the root of a hierarchy of web pages (typically mirroring a
filesystem hierarchy underlying the web server). In this example, /home/atoz/contact.html
is a path in this hierarchy with a file contact.html that contains the infor-
mation to be returned by the web server at www.stanford.edu in response
to this request. The HTML-encoded file contact.html holds the hyper-
links and the content (in this instance, contact information for Stanford Uni-
versity), as well as formatting rules for rendering this content in a browser.
Such an http request thus allows us to fetch the content of a page, some-
thing that will prove to be useful to us for crawling and indexing documents
(Chapter 20).

The designers of the first browsers made it easy to view the HTML markup
tags on the content of a URL. This simple convenience allowed new users to
create their own HTML content without extensive training or experience;
rather, they learned from example content that they liked. As they did so, a
second feature of browsers supported the rapid proliferation of web content
creation and usage: browsers ignored what they did not understand. This
did not, as one might fear, lead to the creation of numerous incompatible
dialects of HTML. What it did promote was amateur content creators who
could freely experiment with and learn from their newly created web pages
without fear that a simple syntax error would “bring the system down.” Pub-
lishing on the Web became a mass activity that was not limited to a few
trained programmers, but rather open to tens and eventually hundreds of
millions of individuals. For most users and for most information needs, the
Web quickly became the best way to supply and consume information on
everything from rare ailments to subway schedules.

The mass publishing of information on the Web is essentially useless un-
less this wealth of information can be discovered and consumed by other
users. Early attempts at making web information “discoverable” fell into two
broad categories: (1) full-text index search engines such as Altavista, Excite
and Infoseek and (2) taxonomies populated with web pages in categories,
such as Yahoo! The former presented the user with a keyword search in-
terface supported by inverted indexes and ranking mechanisms building on
those introduced in earlier chapters. The latter allowed the user to browse
through a hierarchical tree of category labels. While this is at first blush a
convenient and intuitive metaphor for finding web pages, it has a number of
drawbacks: first, accurately classifying web pages into taxonomy tree nodes
is for the most part a manual editorial process, which is difficult to scale
with the size of the Web. Arguably, we only need to have “high-quality”
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web pages in the taxonomy, with only the best web pages for each category.
However, just discovering these and classifying them accurately and consis-
tently into the taxonomy entails significant human effort. Furthermore, in
order for a user to effectively discover web pages classified into the nodes of
the taxonomy tree, the user’s idea of what sub-tree(s) to seek for a particu-
lar topic should match that of the editors performing the classification. This
quickly becomes challenging as the size of the taxonomy grows; the Yahoo!
taxonomy tree surpassed 1000 distinct nodes fairly early on. Given these
challenges, the popularity of taxonomies declined over time, even though
variants (such as About.com and the Open Directory Project) sprang up with
subject-matter experts collecting and annotating web pages for each cate-
gory.

The first generation of web search engines transported classical search
techniques such as those in the preceding chapters to the web domain, focus-
ing on the challenge of scale. The earliest web search engines had to contend
with indexes containing tens of millions of documents, which was a few or-
ders of magnitude larger than any prior information retrieval system in the
public domain. Indexing, query serving and ranking at this scale required
the harnessing together of tens of machines to create highly available sys-
tems, again at scales not witnessed hitherto in a consumer-facing search ap-
plication. The first generation of web search engines was largely successful
at solving these challenges while continually indexing a significant fraction
of the Web, all the while serving queries with sub-second response times.
However, the quality and relevance of web search results left much to be
desired owing to the idiosyncrasies of content creation on the Web that we
discuss in Section 19.2. This necessitated the invention of new ranking and
spam-fighting techniques in order to ensure the quality of the search results.
While classical information retrieval techniques (such as those covered ear-
lier in this book) continue to be necessary for web search, they are not by
any means sufficient. A key aspect (developed further in Chapter 21) is that
whereas classical techniques measure the relevance of a document to a query,
there remains a need to gauge the authoritativeness of a document based on
cues such as which website hosts it.

19.2 Web characteristics

The essential feature that led to the explosive growth of the web – decentral-
ized content publishing with essentially no central control of authorship –
turned out to be the biggest challenge for web search engines in their quest to
index and retrieve this content. Web page authors created content in dozens
of (natural) languages and thousands of dialects, thus demanding many dif-
ferent forms of stemming and other linguistic operations. Because publish-
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ing was now open to tens of millions, web pages exhibited heterogeneity at a
daunting scale, in many crucial aspects. First, content-creation was no longer
the privy of editorially-trained writers; while this represented a tremendous
democratization of content creation, it also resulted in a tremendous varia-
tion in grammar and style (and in many cases, no recognizable grammar or
style). Indeed, web publishing in a sense unleashed the best and worst of
desktop publishing on a planetary scale, so that pages quickly became rid-
dled with wild variations in colors, fonts and structure. Some web pages,
including the professionally created home pages of some large corporations,
consisted entirely of images (which, when clicked, led to richer textual con-
tent) – and therefore, no indexable text.

What about the substance of the text in web pages? The democratization
of content creation on the web meant a new level of granularity in opinion on
virtually any subject. This meant that the web contained truth, lies, contra-
dictions and suppositions on a grand scale. This gives rise to the question:
which web pages does one trust? In a simplistic approach, one might argue
that some publishers are trustworthy and others not – begging the question
of how a search engine is to assign such a measure of trust to each website
or web page. In Chapter 21 we will examine approaches to understanding
this question. More subtly, there may be no universal, user-independent no-
tion of trust; a web page whose contents are trustworthy to one user may
not be so to another. In traditional (non-web) publishing this is not an issue:
users self-select sources they find trustworthy. Thus one reader may find
the reporting of The New York Times to be reliable, while another may prefer
The Wall Street Journal. But when a search engine is the only viable means
for a user to become aware of (let alone select) most content, this challenge
becomes significant.

While the question “how big is the Web?” has no easy answer (see Sec-
tion 19.5), the question “how many web pages are in a search engine’s index”
is more precise, although, even this question has issues. By the end of 1995,
Altavista reported that it had crawled and indexed approximately 30 million
static web pages. Static web pages are those whose content does not vary fromSTATIC WEB PAGES

one request for that page to the next. For this purpose, a professor who man-
ually updates his home page every week is considered to have a static web
page, but an airport’s flight status page is considered to be dynamic. Dy-
namic pages are typically mechanically generated by an application server
in response to a query to a database, as show in Figure 19.1. One sign of
such a page is that the URL has the character "?" in it. Since the number
of static web pages was believed to be doubling every few months in 1995,
early web search engines such as Altavista had to constantly add hardware
and bandwidth for crawling and indexing web pages.
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◮ Figure 19.1 A dynamically generated web page. The browser sends a request for
flight information on flight AA129 to the web application, that fetches the informa-
tion from back-end databases then creates a dynamic web page that it returns to the
browser.

&%
'$

&%
'$

-anchor

◮ Figure 19.2 Two nodes of the web graph joined by a link.

19.2.1 The web graph

We can view the static Web consisting of static HTML pages together with
the hyperlinks between them as a directed graph in which each web page is
a node and each hyperlink a directed edge.

Figure 19.2 shows two nodes A and B from the web graph, each corre-
sponding to a web page, with a hyperlink from A to B. We refer to the set of
all such nodes and directed edges as the web graph. Figure 19.2 also shows
that (as is the case with most links on web pages) there is some text surround-
ing the origin of the hyperlink on page A. This text is generally encapsulated
in the href attribute of the <a> (for anchor) tag that encodes the hyperlink
in the HTML code of page A, and is referred to as anchor text. As one mightANCHOR TEXT

suspect, this directed graph is not strongly connected: there are pairs of pages
such that one cannot proceed from one page of the pair to the other by follow-
ing hyperlinks. We refer to the hyperlinks into a page as in-links and thoseIN-LINKS

out of a page as out-links. The number of in-links to a page (also known asOUT-LINKS

its in-degree) has averaged from roughly 8 to 15, in a range of studies. We
similarly define the out-degree of a web page to be the number of links out
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◮ Figure 19.3 A sample small web graph. In this example we have six pages labeled
A-F. Page B has in-degree 3 and out-degree 1. This example graph is not strongly
connected: there is no path from any of pages B-F to page A.

of it. These notions are represented in Figure 19.3.
There is ample evidence that these links are not randomly distributed; for

one thing, the distribution of the number of links into a web page does not
follow the Poisson distribution one would expect if every web page were
to pick the destinations of its links uniformly at random. Rather, this dis-
tribution is widely reported to be a power law, in which the total number ofPOWER LAW

web pages with in-degree i is proportional to 1/iα; the value of α typically
reported by studies is 2.1.1 Furthermore, several studies have suggested that
the directed graph connecting web pages has a bowtie shape: there are threeBOWTIE

major categories of web pages that are sometimes referred to as IN, OUT
and SCC. A web surfer can pass from any page in IN to any page in SCC, by
following hyperlinks. Likewise, a surfer can pass from page in SCC to any
page in OUT. Finally, the surfer can surf from any page in SCC to any other
page in SCC. However, it is not possible to pass from a page in SCC to any
page in IN, or from a page in OUT to a page in SCC (or, consequently, IN).
Notably, in several studies IN and OUT are roughly equal in size, whereas

1. Cf. Zipf’s law of the distribution of words in text in Chapter 5 (page 90), which is a power
law with α = 1.



Online edition (c)
2009 Cambridge UP

19.2 Web characteristics 427

◮ Figure 19.4 The bowtie structure of the Web. Here we show one tube and three
tendrils.

SCC is somewhat larger; most web pages fall into one of these three sets. The
remaining pages form into tubes that are small sets of pages outside SCC that
lead directly from IN to OUT, and tendrils that either lead nowhere from IN,
or from nowhere to OUT. Figure 19.4 illustrates this structure of the Web.

19.2.2 Spam

Early in the history of web search, it became clear that web search engines
were an important means for connecting advertisers to prospective buyers.
A user searching for maui golf real estate is not merely seeking news or en-
tertainment on the subject of housing on golf courses on the island of Maui,
but instead likely to be seeking to purchase such a property. Sellers of such
property and their agents, therefore, have a strong incentive to create web
pages that rank highly on this query. In a search engine whose scoring was
based on term frequencies, a web page with numerous repetitions of maui golf
real estate would rank highly. This led to the first generation of spam, whichSPAM

(in the context of web search) is the manipulation of web page content for
the purpose of appearing high up in search results for selected keywords.
To avoid irritating users with these repetitions, sophisticated spammers re-
sorted to such tricks as rendering these repeated terms in the same color as
the background. Despite these words being consequently invisible to the hu-
man user, a search engine indexer would parse the invisible words out of
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◮ Figure 19.5 Cloaking as used by spammers.

the HTML representation of the web page and index these words as being
present in the page.

At its root, spam stems from the heterogeneity of motives in content cre-
ation on the Web. In particular, many web content creators have commercial
motives and therefore stand to gain from manipulating search engine results.
You might argue that this is no different from a company that uses large fonts
to list its phone numbers in the yellow pages; but this generally costs the
company more and is thus a fairer mechanism. A more apt analogy, perhaps,
is the use of company names beginning with a long string of A’s to be listed
early in a yellow pages category. In fact, the yellow pages’ model of com-
panies paying for larger/darker fonts has been replicated in web search: in
many search engines, it is possible to pay to have one’s web page included
in the search engine’s index – a model known as paid inclusion. DifferentPAID INCLUSION

search engines have different policies on whether to allow paid inclusion,
and whether such a payment has any effect on ranking in search results.

Search engines soon became sophisticated enough in their spam detection
to screen out a large number of repetitions of particular keywords. Spam-
mers responded with a richer set of spam techniques, the best known of
which we now describe. The first of these techniques is cloaking, shown in
Figure 19.5. Here, the spammer’s web server returns different pages depend-
ing on whether the http request comes from a web search engine’s crawler
(the part of the search engine that gathers web pages, to be described in
Chapter 20), or from a human user’s browser. The former causes the web
page to be indexed by the search engine under misleading keywords. When
the user searches for these keywords and elects to view the page, he receives
a web page that has altogether different content than that indexed by the
search engine. Such deception of search indexers is unknown in the tra-
ditional world of information retrieval; it stems from the fact that the rela-
tionship between page publishers and web search engines is not completely
collaborative.

A doorway page contains text and metadata carefully chosen to rank highly
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on selected search keywords. When a browser requests the doorway page, it
is redirected to a page containing content of a more commercial nature. More
complex spamming techniques involve manipulation of the metadata related
to a page including (for reasons we will see in Chapter 21) the links into a
web page. Given that spamming is inherently an economically motivated
activity, there has sprung around it an industry of Search Engine Optimizers,SEARCH ENGINE

OPTIMIZERS or SEOs to provide consultancy services for clients who seek to have their
web pages rank highly on selected keywords. Web search engines frown on
this business of attempting to decipher and adapt to their proprietary rank-
ing techniques and indeed announce policies on forms of SEO behavior they
do not tolerate (and have been known to shut down search requests from cer-
tain SEOs for violation of these). Inevitably, the parrying between such SEOs
(who gradually infer features of each web search engine’s ranking methods)
and the web search engines (who adapt in response) is an unending struggle;
indeed, the research sub-area of adversarial information retrieval has sprung upADVERSARIAL

INFORMATION
RETRIEVAL

around this battle. To combat spammers who manipulate the text of their
web pages is the exploitation of the link structure of the Web – a technique
known as link analysis. The first web search engine known to apply link anal-
ysis on a large scale (to be detailed in Chapter 21) was Google, although all
web search engines currently make use of it (and correspondingly, spam-
mers now invest considerable effort in subverting it – this is known as linkLINK SPAM

spam).

? Exercise 19.1

If the number of pages with in-degree i is proportional to 1/i2.1, what is the probabil-
ity that a randomly chosen web page has in-degree 1?

Exercise 19.2

If the number of pages with in-degree i is proportional to 1/i2.1, what is the average
in-degree of a web page?

Exercise 19.3

If the number of pages with in-degree i is proportional to 1/i2.1, then as the largest
in-degree goes to infinity, does the fraction of pages with in-degree i grow, stay the
same, or diminish? How would your answer change for values of the exponent other
than 2.1?

Exercise 19.4

The average in-degree of all nodes in a snapshot of the web graph is 9. What can we
say about the average out-degree of all nodes in this snapshot?

19.3 Advertising as the economic model

Early in the history of the Web, companies used graphical banner advertise-
ments on web pages at popular websites (news and entertainment sites such
as MSN, America Online, Yahoo! and CNN). The primary purpose of these
advertisements was branding: to convey to the viewer a positive feeling about
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the brand of the company placing the advertisement. Typically these adver-
tisements are priced on a cost per mil (CPM) basis: the cost to the company ofCPM

having its banner advertisement displayed 1000 times. Some websites struck
contracts with their advertisers in which an advertisement was priced not by
the number of times it is displayed (also known as impressions), but rather
by the number of times it was clicked on by the user. This pricing model is
known as the cost per click (CPC) model. In such cases, clicking on the adver-CPC

tisement leads the user to a web page set up by the advertiser, where the user
is induced to make a purchase. Here the goal of the advertisement is not so
much brand promotion as to induce a transaction. This distinction between
brand and transaction-oriented advertising was already widely recognized
in the context of conventional media such as broadcast and print. The inter-
activity of the web allowed the CPC billing model – clicks could be metered
and monitored by the website and billed to the advertiser.

The pioneer in this direction was a company named Goto, which changed
its name to Overture prior to eventual acquisition by Yahoo! Goto was not,
in the traditional sense, a search engine; rather, for every query term q it ac-
cepted bids from companies who wanted their web page shown on the query
q. In response to the query q, Goto would return the pages of all advertisers
who bid for q, ordered by their bids. Furthermore, when the user clicked
on one of the returned results, the corresponding advertiser would make a
payment to Goto (in the initial implementation, this payment equaled the
advertiser’s bid for q).

Several aspects of Goto’s model are worth highlighting. First, a user typing
the query q into Goto’s search interface was actively expressing an interest
and intent related to the query q. For instance, a user typing golf clubs is more
likely to be imminently purchasing a set than one who is simply browsing
news on golf. Second, Goto only got compensated when a user actually ex-
pressed interest in an advertisement – as evinced by the user clicking the ad-
vertisement. Taken together, these created a powerful mechanism by which
to connect advertisers to consumers, quickly raising the annual revenues of
Goto/Overture into hundreds of millions of dollars. This style of search en-
gine came to be known variously as sponsored search or search advertising.SPONSORED SEARCH

SEARCH ADVERTISING Given these two kinds of search engines – the “pure” search engines such
as Google and Altavista, versus the sponsored search engines – the logi-
cal next step was to combine them into a single user experience. Current
search engines follow precisely this model: they provide pure search results
(generally known as algorithmic search results) as the primary response to aALGORITHMIC SEARCH

user’s search, together with sponsored search results displayed separately
and distinctively to the right of the algorithmic results. This is shown in Fig-
ure 19.6. Retrieving sponsored search results and ranking them in response
to a query has now become considerably more sophisticated than the sim-
ple Goto scheme; the process entails a blending of ideas from information
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◮ Figure 19.6 Search advertising triggered by query keywords. Here the query A320
returns algorithmic search results about the Airbus aircraft, together with advertise-
ments for various non-aircraft goods numbered A320, that advertisers seek to market
to those querying on this query. The lack of advertisements for the aircraft reflects the
fact that few marketers attempt to sell A320 aircraft on the web.

retrieval and microeconomics, and is beyond the scope of this book. For
advertisers, understanding how search engines do this ranking and how to
allocate marketing campaign budgets to different keywords and to different
sponsored search engines has become a profession known as search engineSEARCH ENGINE

MARKETING marketing (SEM).
The inherently economic motives underlying sponsored search give rise

to attempts by some participants to subvert the system to their advantage.
This can take many forms, one of which is known as click spam. There isCLICK SPAM

currently no universally accepted definition of click spam. It refers (as the
name suggests) to clicks on sponsored search results that are not from bona
fide search users. For instance, a devious advertiser may attempt to exhaust
the advertising budget of a competitor by clicking repeatedly (through the
use of a robotic click generator) on that competitor’s sponsored search ad-
vertisements. Search engines face the challenge of discerning which of the
clicks they observe are part of a pattern of click spam, to avoid charging their
advertiser clients for such clicks.

? Exercise 19.5

The Goto method ranked advertisements matching a query by bid: the highest-bidding
advertiser got the top position, the second-highest the next, and so on. What can go
wrong with this when the highest-bidding advertiser places an advertisement that is
irrelevant to the query? Why might an advertiser with an irrelevant advertisement
bid high in this manner?

Exercise 19.6

Suppose that, in addition to bids, we had for each advertiser their click-through rate:
the ratio of the historical number of times users click on their advertisement to the
number of times the advertisement was shown. Suggest a modification of the Goto
scheme that exploits this data to avoid the problem in Exercise 19.5 above.
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19.4 The search user experience

It is crucial that we understand the users of web search as well. This is
again a significant change from traditional information retrieval, where users
were typically professionals with at least some training in the art of phrasing
queries over a well-authored collection whose style and structure they un-
derstood well. In contrast, web search users tend to not know (or care) about
the heterogeneity of web content, the syntax of query languages and the art
of phrasing queries; indeed, a mainstream tool (as web search has come to
become) should not place such onerous demands on billions of people. A
range of studies has concluded that the average number of keywords in a
web search is somewhere between 2 and 3. Syntax operators (Boolean con-
nectives, wildcards, etc.) are seldom used, again a result of the composition
of the audience – “normal” people, not information scientists.

It is clear that the more user traffic a web search engine can attract, the
more revenue it stands to earn from sponsored search. How do search en-
gines differentiate themselves and grow their traffic? Here Google identified
two principles that helped it grow at the expense of its competitors: (1) a
focus on relevance, specifically precision rather than recall in the first few re-
sults; (2) a user experience that is lightweight, meaning that both the search
query page and the search results page are uncluttered and almost entirely
textual, with very few graphical elements. The effect of the first was simply
to save users time in locating the information they sought. The effect of the
second is to provide a user experience that is extremely responsive, or at any
rate not bottlenecked by the time to load the search query or results page.

19.4.1 User query needs

There appear to be three broad categories into which common web search
queries can be grouped: (i) informational, (ii) navigational and (iii) transac-
tional. We now explain these categories; it should be clear that some queries
will fall in more than one of these categories, while others will fall outside
them.

Informational queries seek general information on a broad topic, such asINFORMATIONAL
QUERIES leukemia or Provence. There is typically not a single web page that con-

tains all the information sought; indeed, users with informational queries
typically try to assimilate information from multiple web pages.

Navigational queries seek the website or home page of a single entity that theNAVIGATIONAL
QUERIES user has in mind, say Lufthansa airlines. In such cases, the user’s expectation

is that the very first search result should be the home page of Lufthansa.
The user is not interested in a plethora of documents containing the term
Lufthansa; for such a user, the best measure of user satisfaction is precision at
1.
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A transactional query is one that is a prelude to the user performing a trans-TRANSACTIONAL
QUERY action on the Web – such as purchasing a product, downloading a file or

making a reservation. In such cases, the search engine should return results
listing services that provide form interfaces for such transactions.

Discerning which of these categories a query falls into can be challeng-
ing. The category not only governs the algorithmic search results, but the
suitability of the query for sponsored search results (since the query may re-
veal an intent to purchase). For navigational queries, some have argued that
the search engine should return only a single result or even the target web
page directly. Nevertheless, web search engines have historically engaged in
a battle of bragging rights over which one indexes more web pages. Does
the user really care? Perhaps not, but the media does highlight estimates
(often statistically indefensible) of the sizes of various search engines. Users
are influenced by these reports and thus, search engines do have to pay at-
tention to how their index sizes compare to competitors’. For informational
(and to a lesser extent, transactional) queries, the user does care about the
comprehensiveness of the search engine.

Figure 19.7 shows a composite picture of a web search engine including
the crawler, as well as both the web page and advertisement indexes. The
portion of the figure under the curved dashed line is internal to the search
engine.

19.5 Index size and estimation

To a first approximation, comprehensiveness grows with index size, although
it does matter which specific pages a search engine indexes – some pages are
more informative than others. It is also difficult to reason about the fraction
of the Web indexed by a search engine, because there is an infinite number of
dynamic web pages; for instance, http://www.yahoo.com/any_string
returns a valid HTML page rather than an error, politely informing the user
that there is no such page at Yahoo! Such a "soft 404 error" is only one exam-
ple of many ways in which web servers can generate an infinite number of
valid web pages. Indeed, some of these are malicious spider traps devised
to cause a search engine’s crawler (the component that systematically gath-
ers web pages for the search engine’s index, described in Chapter 20) to stay
within a spammer’s website and index many pages from that site.

We could ask the following better-defined question: given two search en-
gines, what are the relative sizes of their indexes? Even this question turns
out to be imprecise, because:

1. In response to queries a search engine can return web pages whose con-
tents it has not (fully or even partially) indexed. For one thing, search
engines generally index only the first few thousand words in a web page.
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◮ Figure 19.7 The various components of a web search engine.

In some cases, a search engine is aware of a page p that is linked to by pages
it has indexed, but has not indexed p itself. As we will see in Chapter 21,
it is still possible to meaningfully return p in search results.

2. Search engines generally organize their indexes in various tiers and parti-
tions, not all of which are examined on every search (recall tiered indexes
from Section 7.2.1). For instance, a web page deep inside a website may be
indexed but not retrieved on general web searches; it is however retrieved
as a result on a search that a user has explicitly restricted to that website
(such site-specific search is offered by most web search engines).

Thus, search engine indexes include multiple classes of indexed pages, so
that there is no single measure of index size. These issues notwithstanding,
a number of techniques have been devised for crude estimates of the ratio of
the index sizes of two search engines, E1 and E2. The basic hypothesis under-
lying these techniques is that each search engine indexes a fraction of the Web
chosen independently and uniformly at random. This involves some ques-
tionable assumptions: first, that there is a finite size for the Web from which
each search engine chooses a subset, and second, that each engine chooses
an independent, uniformly chosen subset. As will be clear from the discus-
sion of crawling in Chapter 20, this is far from true. However, if we begin



Online edition (c)
2009 Cambridge UP

19.5 Index size and estimation 435

with these assumptions, then we can invoke a classical estimation technique
known as the capture-recapture method.CAPTURE-RECAPTURE

METHOD Suppose that we could pick a random page from the index of E1 and test
whether it is in E2’s index and symmetrically, test whether a random page
from E2 is in E1. These experiments give us fractions x and y such that our
estimate is that a fraction x of the pages in E1 are in E2, while a fraction y of
the pages in E2 are in E1. Then, letting |Ei| denote the size of the index of
search engine Ei, we have

x|E1| ≈ y|E2|,
from which we have the form we will use

|E1|
|E2|
≈ y

x
.(19.1)

If our assumption about E1 and E2 being independent and uniform random
subsets of the Web were true, and our sampling process unbiased, then Equa-
tion (19.1) should give us an unbiased estimator for |E1|/|E2|. We distinguish
between two scenarios here. Either the measurement is performed by some-
one with access to the index of one of the search engines (say an employee of
E1), or the measurement is performed by an independent party with no ac-
cess to the innards of either search engine. In the former case, we can simply
pick a random document from one index. The latter case is more challeng-
ing; by picking a random page from one search engine from outside the search
engine, then verify whether the random page is present in the other search
engine.

To implement the sampling phase, we might generate a random page from
the entire (idealized, finite) Web and test it for presence in each search engine.
Unfortunately, picking a web page uniformly at random is a difficult prob-
lem. We briefly outline several attempts to achieve such a sample, pointing
out the biases inherent to each; following this we describe in some detail one
technique that much research has built on.

1. Random searches: Begin with a search log of web searches; send a random
search from this log to E1 and a random page from the results. Since such
logs are not widely available outside a search engine, one implementation
is to trap all search queries going out of a work group (say scientists in a
research center) that agrees to have all its searches logged. This approach
has a number of issues, including the bias from the types of searches made
by the work group. Further, a random document from the results of such
a random search to E1 is not the same as a random document from E1.

2. Random IP addresses: A second approach is to generate random IP ad-
dresses and send a request to a web server residing at the random ad-
dress, collecting all pages at that server. The biases here include the fact
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that many hosts might share one IP (due to a practice known as virtual
hosting) or not accept http requests from the host where the experiment
is conducted. Furthermore, this technique is more likely to hit one of the
many sites with few pages, skewing the document probabilities; we may
be able to correct for this effect if we understand the distribution of the
number of pages on websites.

3. Random walks: If the web graph were a strongly connected directed graph,
we could run a random walk starting at an arbitrary web page. This
walk would converge to a steady state distribution (see Chapter 21, Sec-
tion 21.2.1 for more background material on this), from which we could in
principle pick a web page with a fixed probability. This method, too has
a number of biases. First, the Web is not strongly connected so that, even
with various corrective rules, it is difficult to argue that we can reach a
steady state distribution starting from any page. Second, the time it takes
for the random walk to settle into this steady state is unknown and could
exceed the length of the experiment.

Clearly each of these approaches is far from perfect. We now describe a
fourth sampling approach, random queries. This approach is noteworthy for
two reasons: it has been successfully built upon for a series of increasingly
refined estimates, and conversely it has turned out to be the approach most
likely to be misinterpreted and carelessly implemented, leading to mislead-
ing measurements. The idea is to pick a page (almost) uniformly at random
from a search engine’s index by posing a random query to it. It should be
clear that picking a set of random terms from (say) Webster’s dictionary is
not a good way of implementing this idea. For one thing, not all vocabulary
terms occur equally often, so this approach will not result in documents be-
ing chosen uniformly at random from the search engine. For another, there
are a great many terms in web documents that do not occur in a standard
dictionary such as Webster’s. To address the problem of vocabulary terms
not in a standard dictionary, we begin by amassing a sample web dictionary.
This could be done by crawling a limited portion of the Web, or by crawling a
manually-assembled representative subset of the Web such as Yahoo! (as was
done in the earliest experiments with this method). Consider a conjunctive
query with two or more randomly chosen words from this dictionary.

Operationally, we proceed as follows: we use a random conjunctive query
on E1 and pick from the top 100 returned results a page p at random. We
then test p for presence in E2 by choosing 6-8 low-frequency terms in p and
using them in a conjunctive query for E2. We can improve the estimate by
repeating the experiment a large number of times. Both the sampling process
and the testing process have a number of issues.

1. Our sample is biased towards longer documents.
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2. Picking from the top 100 results of E1 induces a bias from the ranking
algorithm of E1. Picking from all the results of E1 makes the experiment
slower. This is particularly so because most web search engines put up
defenses against excessive robotic querying.

3. During the checking phase, a number of additional biases are introduced:
for instance, E2 may not handle 8-word conjunctive queries properly.

4. Either E1 or E2 may refuse to respond to the test queries, treating them as
robotic spam rather than as bona fide queries.

5. There could be operational problems like connection time-outs.

A sequence of research has built on this basic paradigm to eliminate some
of these issues; there is no perfect solution yet, but the level of sophistica-
tion in statistics for understanding the biases is increasing. The main idea
is to address biases by estimating, for each document, the magnitude of the
bias. From this, standard statistical sampling methods can generate unbi-
ased samples. In the checking phase, the newer work moves away from
conjunctive queries to phrase and other queries that appear to be better-
behaved. Finally, newer experiments use other sampling methods besides
random queries. The best known of these is document random walk sampling,
in which a document is chosen by a random walk on a virtual graph de-
rived from documents. In this graph, nodes are documents; two documents
are connected by an edge if they share two or more words in common. The
graph is never instantiated; rather, a random walk on it can be performed by
moving from a document d to another by picking a pair of keywords in d,
running a query on a search engine and picking a random document from
the results. Details may be found in the references in Section 19.7.

? Exercise 19.7

Two web search engines A and B each generate a large number of pages uniformly at
random from their indexes. 30% of A’s pages are present in B’s index, while 50% of
B’s pages are present in A’s index. What is the number of pages in A’s index relative
to B’s?

19.6 Near-duplicates and shingling

One aspect we have ignored in the discussion of index size in Section 19.5 is
duplication: the Web contains multiple copies of the same content. By some
estimates, as many as 40% of the pages on the Web are duplicates of other
pages. Many of these are legitimate copies; for instance, certain information
repositories are mirrored simply to provide redundancy and access reliabil-
ity. Search engines try to avoid indexing multiple copies of the same content,
to keep down storage and processing overheads.
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The simplest approach to detecting duplicates is to compute, for each web
page, a fingerprint that is a succinct (say 64-bit) digest of the characters on that
page. Then, whenever the fingerprints of two web pages are equal, we test
whether the pages themselves are equal and if so declare one of them to be a
duplicate copy of the other. This simplistic approach fails to capture a crucial
and widespread phenomenon on the Web: near duplication. In many cases,
the contents of one web page are identical to those of another except for a
few characters – say, a notation showing the date and time at which the page
was last modified. Even in such cases, we want to be able to declare the two
pages to be close enough that we only index one copy. Short of exhaustively
comparing all pairs of web pages, an infeasible task at the scale of billions of
pages, how can we detect and filter out such near duplicates?

We now describe a solution to the problem of detecting near-duplicate web
pages. The answer lies in a technique known as shingling. Given a positiveSHINGLING

integer k and a sequence of terms in a document d, define the k-shingles of
d to be the set of all consecutive sequences of k terms in d. As an example,
consider the following text: a rose is a rose is a rose. The 4-shingles for this text
(k = 4 is a typical value used in the detection of near-duplicate web pages)
are a rose is a, rose is a rose and is a rose is. The first two of these shingles
each occur twice in the text. Intuitively, two documents are near duplicates if
the sets of shingles generated from them are nearly the same. We now make
this intuition precise, then develop a method for efficiently computing and
comparing the sets of shingles for all web pages.

Let S(dj) denote the set of shingles of document dj. Recall the Jaccard
coefficient from page 61, which measures the degree of overlap between
the sets S(d1) and S(d2) as |S(d1) ∩ S(d2)|/|S(d1) ∪ S(d2)|; denote this by
J(S(d1), S(d2)). Our test for near duplication between d1 and d2 is to com-
pute this Jaccard coefficient; if it exceeds a preset threshold (say, 0.9), we
declare them near duplicates and eliminate one from indexing. However,
this does not appear to have simplified matters: we still have to compute
Jaccard coefficients pairwise.

To avoid this, we use a form of hashing. First, we map every shingle into
a hash value over a large space, say 64 bits. For j = 1, 2, let H(dj) be the
corresponding set of 64-bit hash values derived from S(dj). We now invoke
the following trick to detect document pairs whose sets H() have large Jac-
card overlaps. Let π be a random permutation from the 64-bit integers to the
64-bit integers. Denote by Π(dj) the set of permuted hash values in H(dj);
thus for each h ∈ H(dj), there is a corresponding value π(h) ∈ Π(dj).

Let xπ
j be the smallest integer in Π(dj). Then

Theorem 19.1.

J(S(d1), S(d2)) = P(xπ
1 = xπ

2 ).
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◮ Figure 19.8 Illustration of shingle sketches. We see two documents going through
four stages of shingle sketch computation. In the first step (top row), we apply a 64-bit
hash to each shingle from each document to obtain H(d1) and H(d2) (circles). Next,
we apply a random permutation Π to permute H(d1) and H(d2), obtaining Π(d1)
and Π(d2) (squares). The third row shows only Π(d1) and Π(d2), while the bottom
row shows the minimum values xπ

1 and xπ
2 for each document.

Proof. We give the proof in a slightly more general setting: consider a family
of sets whose elements are drawn from a common universe. View the sets
as columns of a matrix A, with one row for each element in the universe.
The element aij = 1 if element i is present in the set Sj that the jth column
represents.

Let Π be a random permutation of the rows of A; denote by Π(Sj) the
column that results from applying Π to the jth column. Finally, let xπ

j be the
index of the first row in which the column Π(Sj) has a 1. We then prove that
for any two columns j1, j2,

P(xπ
j1

= xπ
j2
) = J(Sj1 , Sj2).

If we can prove this, the theorem follows.
Consider two columns j1, j2 as shown in Figure 19.9. The ordered pairs of

entries of Sj1 and Sj2 partition the rows into four types: those with 0’s in both
of these columns, those with a 0 in Sj1 and a 1 in Sj2 , those with a 1 in Sj1
and a 0 in Sj2 , and finally those with 1’s in both of these columns. Indeed,
the first four rows of Figure 19.9 exemplify all of these four types of rows.
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Sj1 Sj2
0 1
1 0
1 1
0 0
1 1
0 1

◮ Figure 19.9 Two sets Sj1 and Sj2 ; their Jaccard coefficient is 2/5.

Denote by C00 the number of rows with 0’s in both columns, C01 the second,
C10 the third and C11 the fourth. Then,

J(Sj1 , Sj2) =
C11

C01 + C10 + C11
.(19.2)

To complete the proof by showing that the right-hand side of Equation (19.2)
equals P(xπ

j1
= xπ

j2
), consider scanning columns j1, j2 in increasing row in-

dex until the first non-zero entry is found in either column. Because Π is a
random permutation, the probability that this smallest row has a 1 in both
columns is exactly the right-hand side of Equation (19.2).

Thus, our test for the Jaccard coefficient of the shingle sets is probabilis-
tic: we compare the computed values xπ

i from different documents. If a pair
coincides, we have candidate near duplicates. Repeat the process indepen-
dently for 200 random permutations π (a choice suggested in the literature).
Call the set of the 200 resulting values of xπ

i the sketch ψ(di) of di. We can
then estimate the Jaccard coefficient for any pair of documents di, dj to be
|ψi ∩ ψj|/200; if this exceeds a preset threshold, we declare that di and dj are
similar.

How can we quickly compute |ψi ∩ ψj|/200 for all pairs i, j? Indeed, how
do we represent all pairs of documents that are similar, without incurring
a blowup that is quadratic in the number of documents? First, we use fin-
gerprints to remove all but one copy of identical documents. We may also
remove common HTML tags and integers from the shingle computation, to
eliminate shingles that occur very commonly in documents without telling
us anything about duplication. Next we use a union-find algorithm to create
clusters that contain documents that are similar. To do this, we must accom-
plish a crucial step: going from the set of sketches to the set of pairs i, j such
that di and dj are similar.

To this end, we compute the number of shingles in common for any pair of
documents whose sketches have any members in common. We begin with
the list < xπ

i , di > sorted by xπ
i pairs. For each xπ

i , we can now generate



Online edition (c)
2009 Cambridge UP

19.7 References and further reading 441

all pairs i, j for which xπ
i is present in both their sketches. From these we

can compute, for each pair i, j with non-zero sketch overlap, a count of the
number of xπ

i values they have in common. By applying a preset threshold,
we know which pairs i, j have heavily overlapping sketches. For instance, if
the threshold were 80%, we would need the count to be at least 160 for any
i, j. As we identify such pairs, we run the union-find to group documents
into near-duplicate “syntactic clusters”. This is essentially a variant of the
single-link clustering algorithm introduced in Section 17.2 (page 382).

One final trick cuts down the space needed in the computation of |ψi ∩
ψj|/200 for pairs i, j, which in principle could still demand space quadratic
in the number of documents. To remove from consideration those pairs i, j
whose sketches have few shingles in common, we preprocess the sketch for
each document as follows: sort the xπ

i in the sketch, then shingle this sorted
sequence to generate a set of super-shingles for each document. If two docu-
ments have a super-shingle in common, we proceed to compute the precise
value of |ψi ∩ ψj|/200. This again is a heuristic but can be highly effective
in cutting down the number of i, j pairs for which we accumulate the sketch
overlap counts.

? Exercise 19.8

Web search engines A and B each crawl a random subset of the same size of the Web.
Some of the pages crawled are duplicates – exact textual copies of each other at dif-
ferent URLs. Assume that duplicates are distributed uniformly amongst the pages
crawled by A and B. Further, assume that a duplicate is a page that has exactly two
copies – no pages have more than two copies. A indexes pages without duplicate
elimination whereas B indexes only one copy of each duplicate page. The two ran-
dom subsets have the same size before duplicate elimination. If, 45% of A’s indexed
URLs are present in B’s index, while 50% of B’s indexed URLs are present in A’s
index, what fraction of the Web consists of pages that do not have a duplicate?

Exercise 19.9

Instead of using the process depicted in Figure 19.8, consider instead the following
process for estimating the Jaccard coefficient of the overlap between two sets S1 and
S2. We pick a random subset of the elements of the universe from which S1 and S2
are drawn; this corresponds to picking a random subset of the rows of the matrix A in
the proof. We exhaustively compute the Jaccard coefficient of these random subsets.
Why is this estimate an unbiased estimator of the Jaccard coefficient for S1 and S2?

Exercise 19.10

Explain why this estimator would be very difficult to use in practice.

19.7 References and further reading

Bush (1945) foreshadowed the Web when he described an information man-
agement system that he called memex. Berners-Lee et al. (1992) describes
one of the earliest incarnations of the Web. Kumar et al. (2000) and Broder
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et al. (2000) provide comprehensive studies of the Web as a graph. The use
of anchor text was first described in McBryan (1994). The taxonomy of web
queries in Section 19.4 is due to Broder (2002). The observation of the power
law with exponent 2.1 in Section 19.2.1 appeared in Kumar et al. (1999).
Chakrabarti (2002) is a good reference for many aspects of web search and
analysis.

The estimation of web search index sizes has a long history of develop-
ment covered by Bharat and Broder (1998), Lawrence and Giles (1998), Rus-
mevichientong et al. (2001), Lawrence and Giles (1999), Henzinger et al. (2000),
Bar-Yossef and Gurevich (2006). The state of the art is Bar-Yossef and Gure-
vich (2006), including several of the bias-removal techniques mentioned at
the end of Section 19.5. Shingling was introduced by Broder et al. (1997) and
used for detecting websites (rather than simply pages) that are identical by
Bharat et al. (2000).
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20 Web crawling and indexes

20.1 Overview

Web crawling is the process by which we gather pages from the Web, in
order to index them and support a search engine. The objective of crawling
is to quickly and efficiently gather as many useful web pages as possible,
together with the link structure that interconnects them. In Chapter 19 we
studied the complexities of the Web stemming from its creation by millions of
uncoordinated individuals. In this chapter we study the resulting difficulties
for crawling the Web. The focus of this chapter is the component shown in
Figure 19.7 as web crawler; it is sometimes referred to as a spider.WEB CRAWLER

SPIDER The goal of this chapter is not to describe how to build the crawler for
a full-scale commercial web search engine. We focus instead on a range of
issues that are generic to crawling from the student project scale to substan-
tial research projects. We begin (Section 20.1.1) by listing desiderata for web
crawlers, and then discuss in Section 20.2 how each of these issues is ad-
dressed. The remainder of this chapter describes the architecture and some
implementation details for a distributed web crawler that satisfies these fea-
tures. Section 20.3 discusses distributing indexes across many machines for
a web-scale implementation.

20.1.1 Features a crawler must provide

We list the desiderata for web crawlers in two categories: features that web
crawlers must provide, followed by features they should provide.

Robustness: The Web contains servers that create spider traps, which are gen-
erators of web pages that mislead crawlers into getting stuck fetching an
infinite number of pages in a particular domain. Crawlers must be de-
signed to be resilient to such traps. Not all such traps are malicious; some
are the inadvertent side-effect of faulty website development.
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Politeness: Web servers have both implicit and explicit policies regulating
the rate at which a crawler can visit them. These politeness policies must
be respected.

20.1.2 Features a crawler should provide

Distributed: The crawler should have the ability to execute in a distributed
fashion across multiple machines.

Scalable: The crawler architecture should permit scaling up the crawl rate
by adding extra machines and bandwidth.

Performance and efficiency: The crawl system should make efficient use of
various system resources including processor, storage and network band-
width.

Quality: Given that a significant fraction of all web pages are of poor util-
ity for serving user query needs, the crawler should be biased towards
fetching “useful” pages first.

Freshness: In many applications, the crawler should operate in continuous
mode: it should obtain fresh copies of previously fetched pages. A search
engine crawler, for instance, can thus ensure that the search engine’s index
contains a fairly current representation of each indexed web page. For
such continuous crawling, a crawler should be able to crawl a page with
a frequency that approximates the rate of change of that page.

Extensible: Crawlers should be designed to be extensible in many ways –
to cope with new data formats, new fetch protocols, and so on. This de-
mands that the crawler architecture be modular.

20.2 Crawling

The basic operation of any hypertext crawler (whether for the Web, an in-
tranet or other hypertext document collection) is as follows. The crawler
begins with one or more URLs that constitute a seed set. It picks a URL from
this seed set, then fetches the web page at that URL. The fetched page is then
parsed, to extract both the text and the links from the page (each of which
points to another URL). The extracted text is fed to a text indexer (described
in Chapters 4 and 5). The extracted links (URLs) are then added to a URL
frontier, which at all times consists of URLs whose corresponding pages have
yet to be fetched by the crawler. Initially, the URL frontier contains the seed
set; as pages are fetched, the corresponding URLs are deleted from the URL
frontier. The entire process may be viewed as traversing the web graph (see
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Chapter 19). In continuous crawling, the URL of a fetched page is added
back to the frontier for fetching again in the future.

This seemingly simple recursive traversal of the web graph is complicated
by the many demands on a practical web crawling system: the crawler has to
be distributed, scalable, efficient, polite, robust and extensible while fetching
pages of high quality. We examine the effects of each of these issues. Our
treatment follows the design of the Mercator crawler that has formed the ba-MERCATOR

sis of a number of research and commercial crawlers. As a reference point,
fetching a billion pages (a small fraction of the static Web at present) in a
month-long crawl requires fetching several hundred pages each second. We
will see how to use a multi-threaded design to address several bottlenecks in
the overall crawler system in order to attain this fetch rate.

Before proceeding to this detailed description, we reiterate for readers who
may attempt to build crawlers of some basic properties any non-professional
crawler should satisfy:

1. Only one connection should be open to any given host at a time.

2. A waiting time of a few seconds should occur between successive requests
to a host.

3. Politeness restrictions detailed in Section 20.2.1 should be obeyed.

20.2.1 Crawler architecture

The simple scheme outlined above for crawling demands several modules
that fit together as shown in Figure 20.1.

1. The URL frontier, containing URLs yet to be fetched in the current crawl
(in the case of continuous crawling, a URL may have been fetched previ-
ously but is back in the frontier for re-fetching). We describe this further
in Section 20.2.3.

2. A DNS resolution module that determines the web server from which to
fetch the page specified by a URL. We describe this further in Section 20.2.2.

3. A fetch module that uses the http protocol to retrieve the web page at a
URL.

4. A parsing module that extracts the text and set of links from a fetched web
page.

5. A duplicate elimination module that determines whether an extracted
link is already in the URL frontier or has recently been fetched.
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◮ Figure 20.1 The basic crawler architecture.

Crawling is performed by anywhere from one to potentially hundreds of
threads, each of which loops through the logical cycle in Figure 20.1. These
threads may be run in a single process, or be partitioned amongst multiple
processes running at different nodes of a distributed system. We begin by
assuming that the URL frontier is in place and non-empty and defer our de-
scription of the implementation of the URL frontier to Section 20.2.3. We
follow the progress of a single URL through the cycle of being fetched, pass-
ing through various checks and filters, then finally (for continuous crawling)
being returned to the URL frontier.

A crawler thread begins by taking a URL from the frontier and fetching
the web page at that URL, generally using the http protocol. The fetched
page is then written into a temporary store, where a number of operations
are performed on it. Next, the page is parsed and the text as well as the
links in it are extracted. The text (with any tag information – e.g., terms in
boldface) is passed on to the indexer. Link information including anchor text
is also passed on to the indexer for use in ranking in ways that are described
in Chapter 21. In addition, each extracted link goes through a series of tests
to determine whether the link should be added to the URL frontier.

First, the thread tests whether a web page with the same content has al-
ready been seen at another URL. The simplest implementation for this would
use a simple fingerprint such as a checksum (placed in a store labeled "Doc
FP’s" in Figure 20.1). A more sophisticated test would use shingles instead
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of fingerprints, as described in Chapter 19.
Next, a URL filter is used to determine whether the extracted URL should

be excluded from the frontier based on one of several tests. For instance, the
crawl may seek to exclude certain domains (say, all .com URLs) – in this case
the test would simply filter out the URL if it were from the .com domain.
A similar test could be inclusive rather than exclusive. Many hosts on the
Web place certain portions of their websites off-limits to crawling, under a
standard known as the Robots Exclusion Protocol. This is done by placing aROBOTS EXCLUSION

PROTOCOL file with the name robots.txt at the root of the URL hierarchy at the site. Here
is an example robots.txt file that specifies that no robot should visit any URL
whose position in the file hierarchy starts with /yoursite/temp/, except for the
robot called “searchengine”.

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine
Disallow:

The robots.txt file must be fetched from a website in order to test whether
the URL under consideration passes the robot restrictions, and can there-
fore be added to the URL frontier. Rather than fetch it afresh for testing on
each URL to be added to the frontier, a cache can be used to obtain a re-
cently fetched copy of the file for the host. This is especially important since
many of the links extracted from a page fall within the host from which the
page was fetched and therefore can be tested against the host’s robots.txt
file. Thus, by performing the filtering during the link extraction process, we
would have especially high locality in the stream of hosts that we need to test
for robots.txt files, leading to high cache hit rates. Unfortunately, this runs
afoul of webmasters’ politeness expectations. A URL (particularly one refer-
ring to a low-quality or rarely changing document) may be in the frontier for
days or even weeks. If we were to perform the robots filtering before adding
such a URL to the frontier, its robots.txt file could have changed by the time
the URL is dequeued from the frontier and fetched. We must consequently
perform robots-filtering immediately before attempting to fetch a web page.
As it turns out, maintaining a cache of robots.txt files is still highly effective;
there is sufficient locality even in the stream of URLs dequeued from the URL
frontier.

Next, a URL should be normalized in the following sense: often the HTMLURL NORMALIZATION

encoding of a link from a web page p indicates the target of that link relative
to the page p. Thus, there is a relative link encoded thus in the HTML of the
page en.wikipedia.org/wiki/Main_Page:
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<a href="/wiki/Wikipedia:General_disclaimer" title="Wikipedia:General
disclaimer">Disclaimers</a>

points to the URL http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer.
Finally, the URL is checked for duplicate elimination: if the URL is already

in the frontier or (in the case of a non-continuous crawl) already crawled,
we do not add it to the frontier. When the URL is added to the frontier, it is
assigned a priority based on which it is eventually removed from the frontier
for fetching. The details of this priority queuing are in Section 20.2.3.

Certain housekeeping tasks are typically performed by a dedicated thread.
This thread is generally quiescent except that it wakes up once every few
seconds to log crawl progress statistics (URLs crawled, frontier size, etc.),
decide whether to terminate the crawl, or (once every few hours of crawling)
checkpoint the crawl. In checkpointing, a snapshot of the crawler’s state (say,
the URL frontier) is committed to disk. In the event of a catastrophic crawler
failure, the crawl is restarted from the most recent checkpoint.

Distributing the crawler

We have mentioned that the threads in a crawler could run under different
processes, each at a different node of a distributed crawling system. Such
distribution is essential for scaling; it can also be of use in a geographically
distributed crawler system where each node crawls hosts “near” it. Parti-
tioning the hosts being crawled amongst the crawler nodes can be done by
a hash function, or by some more specifically tailored policy. For instance,
we may locate a crawler node in Europe to focus on European domains, al-
though this is not dependable for several reasons – the routes that packets
take through the internet do not always reflect geographic proximity, and in
any case the domain of a host does not always reflect its physical location.

How do the various nodes of a distributed crawler communicate and share
URLs? The idea is to replicate the flow of Figure 20.1 at each node, with one
essential difference: following the URL filter, we use a host splitter to dispatch
each surviving URL to the crawler node responsible for the URL; thus the set
of hosts being crawled is partitioned among the nodes. This modified flow is
shown in Figure 20.2. The output of the host splitter goes into the Duplicate
URL Eliminator block of each other node in the distributed system.

The “Content Seen?” module in the distributed architecture of Figure 20.2
is, however, complicated by several factors:

1. Unlike the URL frontier and the duplicate elimination module, document
fingerprints/shingles cannot be partitioned based on host name. There is
nothing preventing the same (or highly similar) content from appearing
on different web servers. Consequently, the set of fingerprints/shingles
must be partitioned across the nodes based on some property of the fin-



Online edition (c)
2009 Cambridge UP

20.2 Crawling 449

www

Fetch

DNS

Parse

URL Frontier

Content
Seen?

�

�

�

�
��

Doc
FP’s �

�

�

�
��

URL
set

URL
Filter

Host
splitter

To
other
nodes

From
other
nodes

Dup
URL
Elim-

�

-

6

�-

?
6

- - - -

�

6? 6?666

---

◮ Figure 20.2 Distributing the basic crawl architecture.

gerprint/shingle (say by taking the fingerprint modulo the number of
nodes). The result of this locality-mismatch is that most “Content Seen?”
tests result in a remote procedure call (although it is possible to batch
lookup requests).

2. There is very little locality in the stream of document fingerprints/shingles.
Thus, caching popular fingerprints does not help (since there are no pop-
ular fingerprints).

3. Documents change over time and so, in the context of continuous crawl-
ing, we must be able to delete their outdated fingerprints/shingles from
the content-seen set(s). In order to do so, it is necessary to save the finger-
print/shingle of the document in the URL frontier, along with the URL
itself.

20.2.2 DNS resolution

Each web server (and indeed any host connected to the internet) has a unique
IP address: a sequence of four bytes generally represented as four integersIP ADDRESS

separated by dots; for instance 207.142.131.248 is the numerical IP address as-
sociated with the host www.wikipedia.org. Given a URL such as www.wikipedia.org
in textual form, translating it to an IP address (in this case, 207.142.131.248) is
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a process known as DNS resolution or DNS lookup; here DNS stands for Do-DNS RESOLUTION

main Name Service. During DNS resolution, the program that wishes to per-
form this translation (in our case, a component of the web crawler) contacts a
DNS server that returns the translated IP address. (In practice the entire trans-DNS SERVER

lation may not occur at a single DNS server; rather, the DNS server contacted
initially may recursively call upon other DNS servers to complete the transla-
tion.) For a more complex URL such as en.wikipedia.org/wiki/Domain_Name_System,
the crawler component responsible for DNS resolution extracts the host name
– in this case en.wikipedia.org – and looks up the IP address for the host
en.wikipedia.org.

DNS resolution is a well-known bottleneck in web crawling. Due to the
distributed nature of the Domain Name Service, DNS resolution may entail
multiple requests and round-trips across the internet, requiring seconds and
sometimes even longer. Right away, this puts in jeopardy our goal of fetching
several hundred documents a second. A standard remedy is to introduce
caching: URLs for which we have recently performed DNS lookups are likely
to be found in the DNS cache, avoiding the need to go to the DNS servers
on the internet. However, obeying politeness constraints (see Section 20.2.3)
limits the of cache hit rate.

There is another important difficulty in DNS resolution; the lookup imple-
mentations in standard libraries (likely to be used by anyone developing a
crawler) are generally synchronous. This means that once a request is made
to the Domain Name Service, other crawler threads at that node are blocked
until the first request is completed. To circumvent this, most web crawlers
implement their own DNS resolver as a component of the crawler. Thread
i executing the resolver code sends a message to the DNS server and then
performs a timed wait: it resumes either when being signaled by another
thread or when a set time quantum expires. A single, separate DNS thread
listens on the standard DNS port (port 53) for incoming response packets
from the name service. Upon receiving a response, it signals the appropriate
crawler thread (in this case, i) and hands it the response packet if i has not
yet resumed because its time quantum has expired. A crawler thread that re-
sumes because its wait time quantum has expired retries for a fixed number
of attempts, sending out a new message to the DNS server and performing
a timed wait each time; the designers of Mercator recommend of the order
of five attempts. The time quantum of the wait increases exponentially with
each of these attempts; Mercator started with one second and ended with
roughly 90 seconds, in consideration of the fact that there are host names
that take tens of seconds to resolve.
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20.2.3 The URL frontier

The URL frontier at a node is given a URL by its crawl process (or by the
host splitter of another crawl process). It maintains the URLs in the frontier
and regurgitates them in some order whenever a crawler thread seeks a URL.
Two important considerations govern the order in which URLs are returned
by the frontier. First, high-quality pages that change frequently should be
prioritized for frequent crawling. Thus, the priority of a page should be a
function of both its change rate and its quality (using some reasonable quality
estimate). The combination is necessary because a large number of spam
pages change completely on every fetch.

The second consideration is politeness: we must avoid repeated fetch re-
quests to a host within a short time span. The likelihood of this is exacerbated
because of a form of locality of reference: many URLs link to other URLs at
the same host. As a result, a URL frontier implemented as a simple priority
queue might result in a burst of fetch requests to a host. This might occur
even if we were to constrain the crawler so that at most one thread could
fetch from any single host at any time. A common heuristic is to insert a
gap between successive fetch requests to a host that is an order of magnitude
larger than the time taken for the most recent fetch from that host.

Figure 20.3 shows a polite and prioritizing implementation of a URL fron-
tier. Its goals are to ensure that (i) only one connection is open at a time to any
host; (ii) a waiting time of a few seconds occurs between successive requests
to a host and (iii) high-priority pages are crawled preferentially.

The two major sub-modules are a set of F front queues in the upper por-
tion of the figure, and a set of B back queues in the lower part; all of these are
FIFO queues. The front queues implement the prioritization, while the back
queues implement politeness. In the flow of a URL added to the frontier as
it makes its way through the front and back queues, a prioritizer first assigns
to the URL an integer priority i between 1 and F based on its fetch history
(taking into account the rate at which the web page at this URL has changed
between previous crawls). For instance, a document that has exhibited fre-
quent change would be assigned a higher priority. Other heuristics could be
application-dependent and explicit – for instance, URLs from news services
may always be assigned the highest priority. Now that it has been assigned
priority i, the URL is now appended to the ith of the front queues.

Each of the B back queues maintains the following invariants: (i) it is non-
empty while the crawl is in progress and (ii) it only contains URLs from a
single host1. An auxiliary table T (Figure 20.4) is used to maintain the map-
ping from hosts to back queues. Whenever a back-queue is empty and is
being re-filled from a front-queue, table T must be updated accordingly.

1. The number of hosts is assumed to far exceed B.
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◮ Figure 20.3 The URL frontier. URLs extracted from already crawled pages flow in
at the top of the figure. A crawl thread requesting a URL extracts it from the bottom of
the figure. En route, a URL flows through one of several front queues that manage its
priority for crawling, followed by one of several back queues that manage the crawler’s
politeness.
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Host Back queue
stanford.edu 23
microsoft.com 47
acm.org 12

◮ Figure 20.4 Example of an auxiliary hosts-to-back queues table.

In addition, we maintain a heap with one entry for each back queue, the
entry being the earliest time te at which the host corresponding to that queue
can be contacted again.

A crawler thread requesting a URL from the frontier extracts the root of
this heap and (if necessary) waits until the corresponding time entry te. It
then takes the URL u at the head of the back queue j corresponding to the
extracted heap root, and proceeds to fetch the URL u. After fetching u, the
calling thread checks whether j is empty. If so, it picks a front queue and
extracts from its head a URL v. The choice of front queue is biased (usually
by a random process) towards queues of higher priority, ensuring that URLs
of high priority flow more quickly into the back queues. We examine v to
check whether there is already a back queue holding URLs from its host.
If so, v is added to that queue and we reach back to the front queues to
find another candidate URL for insertion into the now-empty queue j. This
process continues until j is non-empty again. In any case, the thread inserts
a heap entry for j with a new earliest time te based on the properties of the
URL in j that was last fetched (such as when its host was last contacted as
well as the time taken for the last fetch), then continues with its processing.
For instance, the new entry te could be the current time plus ten times the
last fetch time.

The number of front queues, together with the policy of assigning priori-
ties and picking queues, determines the priority properties we wish to build
into the system. The number of back queues governs the extent to which we
can keep all crawl threads busy while respecting politeness. The designers
of Mercator recommend a rough rule of three times as many back queues as
crawler threads.

On a Web-scale crawl, the URL frontier may grow to the point where it
demands more memory at a node than is available. The solution is to let
most of the URL frontier reside on disk. A portion of each queue is kept in
memory, with more brought in from disk as it is drained in memory.

? Exercise 20.1

Why is it better to partition hosts (rather than individual URLs) between the nodes of
a distributed crawl system?

Exercise 20.2

Why should the host splitter precede the Duplicate URL Eliminator?
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Exercise 20.3 [⋆ ⋆ ⋆]

In the preceding discussion we encountered two recommended “hard constants” –
the increment on te being ten times the last fetch time, and the number of back
queues being three times the number of crawl threads. How are these two constants
related?

20.3 Distributing indexes

In Section 4.4 we described distributed indexing. We now consider the distri-
bution of the index across a large computer cluster2 that supports querying.
Two obvious alternative index implementations suggest themselves: parti-TERM PARTITIONING

tioning by terms, also known as global index organization, and partitioning byDOCUMENT
PARTITIONING documents, also know as local index organization. In the former, the diction-

ary of index terms is partitioned into subsets, each subset residing at a node.
Along with the terms at a node, we keep the postings for those terms. A
query is routed to the nodes corresponding to its query terms. In principle,
this allows greater concurrency since a stream of queries with different query
terms would hit different sets of machines.

In practice, partitioning indexes by vocabulary terms turns out to be non-
trivial. Multi-word queries require the sending of long postings lists between
sets of nodes for merging, and the cost of this can outweigh the greater con-
currency. Load balancing the partition is governed not by an a priori analysis
of relative term frequencies, but rather by the distribution of query terms
and their co-occurrences, which can drift with time or exhibit sudden bursts.
Achieving good partitions is a function of the co-occurrences of query terms
and entails the clustering of terms to optimize objectives that are not easy to
quantify. Finally, this strategy makes implementation of dynamic indexing
more difficult.

A more common implementation is to partition by documents: each node
contains the index for a subset of all documents. Each query is distributed to
all nodes, with the results from various nodes being merged before presenta-
tion to the user. This strategy trades more local disk seeks for less inter-node
communication. One difficulty in this approach is that global statistics used
in scoring – such as idf – must be computed across the entire document col-
lection even though the index at any single node only contains a subset of
the documents. These are computed by distributed “background” processes
that periodically refresh the node indexes with fresh global statistics.

How do we decide the partition of documents to nodes? Based on our de-
velopment of the crawler architecture in Section 20.2.1, one simple approach
would be to assign all pages from a host to a single node. This partitioning

2. Please note the different usage of “clusters” elsewhere in this book, in the sense of Chapters
16 and 17.
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could follow the partitioning of hosts to crawler nodes. A danger of such
partitioning is that on many queries, a preponderance of the results would
come from documents at a small number of hosts (and hence a small number
of index nodes).

A hash of each URL into the space of index nodes results in a more uni-
form distribution of query-time computation across nodes. At query time,
the query is broadcast to each of the nodes, with the top k results from each
node being merged to find the top k documents for the query. A common
implementation heuristic is to partition the document collection into indexes
of documents that are more likely to score highly on most queries (using,
for instance, techniques in Chapter 21) and low-scoring indexes with the re-
maining documents. We only search the low-scoring indexes when there are
too few matches in the high-scoring indexes, as described in Section 7.2.1.

20.4 Connectivity servers

For reasons to become clearer in Chapter 21, web search engines require a
connectivity server that supports fast connectivity queries on the web graph.CONNECTIVITY SERVER

CONNECTIVITY
QUERIES

Typical connectivity queries are which URLs link to a given URL? and which
URLs does a given URL link to? To this end, we wish to store mappings in
memory from URL to out-links, and from URL to in-links. Applications in-
clude crawl control, web graph analysis, sophisticated crawl optimization
and link analysis (to be covered in Chapter 21).

Suppose that the Web had four billion pages, each with ten links to other
pages. In the simplest form, we would require 32 bits or 4 bytes to specify
each end (source and destination) of each link, requiring a total of

4× 109 × 10× 8 = 3.2× 1011

bytes of memory. Some basic properties of the web graph can be exploited to
use well under 10% of this memory requirement. At first sight, we appear to
have a data compression problem – which is amenable to a variety of stan-
dard solutions. However, our goal is not to simply compress the web graph
to fit into memory; we must do so in a way that efficiently supports connec-
tivity queries; this challenge is reminiscent of index compression (Chapter 5).

We assume that each web page is represented by a unique integer; the
specific scheme used to assign these integers is described below. We build
an adjacency table that resembles an inverted index: it has a row for each web
page, with the rows ordered by the corresponding integers. The row for any
page p contains a sorted list of integers, each corresponding to a web page
that links to p. This table permits us to respond to queries of the form which
pages link to p? In similar fashion we build a table whose entries are the pages
linked to by p.
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1: www.stanford.edu/alchemy
2: www.stanford.edu/biology
3: www.stanford.edu/biology/plant
4: www.stanford.edu/biology/plant/copyright
5: www.stanford.edu/biology/plant/people
6: www.stanford.edu/chemistry

◮ Figure 20.5 A lexicographically ordered set of URLs.

This table representation cuts the space taken by the naive representation
(in which we explicitly represent each link by its two end points, each a 32-bit
integer) by 50%. Our description below will focus on the table for the links
from each page; it should be clear that the techniques apply just as well to
the table of links to each page. To further reduce the storage for the table, we
exploit several ideas:

1. Similarity between lists: Many rows of the table have many entries in
common. Thus, if we explicitly represent a prototype row for several
similar rows, the remainder can be succinctly expressed in terms of the
prototypical row.

2. Locality: many links from a page go to “nearby” pages – pages on the
same host, for instance. This suggests that in encoding the destination of
a link, we can often use small integers and thereby save space.

3. We use gap encodings in sorted lists: rather than store the destination of
each link, we store the offset from the previous entry in the row.

We now develop each of these techniques.
In a lexicographic ordering of all URLs, we treat each URL as an alphanu-

meric string and sort these strings. Figure 20.5 shows a segment of this sorted
order. For a true lexicographic sort of web pages, the domain name part of
the URL should be inverted, so that www.stanford.edu becomes edu.stanford.www,
but this is not necessary here since we are mainly concerned with links local
to a single host.

To each URL, we assign its position in this ordering as the unique identi-
fying integer. Figure 20.6 shows an example of such a numbering and the
resulting table. In this example sequence, www.stanford.edu/biology
is assigned the integer 2 since it is second in the sequence.

We next exploit a property that stems from the way most websites are
structured to get similarity and locality. Most websites have a template with
a set of links from each page in the site to a fixed set of pages on the site (such
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1: 1, 2, 4, 8, 16, 32, 64
2: 1, 4, 9, 16, 25, 36, 49, 64
3: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
4: 1, 4, 8, 16, 25, 36, 49, 64

◮ Figure 20.6 A four-row segment of the table of links.

as its copyright notice, terms of use, and so on). In this case, the rows cor-
responding to pages in a website will have many table entries in common.
Moreover, under the lexicographic ordering of URLs, it is very likely that the
pages from a website appear as contiguous rows in the table.

We adopt the following strategy: we walk down the table, encoding each
table row in terms of the seven preceding rows. In the example of Figure 20.6,
we could encode the fourth row as “the same as the row at offset 2 (mean-
ing, two rows earlier in the table), with 9 replaced by 8”. This requires the
specification of the offset, the integer(s) dropped (in this case 9) and the in-
teger(s) added (in this case 8). The use of only the seven preceding rows has
two advantages: (i) the offset can be expressed with only 3 bits; this choice
is optimized empirically (the reason for seven and not eight preceding rows
is the subject of Exercise 20.4) and (ii) fixing the maximum offset to a small
value like seven avoids having to perform an expensive search among many
candidate prototypes in terms of which to express the current row.

What if none of the preceding seven rows is a good prototype for express-
ing the current row? This would happen, for instance, at each boundary
between different websites as we walk down the rows of the table. In this
case we simply express the row as starting from the empty set and “adding
in” each integer in that row. By using gap encodings to store the gaps (rather
than the actual integers) in each row, and encoding these gaps tightly based
on the distribution of their values, we obtain further space reduction. In ex-
periments mentioned in Section 20.5, the series of techniques outlined here
appears to use as few as 3 bits per link, on average – a dramatic reduction
from the 64 required in the naive representation.

While these ideas give us a representation of sizable web graphs that com-
fortably fit in memory, we still need to support connectivity queries. What
is entailed in retrieving from this representation the set of links from a page?
First, we need an index lookup from (a hash of) the URL to its row number
in the table. Next, we need to reconstruct these entries, which may be en-
coded in terms of entries in other rows. This entails following the offsets to
reconstruct these other rows – a process that in principle could lead through
many levels of indirection. In practice however, this does not happen very
often. A heuristic for controlling this can be introduced into the construc-
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tion of the table: when examining the preceding seven rows as candidates
from which to model the current row, we demand a threshold of similarity
between the current row and the candidate prototype. This threshold must
be chosen with care. If the threshold is set too high, we seldom use proto-
types and express many rows afresh. If the threshold is too low, most rows
get expressed in terms of prototypes, so that at query time the reconstruction
of a row leads to many levels of indirection through preceding prototypes.

? Exercise 20.4

We noted that expressing a row in terms of one of seven preceding rows allowed us
to use no more than three bits to specify which of the preceding rows we are using
as prototype. Why seven and not eight preceding rows? (Hint: consider the case when
none of the preceding seven rows is a good prototype.)

Exercise 20.5

We noted that for the scheme in Section 20.4, decoding the links incident on a URL
could result in many levels of indirection. Construct an example in which the number
of levels of indirection grows linearly with the number of URLs.

20.5 References and further reading

The first web crawler appears to be Matthew Gray’s Wanderer, written in the
spring of 1993. The Mercator crawler is due to Najork and Heydon (Najork
and Heydon 2001; 2002); the treatment in this chapter follows their work.
Other classic early descriptions of web crawling include Burner (1997), Brin
and Page (1998), Cho et al. (1998) and the creators of the Webbase system
at Stanford (Hirai et al. 2000). Cho and Garcia-Molina (2002) give a taxon-
omy and comparative study of different modes of communication between
the nodes of a distributed crawler. The Robots Exclusion Protocol standard
is described at http://www.robotstxt.org/wc/exclusion.html. Boldi et al. (2002) and
Shkapenyuk and Suel (2002) provide more recent details of implementing
large-scale distributed web crawlers.

Our discussion of DNS resolution (Section 20.2.2) uses the current conven-
tion for internet addresses, known as IPv4 (for Internet Protocol version 4) –
each IP address is a sequence of four bytes. In the future, the convention for
addresses (collectively known as the internet address space) is likely to use a
new standard known as IPv6 (http://www.ipv6.org/).

Tomasic and Garcia-Molina (1993) and Jeong and Omiecinski (1995) are
key early papers evaluating term partitioning versus document partitioning
for distributed indexes. Document partitioning is found to be superior, at
least when the distribution of terms is skewed, as it typically is in practice.
This result has generally been confirmed in more recent work (MacFarlane
et al. 2000). But the outcome depends on the details of the distributed system;
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at least one thread of work has reached the opposite conclusion (Ribeiro-
Neto and Barbosa 1998, Badue et al. 2001). Sornil (2001) argues for a par-
titioning scheme that is a hybrid between term and document partitioning.
Barroso et al. (2003) describe the distribution methods used at Google. The
first implementation of a connectivity server was described by Bharat et al.
(1998). The scheme discussed in this chapter, currently believed to be the
best published scheme (achieving as few as 3 bits per link for encoding), is
described in a series of papers by Boldi and Vigna (2004a;b).
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21 Link analysis

The analysis of hyperlinks and the graph structure of the Web has been in-
strumental in the development of web search. In this chapter we focus on the
use of hyperlinks for ranking web search results. Such link analysis is one
of many factors considered by web search engines in computing a compos-
ite score for a web page on any given query. We begin by reviewing some
basics of the Web as a graph in Section 21.1, then proceed to the technical
development of the elements of link analysis for ranking.

Link analysis for web search has intellectual antecedents in the field of cita-
tion analysis, aspects of which overlap with an area known as bibliometrics.
These disciplines seek to quantify the influence of scholarly articles by ana-
lyzing the pattern of citations amongst them. Much as citations represent the
conferral of authority from a scholarly article to others, link analysis on the
Web treats hyperlinks from a web page to another as a conferral of authority.
Clearly, not every citation or hyperlink implies such authority conferral; for
this reason, simply measuring the quality of a web page by the number of
in-links (citations from other pages) is not robust enough. For instance, one
may contrive to set up multiple web pages pointing to a target web page,
with the intent of artificially boosting the latter’s tally of in-links. This phe-
nomenon is referred to as link spam. Nevertheless, the phenomenon of ci-
tation is prevalent and dependable enough that it is feasible for web search
engines to derive useful signals for ranking from more sophisticated link
analysis. Link analysis also proves to be a useful indicator of what page(s)
to crawl next while crawling the web; this is done by using link analysis to
guide the priority assignment in the front queues of Chapter 20.

Section 21.1 develops the basic ideas underlying the use of the web graph
in link analysis. Sections 21.2 and 21.3 then develop two distinct methods for
link analysis, PageRank and HITS.
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21.1 The Web as a graph

Recall the notion of the web graph from Section 19.2.1 and particularly Fig-
ure 19.2. Our study of link analysis builds on two intuitions:

1. The anchor text pointing to page B is a good description of page B.

2. The hyperlink from A to B represents an endorsement of page B, by the
creator of page A. This is not always the case; for instance, many links
amongst pages within a single website stem from the user of a common
template. For instance, most corporate websites have a pointer from ev-
ery page to a page containing a copyright notice – this is clearly not an
endorsement. Accordingly, implementations of link analysis algorithms
will typical discount such “internal” links.

21.1.1 Anchor text and the web graph

The following fragment of HTML code from a web page shows a hyperlink
pointing to the home page of the Journal of the ACM:

<a href="http://www.acm.org/jacm/">Journal of the ACM.< /a>

In this case, the link points to the page http://www.acm.org/jacm/ and
the anchor text is Journal of the ACM. Clearly, in this example the anchor is de-
scriptive of the target page. But then the target page (B = http://www.acm.org/jacm/ )
itself contains the same description as well as considerable additional infor-
mation on the journal. So what use is the anchor text?

The Web is full of instances where the page B does not provide an accu-
rate description of itself. In many cases this is a matter of how the publish-
ers of page B choose to present themselves; this is especially common with
corporate web pages, where a web presence is a marketing statement. For
example, at the time of the writing of this book the home page of the IBM
corporation (http://www.ibm.com ) did not contain the term computer any-
where in its HTML code, despite the fact that IBM is widely viewed as the
world’s largest computer maker. Similarly, the HTML code for the home
page of Yahoo! (http://www.yahoo.com ) does not at this time contain the
word portal.

Thus, there is often a gap between the terms in a web page, and how web
users would describe that web page. Consequently, web searchers need not
use the terms in a page to query for it. In addition, many web pages are rich
in graphics and images, and/or embed their text in these images; in such
cases, the HTML parsing performed when crawling will not extract text that
is useful for indexing these pages. The “standard IR” approach to this would
be to use the methods outlined in Chapter 9 and Section 12.4. The insight
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behind anchor text is that such methods can be supplanted by anchor text,
thereby tapping the power of the community of web page authors.

The fact that the anchors of many hyperlinks pointing to http://www.ibm.com
include the word computer can be exploited by web search engines. For in-
stance, the anchor text terms can be included as terms under which to index
the target web page. Thus, the postings for the term computer would include
the document http://www.ibm.com and that for the term portal would in-
clude the document http://www.yahoo.com , using a special indicator to
show that these terms occur as anchor (rather than in-page) text. As with
in-page terms, anchor text terms are generally weighted based on frequency,
with a penalty for terms that occur very often (the most common terms in an-
chor text across the Web are Click and here, using methods very similar to idf).
The actual weighting of terms is determined by machine-learned scoring, as
in Section 15.4.1; current web search engines appear to assign a substantial
weighting to anchor text terms.

The use of anchor text has some interesting side-effects. Searching for big
blue on most web search engines returns the home page of the IBM corpora-
tion as the top hit; this is consistent with the popular nickname that many
people use to refer to IBM. On the other hand, there have been (and con-
tinue to be) many instances where derogatory anchor text such as evil empire
leads to somewhat unexpected results on querying for these terms on web
search engines. This phenomenon has been exploited in orchestrated cam-
paigns against specific sites. Such orchestrated anchor text may be a form
of spamming, since a website can create misleading anchor text pointing to
itself, to boost its ranking on selected query terms. Detecting and combating
such systematic abuse of anchor text is another form of spam detection that
web search engines perform.

The window of text surrounding anchor text (sometimes referred to as ex-
tended anchor text) is often usable in the same manner as anchor text itself;
consider for instance the fragment of web text there is good discussion
of vedic scripture <a>here</a> . This has been considered in a num-
ber of settings and the useful width of this window has been studied; see
Section 21.4 for references.

? Exercise 21.1

Is it always possible to follow directed edges (hyperlinks) in the web graph from any
node (web page) to any other? Why or why not?

Exercise 21.2

Find an instance of misleading anchor-text on the Web.

Exercise 21.3

Given the collection of anchor-text phrases for a web page x, suggest a heuristic for
choosing one term or phrase from this collection that is most descriptive of x.
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◮ Figure 21.1 The random surfer at node A proceeds with probability 1/3 to each
of B, C and D.

Exercise 21.4

Does your heuristic in the previous exercise take into account a single domain D
repeating anchor text for x from multiple pages in D?

21.2 PageRank

We now focus on scoring and ranking measures derived from the link struc-
ture alone. Our first technique for link analysis assigns to every node in
the web graph a numerical score between 0 and 1, known as its PageRank.PAGERANK

The PageRank of a node will depend on the link structure of the web graph.
Given a query, a web search engine computes a composite score for each
web page that combines hundreds of features such as cosine similarity (Sec-
tion 6.3) and term proximity (Section 7.2.2), together with the PageRank score.
This composite score, developed using the methods of Section 15.4.1, is used
to provide a ranked list of results for the query.

Consider a random surfer who begins at a web page (a node of the web
graph) and executes a random walk on the Web as follows. At each time
step, the surfer proceeds from his current page A to a randomly chosen web
page that A hyperlinks to. Figure 21.1 shows the surfer at a node A, out of
which there are three hyperlinks to nodes B, C and D; the surfer proceeds at
the next time step to one of these three nodes, with equal probabilities 1/3.

As the surfer proceeds in this random walk from node to node, he visits
some nodes more often than others; intuitively, these are nodes with many
links coming in from other frequently visited nodes. The idea behind Page-
Rank is that pages visited more often in this walk are more important.

What if the current location of the surfer, the node A, has no out-links?
To address this we introduce an additional operation for our random surfer:
the teleport operation. In the teleport operation the surfer jumps from a nodeTELEPORT

to any other node in the web graph. This could happen because he types
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an address into the URL bar of his browser. The destination of a teleport
operation is modeled as being chosen uniformly at random from all web
pages. In other words, if N is the total number of nodes in the web graph1,
the teleport operation takes the surfer to each node with probability 1/N.
The surfer would also teleport to his present position with probability 1/N.

In assigning a PageRank score to each node of the web graph, we use the
teleport operation in two ways: (1) When at a node with no out-links, the
surfer invokes the teleport operation. (2) At any node that has outgoing links,
the surfer invokes the teleport operation with probability 0 < α < 1 and the
standard random walk (follow an out-link chosen uniformly at random as in
Figure 21.1) with probability 1− α, where α is a fixed parameter chosen in
advance. Typically, α might be 0.1.

In Section 21.2.1, we will use the theory of Markov chains to argue that
when the surfer follows this combined process (random walk plus teleport)
he visits each node v of the web graph a fixed fraction of the time π(v) that
depends on (1) the structure of the web graph and (2) the value of α. We call
this value π(v) the PageRank of v and will show how to compute this value
in Section 21.2.2.

21.2.1 Markov chains

A Markov chain is a discrete-time stochastic process: a process that occurs in
a series of time-steps in each of which a random choice is made. A Markov
chain consists of N states. Each web page will correspond to a state in the
Markov chain we will formulate.

A Markov chain is characterized by an N×N transition probability matrix P
each of whose entries is in the interval [0, 1]; the entries in each row of P add
up to 1. The Markov chain can be in one of the N states at any given time-
step; then, the entry Pij tells us the probability that the state at the next time-
step is j, conditioned on the current state being i. Each entry Pij is known as a
transition probability and depends only on the current state i; this is known
as the Markov property. Thus, by the Markov property,

∀i, j, Pij ∈ [0, 1]

and

∀i,
N

∑
j=1

Pij = 1.(21.1)

A matrix with non-negative entries that satisfies Equation (21.1) is known
as a stochastic matrix. A key property of a stochastic matrix is that it has aSTOCHASTIC MATRIX

principal left eigenvector corresponding to its largest eigenvalue, which is 1.PRINCIPAL LEFT
EIGENVECTOR

1. This is consistent with our usage of N for the number of documents in the collection.
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◮ Figure 21.2 A simple Markov chain with three states; the numbers on the links
indicate the transition probabilities.

In a Markov chain, the probability distribution of next states for a Markov
chain depends only on the current state, and not on how the Markov chain
arrived at the current state. Figure 21.2 shows a simple Markov chain with
three states. From the middle state A, we proceed with (equal) probabilities
of 0.5 to either B or C. From either B or C, we proceed with probability 1 to
A. The transition probability matrix of this Markov chain is then




0 0.5 0.5
1 0 0
1 0 0




A Markov chain’s probability distribution over its states may be viewed as
a probability vector: a vector all of whose entries are in the interval [0, 1], andPROBABILITY VECTOR

the entries add up to 1. An N-dimensional probability vector each of whose
components corresponds to one of the N states of a Markov chain can be
viewed as a probability distribution over its states. For our simple Markov
chain of Figure 21.2, the probability vector would have 3 components that
sum to 1.

We can view a random surfer on the web graph as a Markov chain, with
one state for each web page, and each transition probability representing the
probability of moving from one web page to another. The teleport operation
contributes to these transition probabilities. The adjacency matrix A of the
web graph is defined as follows: if there is a hyperlink from page i to page
j, then Aij = 1, otherwise Aij = 0. We can readily derive the transition
probability matrix P for our Markov chain from the N × N matrix A:

1. If a row of A has no 1’s, then replace each element by 1/N. For all other
rows proceed as follows.

2. Divide each 1 in A by the number of 1’s in its row. Thus, if there is a row
with three 1’s, then each of them is replaced by 1/3.

3. Multiply the resulting matrix by 1− α.
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4. Add α/N to every entry of the resulting matrix, to obtain P.

We can depict the probability distribution of the surfer’s position at any
time by a probability vector ~x. At t = 0 the surfer may begin at a state whose
corresponding entry in ~x is 1 while all others are zero. By definition, the
surfer’s distribution at t = 1 is given by the probability vector ~xP; at t = 2
by (~xP)P = ~xP2, and so on. We will detail this process in Section 21.2.2. We
can thus compute the surfer’s distribution over the states at any time, given
only the initial distribution and the transition probability matrix P.

If a Markov chain is allowed to run for many time steps, each state is vis-
ited at a (different) frequency that depends on the structure of the Markov
chain. In our running analogy, the surfer visits certain web pages (say, pop-
ular news home pages) more often than other pages. We now make this in-
tuition precise, establishing conditions under which such the visit frequency
converges to fixed, steady-state quantity. Following this, we set the Page-
Rank of each node v to this steady-state visit frequency and show how it can
be computed.

Definition: A Markov chain is said to be ergodic if there exists a positiveERGODIC MARKOV
CHAIN integer T0 such that for all pairs of states i, j in the Markov chain, if it is

started at time 0 in state i then for all t > T0, the probability of being in state
j at time t is greater than 0.

For a Markov chain to be ergodic, two technical conditions are required
of its states and the non-zero transition probabilities; these conditions are
known as irreducibility and aperiodicity. Informally, the first ensures that there
is a sequence of transitions of non-zero probability from any state to any
other, while the latter ensures that the states are not partitioned into sets
such that all state transitions occur cyclically from one set to another.

Theorem 21.1. For any ergodic Markov chain, there is a unique steady-state prob-STEADY-STATE

ability vector ~π that is the principal left eigenvector of P, such that if η(i, t) is the
number of visits to state i in t steps, then

lim
t→∞

η(i, t)

t
= π(i),

where π(i) > 0 is the steady-state probability for state i.

It follows from Theorem 21.1 that the random walk with teleporting re-
sults in a unique distribution of steady-state probabilities over the states of
the induced Markov chain. This steady-state probability for a state is the
PageRank of the corresponding web page.
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21.2.2 The PageRank computation

How do we compute PageRank values? Recall the definition of a left eigen-
vector from Equation 18.2; the left eigenvectors of the transition probability
matrix P are N-vectors ~π such that

~π P = λ~π.(21.2)

The N entries in the principal eigenvector ~π are the steady-state proba-
bilities of the random walk with teleporting, and thus the PageRank values
for the corresponding web pages. We may interpret Equation (21.2) as fol-
lows: if ~π is the probability distribution of the surfer across the web pages,
he remains in the steady-state distribution ~π. Given that ~π is the steady-state
distribution, we have that πP = 1π, so 1 is an eigenvalue of P. Thus if we
were to compute the principal left eigenvector of the matrix P — the one with
eigenvalue 1 — we would have computed the PageRank values.

There are many algorithms available for computing left eigenvectors; the
references at the end of Chapter 18 and the present chapter are a guide to
these. We give here a rather elementary method, sometimes known as power
iteration. If ~x is the initial distribution over the states, then the distribution at
time t is ~xPt. As t grows large, we would expect that the distribution ~xPt2

is very similar to the distribution ~xPt+1, since for large t we would expect
the Markov chain to attain its steady state. By Theorem 21.1 this is indepen-
dent of the initial distribution ~x. The power iteration method simulates the
surfer’s walk: begin at a state and run the walk for a large number of steps
t, keeping track of the visit frequencies for each of the states. After a large
number of steps t, these frequencies “settle down” so that the variation in the
computed frequencies is below some predetermined threshold. We declare
these tabulated frequencies to be the PageRank values.

We consider the web graph in Exercise 21.6 with α = 0.5. The transition
probability matrix of the surfer’s walk with teleportation is then

P =




1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6


 .(21.3)

Imagine that the surfer starts in state 1, corresponding to the initial proba-
bility distribution vector ~x0 = (1 0 0). Then, after one step the distribution
is

~x0P =
(

1/6 2/3 1/6
)

= ~x1.(21.4)

2. Note that Pt represents P raised to the tth power, not the transpose of P which is denoted PT.
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~x0 1 0 0
~x1 1/6 2/3 1/6
~x2 1/3 1/3 1/3
~x3 1/4 1/2 1/4
~x4 7/24 5/12 7/24
. . . · · · · · · · · ·
~x 5/18 4/9 5/18

◮ Figure 21.3 The sequence of probability vectors.

After two steps it is

~x1P =
(

1/6 2/3 1/6
)



1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6


 =

(
1/3 1/3 1/3

)
= ~x2.(21.5)

Continuing in this fashion gives a sequence of probability vectors as shown
in Figure 21.3.

Continuing for several steps, we see that the distribution converges to the
steady state of ~x = (5/18 4/9 5/18). In this simple example, we may
directly calculate this steady-state probability distribution by observing the
symmetry of the Markov chain: states 1 and 3 are symmetric, as evident from
the fact that the first and third rows of the transition probability matrix in
Equation (21.3) are identical. Postulating, then, that they both have the same
steady-state probability and denoting this probability by p, we know that the
steady-state distribution is of the form ~π = (p 1− 2p p). Now, using the
identity ~π = ~πP, we solve a simple linear equation to obtain p = 5/18 and
consequently, ~π = (5/18 4/9 5/18).

The PageRank values of pages (and the implicit ordering amongst them)
are independent of any query a user might pose; PageRank is thus a query-
independent measure of the static quality of each web page (recall such static
quality measures from Section 7.1.4). On the other hand, the relative order-
ing of pages should, intuitively, depend on the query being served. For this
reason, search engines use static quality measures such as PageRank as just
one of many factors in scoring a web page on a query. Indeed, the relative
contribution of PageRank to the overall score may again be determined by
machine-learned scoring as in Section 15.4.1.
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◮ Figure 21.4 A small web graph. Arcs are annotated with the word that occurs in
the anchor text of the corresponding link.

✎ Example 21.1: Consider the graph in Figure 21.4. For a teleportation rate of 0.14
its (stochastic) transition probability matrix is:

0.02 0.02 0.88 0.02 0.02 0.02 0.02
0.02 0.45 0.45 0.02 0.02 0.02 0.02
0.31 0.02 0.31 0.31 0.02 0.02 0.02
0.02 0.02 0.02 0.45 0.45 0.02 0.02
0.02 0.02 0.02 0.02 0.02 0.02 0.88
0.02 0.02 0.02 0.02 0.02 0.45 0.45
0.02 0.02 0.02 0.31 0.31 0.02 0.31

The PageRank vector of this matrix is:

~x = (0.05 0.04 0.11 0.25 0.21 0.04 0.31)(21.6)

Observe that in Figure 21.4, q2, q3, q4 and q6 are the nodes with at least two in-links.
Of these, q2 has the lowest PageRank since the random walk tends to drift out of the
top part of the graph – the walker can only return there through teleportation.
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21.2.3 Topic-specific PageRank

Thus far we have discussed the PageRank computation with a teleport op-
eration in which the surfer jumps to a random web page chosen uniformly
at random. We now consider teleporting to a random web page chosen non-
uniformly. In doing so, we are able to derive PageRank values tailored to
particular interests. For instance, a sports aficionado might wish that pages
on sports be ranked higher than non-sports pages. Suppose that web pages
on sports are “near” one another in the web graph. Then, a random surfer
who frequently finds himself on random sports pages is likely (in the course
of the random walk) to spend most of his time at sports pages, so that the
steady-state distribution of sports pages is boosted.

Suppose our random surfer, endowed with a teleport operation as before,
teleports to a random web page on the topic of sports instead of teleporting to a
uniformly chosen random web page. We will not focus on how we collect all
web pages on the topic of sports; in fact, we only need a non-zero subset S of
sports-related web pages, so that the teleport operation is feasible. This may
be obtained, for instance, from a manually built directory of sports pages
such as the open directory project (http://www.dmoz.org/) or that of Yahoo.

Provided the set S of sports-related pages is non-empty, it follows that
there is a non-empty set of web pages Y ⊇ S over which the random walk
has a steady-state distribution; let us denote this sports PageRank distribution
by ~πs. For web pages not in Y, we set the PageRank values to zero. We call
~πs the topic-specific PageRank for sports.TOPIC-SPECIFIC

PAGERANK We do not demand that teleporting takes the random surfer to a uniformly
chosen sports page; the distribution over teleporting targets S could in fact
be arbitrary.

In like manner we can envision topic-specific PageRank distributions for
each of several topics such as science, religion, politics and so on. Each of
these distributions assigns to each web page a PageRank value in the interval
[0, 1). For a user interested in only a single topic from among these topics,
we may invoke the corresponding PageRank distribution when scoring and
ranking search results. This gives us the potential of considering settings in
which the search engine knows what topic a user is interested in. This may
happen because users either explicitly register their interests, or because the
system learns by observing each user’s behavior over time.

But what if a user is known to have a mixture of interests from multiple
topics? For instance, a user may have an interest mixture (or profile) that is
60% sports and 40% politics; can we compute a personalized PageRank for thisPERSONALIZED

PAGERANK user? At first glance, this appears daunting: how could we possibly compute
a different PageRank distribution for each user profile (with, potentially, in-
finitely many possible profiles)? We can in fact address this provided we
assume that an individual’s interests can be well-approximated as a linear
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◮ Figure 21.5 Topic-specific PageRank. In this example we consider a user whose
interests are 60% sports and 40% politics. If the teleportation probability is 10%, this
user is modeled as teleporting 6% to sports pages and 4% to politics pages.

combination of a small number of topic page distributions. A user with this
mixture of interests could teleport as follows: determine first whether to tele-
port to the set S of known sports pages, or to the set of known politics pages.
This choice is made at random, choosing sports pages 60% of the time and
politics pages 40% of the time. Once we choose that a particular teleport step
is to (say) a random sports page, we choose a web page in S uniformly at
random to teleport to. This in turn leads to an ergodic Markov chain with a
steady-state distribution that is personalized to this user’s preferences over
topics (see Exercise 21.16).

While this idea has intuitive appeal, its implementation appears cumber-
some: it seems to demand that for each user, we compute a transition prob-
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ability matrix and compute its steady-state distribution. We are rescued by
the fact that the evolution of the probability distribution over the states of
a Markov chain can be viewed as a linear system. In Exercise 21.16 we will
show that it is not necessary to compute a PageRank vector for every distinct
combination of user interests over topics; the personalized PageRank vector
for any user can be expressed as a linear combination of the underlying topic-
specific PageRanks. For instance, the personalized PageRank vector for the
user whose interests are 60% sports and 40% politics can be computed as

0.6~πs + 0.4~πp,(21.7)

where ~πs and ~πp are the topic-specific PageRank vectors for sports and for
politics, respectively.

? Exercise 21.5

Write down the transition probability matrix for the example in Figure 21.2.

Exercise 21.6

Consider a web graph with three nodes 1, 2 and 3. The links are as follows: 1 →
2, 3→ 2, 2→ 1, 2→ 3. Write down the transition probability matrices for the surfer’s
walk with teleporting, for the following three values of the teleport probability: (a)
α = 0; (b) α = 0.5 and (c) α = 1.

Exercise 21.7

A user of a browser can, in addition to clicking a hyperlink on the page x he is cur-
rently browsing, use the back button to go back to the page from which he arrived at
x. Can such a user of back buttons be modeled as a Markov chain? How would we
model repeated invocations of the back button?

Exercise 21.8

Consider a Markov chain with three states A, B and C, and transition probabilities as
follows. From state A, the next state is B with probability 1. From B, the next state is
either A with probability pA, or state C with probability 1− pA. From C the next state
is A with probability 1. For what values of pA ∈ [0, 1] is this Markov chain ergodic?

Exercise 21.9

Show that for any directed graph, the Markov chain induced by a random walk with
the teleport operation is ergodic.

Exercise 21.10

Show that the PageRank of every page is at least α/N. What does this imply about
the difference in PageRank values (over the various pages) as α becomes close to 1?

Exercise 21.11

For the data in Example 21.1, write a small routine or use a scientific calculator to
compute the PageRank values stated in Equation (21.6).
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Exercise 21.12

Suppose that the web graph is stored on disk as an adjacency list, in such a way that
you may only query for the out-neighbors of pages in the order in which they are
stored. You cannot load the graph in main memory but you may do multiple reads
over the full graph. Write the algorithm for computing the PageRank in this setting.

Exercise 21.13

Recall the sets S and Y introduced near the beginning of Section 21.2.3. How does the
set Y relate to S?

Exercise 21.14

Is the set Y always the set of all web pages? Why or why not?

Exercise 21.15 [⋆ ⋆ ⋆]

Is the sports PageRank of any page in S at least as large as its PageRank?

Exercise 21.16 [⋆ ⋆ ⋆]

Consider a setting where we have two topic-specific PageRank values for each web
page: a sports PageRank ~πs, and a politics PageRank ~πp. Let α be the (common)
teleportation probability used in computing both sets of topic-specific PageRanks.
For q ∈ [0, 1], consider a user whose interest profile is divided between a fraction q in
sports and a fraction 1− q in politics. Show that the user’s personalized PageRank is
the steady-state distribution of a random walk in which – on a teleport step – the walk
teleports to a sports page with probability q and to a politics page with probability
1− q.

Exercise 21.17

Show that the Markov chain corresponding to the walk in Exercise 21.16 is ergodic
and hence the user’s personalized PageRank can be obtained by computing the steady-
state distribution of this Markov chain.

Exercise 21.18

Show that in the steady-state distribution of Exercise 21.17, the steady-state probabil-
ity for any web page i equals qπs(i) + (1− q)πp(i).

21.3 Hubs and Authorities

We now develop a scheme in which, given a query, every web page is as-
signed two scores. One is called its hub score and the other its authority score.HUB SCORE

AUTHORITY SCORE For any query, we compute two ranked lists of results rather than one. The
ranking of one list is induced by the hub scores and that of the other by the
authority scores.

This approach stems from a particular insight into the creation of web
pages, that there are two primary kinds of web pages useful as results for
broad-topic searches. By a broad topic search we mean an informational query
such as "I wish to learn about leukemia". There are authoritative sources of
information on the topic; in this case, the National Cancer Institute’s page on
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leukemia would be such a page. We will call such pages authorities; in the
computation we are about to describe, they are the pages that will emerge
with high authority scores.

On the other hand, there are many pages on the Web that are hand-compiled
lists of links to authoritative web pages on a specific topic. These hub pages
are not in themselves authoritative sources of topic-specific information, but
rather compilations that someone with an interest in the topic has spent time
putting together. The approach we will take, then, is to use these hub pages
to discover the authority pages. In the computation we now develop, these
hub pages are the pages that will emerge with high hub scores.

A good hub page is one that points to many good authorities; a good au-
thority page is one that is pointed to by many good hub pages. We thus
appear to have a circular definition of hubs and authorities; we will turn this
into an iterative computation. Suppose that we have a subset of the web con-
taining good hub and authority pages, together with the hyperlinks amongst
them. We will iteratively compute a hub score and an authority score for ev-
ery web page in this subset, deferring the discussion of how we pick this
subset until Section 21.3.1.

For a web page v in our subset of the web, we use h(v) to denote its hub
score and a(v) its authority score. Initially, we set h(v) = a(v) = 1 for all
nodes v. We also denote by v 7→ y the existence of a hyperlink from v to
y. The core of the iterative algorithm is a pair of updates to the hub and au-
thority scores of all pages given by Equation 21.8, which capture the intuitive
notions that good hubs point to good authorities and that good authorities
are pointed to by good hubs.

h(v) ← ∑
v 7→y

a(y)(21.8)

a(v) ← ∑
y 7→v

h(y).

Thus, the first line of Equation (21.8) sets the hub score of page v to the sum
of the authority scores of the pages it links to. In other words, if v links to
pages with high authority scores, its hub score increases. The second line
plays the reverse role; if page v is linked to by good hubs, its authority score
increases.

What happens as we perform these updates iteratively, recomputing hub
scores, then new authority scores based on the recomputed hub scores, and
so on? Let us recast the equations Equation (21.8) into matrix-vector form.
Let~h and~a denote the vectors of all hub and all authority scores respectively,
for the pages in our subset of the web graph. Let A denote the adjacency
matrix of the subset of the web graph that we are dealing with: A is a square
matrix with one row and one column for each page in the subset. The entry
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Aij is 1 if there is a hyperlink from page i to page j, and 0 otherwise. Then,
we may write Equation (21.8)

~h ← A~a(21.9)

~a ← AT~h,

where AT denotes the transpose of the matrix A. Now the right hand side of
each line of Equation (21.9) is a vector that is the left hand side of the other
line of Equation (21.9). Substituting these into one another, we may rewrite
Equation (21.9) as

~h ← AAT~h(21.10)

~a ← AT A~a.

Now, Equation (21.10) bears an uncanny resemblance to a pair of eigenvector
equations (Section 18.1); indeed, if we replace the← symbols by = symbols
and introduce the (unknown) eigenvalue, the first line of Equation (21.10)
becomes the equation for the eigenvectors of AAT , while the second becomes
the equation for the eigenvectors of AT A:

~h = (1/λh)AAT~h

~a = (1/λa)AT A~a.(21.11)

Here we have used λh to denote the eigenvalue of AAT and λa to denote the
eigenvalue of AT A.

This leads to some key consequences:

1. The iterative updates in Equation (21.8) (or equivalently, Equation (21.9)),
if scaled by the appropriate eigenvalues, are equivalent to the power iter-
ation method for computing the eigenvectors of AAT and AT A. Provided
that the principal eigenvalue of AAT is unique, the iteratively computed
entries of~h and~a settle into unique steady-state values determined by the
entries of A and hence the link structure of the graph.

2. In computing these eigenvector entries, we are not restricted to using the
power iteration method; indeed, we could use any fast method for com-
puting the principal eigenvector of a stochastic matrix.

The resulting computation thus takes the following form:

1. Assemble the target subset of web pages, form the graph induced by their
hyperlinks and compute AAT and AT A.

2. Compute the principal eigenvectors of AAT and AT A to form the vector
of hub scores~h and authority scores~a.
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3. Output the top-scoring hubs and the top-scoring authorities.

This method of link analysis is known as HITS, which is an acronym forHITS

Hyperlink-Induced Topic Search.

✎ Example 21.2: Assuming the query jaguar and double-weighting of links whose
anchors contain the query word, the matrix A for Figure 21.4 is as follows:

0 0 1 0 0 0 0
0 1 1 0 0 0 0
1 0 1 2 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 2 1 0 1

The hub and authority vectors are:

~h = (0.03 0.04 0.33 0.18 0.04 0.04 0.35)

~a = (0.10 0.01 0.12 0.47 0.16 0.01 0.13)

Here, q3 is the main authority – two hubs (q2 and q6) are pointing to it via highly
weighted jaguar links.

Since the iterative updates captured the intuition of good hubs and good
authorities, the high-scoring pages we output would give us good hubs and
authorities from the target subset of web pages. In Section 21.3.1 we describe
the remaining detail: how do we gather a target subset of web pages around
a topic such as leukemia?

21.3.1 Choosing the subset of the Web

In assembling a subset of web pages around a topic such as leukemia, we must
cope with the fact that good authority pages may not contain the specific
query term leukemia. This is especially true, as we noted in Section 21.1.1,
when an authority page uses its web presence to project a certain market-
ing image. For instance, many pages on the IBM website are authoritative
sources of information on computer hardware, even though these pages may
not contain the term computer or hardware. However, a hub compiling com-
puter hardware resources is likely to use these terms and also link to the
relevant pages on the IBM website.

Building on these observations, the following procedure has been sug-
gested for compiling the subset of the Web for which to compute hub and
authority scores.
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1. Given a query (say leukemia), use a text index to get all pages containing
leukemia. Call this the root set of pages.

2. Build the base set of pages, to include the root set as well as any page that
either links to a page in the root set, or is linked to by a page in the root
set.

We then use the base set for computing hub and authority scores. The base
set is constructed in this manner for three reasons:

1. A good authority page may not contain the query text (such as computer
hardware).

2. If the text query manages to capture a good hub page vh in the root set,
then the inclusion of all pages linked to by any page in the root set will
capture all the good authorities linked to by vh in the base set.

3. Conversely, if the text query manages to capture a good authority page
va in the root set, then the inclusion of pages which point to va will bring
other good hubs into the base set. In other words, the “expansion” of
the root set into the base set enriches the common pool of good hubs and
authorities.

Running HITS across a variety of queries reveals some interesting insights
about link analysis. Frequently, the documents that emerge as top hubs and
authorities include languages other than the language of the query. These
pages were presumably drawn into the base set, following the assembly of
the root set. Thus, some elements of cross-language retrieval (where a query
in one language retrieves documents in another) are evident here; interest-
ingly, this cross-language effect resulted purely from link analysis, with no
linguistic translation taking place.

We conclude this section with some notes on implementing this algorithm.
The root set consists of all pages matching the text query; in fact, implemen-
tations (see the references in Section 21.4) suggest that it suffices to use 200 or
so web pages for the root set, rather than all pages matching the text query.
Any algorithm for computing eigenvectors may be used for computing the
hub/authority score vector. In fact, we need not compute the exact values
of these scores; it suffices to know the relative values of the scores so that
we may identify the top hubs and authorities. To this end, it is possible that
a small number of iterations of the power iteration method yields the rela-
tive ordering of the top hubs and authorities. Experiments have suggested
that in practice, about five iterations of Equation (21.8) yield fairly good re-
sults. Moreover, since the link structure of the web graph is fairly sparse
(the average web page links to about ten others), we do not perform these as
matrix-vector products but rather as additive updates as in Equation (21.8).
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◮ Figure 21.6 A sample run of HITS on the query japan elementary schools.

Figure 21.6 shows the results of running HITS on the query japan elemen-
tary schools. The figure shows the top hubs and authorities; each row lists the
title tag from the corresponding HTML page. Because the resulting string
is not necessarily in Latin characters, the resulting print is (in many cases)
a string of gibberish. Each of these corresponds to a web page that does
not use Latin characters, in this case very likely pages in Japanese. There
also appear to be pages in other non-English languages, which seems sur-
prising given that the query string is in English. In fact, this result is em-
blematic of the functioning of HITS – following the assembly of the root set,
the (English) query string is ignored. The base set is likely to contain pages
in other languages, for instance if an English-language hub page links to
the Japanese-language home pages of Japanese elementary schools. Because
the subsequent computation of the top hubs and authorities is entirely link-
based, some of these non-English pages will appear among the top hubs and
authorities.

? Exercise 21.19

If all the hub and authority scores are initialized to 1, what is the hub/authority score
of a node after one iteration?
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Exercise 21.20

How would you interpret the entries of the matrices AAT and AT A? What is the
connection to the co-occurrence matrix CCT in Chapter 18?

Exercise 21.21

What are the principal eigenvalues of AAT and AT A?

d1 d2

d3

◮ Figure 21.7 Web graph for Exercise 21.22.

Exercise 21.22

For the web graph in Figure 21.7, compute PageRank, hub and authority scores for
each of the three pages. Also give the relative ordering of the 3 nodes for each of these
scores, indicating any ties.
PageRank: Assume that at each step of the PageRank random walk, we teleport to a
random page with probability 0.1, with a uniform distribution over which particular
page we teleport to.
Hubs/Authorities: Normalize the hub (authority) scores so that the maximum hub
(authority) score is 1.
Hint 1: Using symmetries to simplify and solving with linear equations might be
easier than using iterative methods.

Hint 2: Provide the relative ordering (indicating any ties) of the three nodes for each
of the three scoring measures.

21.4 References and further reading

Garfield (1955) is seminal in the science of citation analysis. This was built
on by Pinski and Narin (1976) to develop a journal influence weight, whose
definition is remarkably similar to that of the PageRank measure.

The use of anchor text as an aid to searching and ranking stems from the
work of McBryan (1994). Extended anchor-text was implicit in his work, with
systematic experiments reported in Chakrabarti et al. (1998).

Kemeny and Snell (1976) is a classic text on Markov chains. The PageRank
measure was developed in Brin and Page (1998) and in Page et al. (1998).
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A number of methods for the fast computation of PageRank values are sur-
veyed in Berkhin (2005) and in Langville and Meyer (2006); the former also
details how the PageRank eigenvector solution may be viewed as solving a
linear system, leading to one way of solving Exercise 21.16. The effect of the
teleport probability α has been studied by Baeza-Yates et al. (2005) and by
Boldi et al. (2005). Topic-specific PageRank and variants were developed in
Haveliwala (2002), Haveliwala (2003) and in Jeh and Widom (2003). Berkhin
(2006a) develops an alternate view of topic-specific PageRank.

Ng et al. (2001b) suggests that the PageRank score assignment is more ro-
bust than HITS in the sense that scores are less sensitive to small changes in
graph topology. However, it has also been noted that the teleport operation
contributes significantly to PageRank’s robustness in this sense. Both Page-
Rank and HITS can be “spammed” by the orchestrated insertion of links into
the web graph; indeed, the Web is known to have such link farms that col-LINK FARMS

lude to increase the score assigned to certain pages by various link analysis
algorithms.

The HITS algorithm is due to Kleinberg (1999). Chakrabarti et al. (1998) de-
veloped variants that weighted links in the iterative computation based on
the presence of query terms in the pages being linked and compared these
to results from several web search engines. Bharat and Henzinger (1998) fur-
ther developed these and other heuristics, showing that certain combinations
outperformed the basic HITS algorithm. Borodin et al. (2001) provides a sys-
tematic study of several variants of the HITS algorithm. Ng et al. (2001b)
introduces a notion of stability for link analysis, arguing that small changes
to link topology should not lead to significant changes in the ranked list of
results for a query. Numerous other variants of HITS have been developed
by a number of authors, the best know of which is perhaps SALSA (Lempel
and Moran 2000).
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Mihajlovic: List et al. (2005)
Miller: Miller et al. (1999)
Minsky: Minsky and Papert (1988)
Mirrokni: Andoni et al. (2006)
Mitchell: Huang and Mitchell (2006),

McCallum et al. (1998), Mitchell
(1997), Nigam et al. (2006)

Mitra: Buckley et al. (1995), Singhal
et al. (1996a), Singhal et al. (1997)

Mittal: Riezler et al. (2007)
Mitzenmacher: Henzinger et al.

(2000)
Modha: Dhillon and Modha (2001)
Moffat: Anh et al. (2001), Anh and

Moffat (2005), Anh and Moffat
(2006a), Anh and Moffat (2006b),
Anh and Moffat (2006c), Lester
et al. (2005), Moffat and Bell
(1995), Moffat and Stuiver (1996),



Online edition (c)
2009 Cambridge UP

530 Author Index

Moffat and Zobel (1992), Moffat
and Zobel (1996), Moffat and
Zobel (1998), Witten et al. (1999),
Zobel and Moffat (2006), Zobel
et al. (1995)

Monz: Hollink et al. (2004)
Mooers: Mooers (1961), Mooers

(1950)
Mooney: Basu et al. (2004)
Moore: Brill and Moore (2000), Pelleg

and Moore (1999), Pelleg and
Moore (2000), Toutanova and
Moore (2002)

Moran: Lempel and Moran (2000)
Moricz: Silverstein et al. (1999)
Moschitti: Moschitti (2003), Moschitti

and Basili (2004)
Motwani: Hopcroft et al. (2000), Page

et al. (1998)
Moulinier: Jackson and Moulinier

(2002)
Moura: de Moura et al. (2000),

Ribeiro-Neto et al. (1999)
Mulhem: Chiaramella et al. (1996)
Murata: Murata et al. (2000)
Muresan: Muresan and Harper (2004)
Murtagh: Murtagh (1983)
Murty: Jain et al. (1999)
Myaeng: Kishida et al. (2005)
Najork: Henzinger et al. (2000),

Najork and Heydon (2001),
Najork and Heydon (2002)

Narin: Pinski and Narin (1976)
Navarro: Brisaboa et al. (2007),

de Moura et al. (2000), Navarro
and Baeza-Yates (1997)

Nenkova: McKeown et al. (2002)
Nes: Zukowski et al. (2006)
Neubert: Ribeiro-Neto et al. (1999)
Newsam: Newsam et al. (2001)
Ng: Blei et al. (2003), McCallum et al.

(1998), Ng and Jordan (2001), Ng
et al. (2001a), Ng et al. (2001b)

Nicholson: Hughes et al. (2006)
Niculescu-Mizil: Caruana and

Niculescu-Mizil (2006)

Nie: Cao et al. (2005), Gao et al. (2004)
Nigam: McCallum and Nigam (1998),

Nigam et al. (2006)
Nilan: Schamber et al. (1990)
Nowak: Castro et al. (2004)
Ntoulas: Ntoulas and Cho (2007)
O’Brien: Berry et al. (1995)
O’Keefe: O’Keefe and Trotman (2004)
Oard: Oard and Dorr (1996)
Obermayer: Herbrich et al. (2000)
Ocalan: Altingövde et al. (2007)
Ogilvie: Ogilvie and Callan (2005)
Oles: Zhang and Oles (2001)
Olson: Hersh et al. (2000a), Hersh

et al. (2001), Hersh et al. (2000b)
Omiecinski: Jeong and Omiecinski

(1995)
Oostendorp: van Zwol et al. (2006)
Orlando: Silvestri et al. (2004)
Osborne: Baldridge and Osborne

(2004)
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multinomial distribution, 241
multinomial model, 263, 270
multinomial Naive Bayes, 258
multinomial NB, see multinomial

Naive Bayes
multivalue classification, 306
multivariate Bernoulli model, 263
mutual information, 272, 358

Naive Bayes assumption, 224
named entity tagging, 195, 339
National Institute of Standards and

Technology, 153
natural language processing, xxxiv,

33, 171, 217, 249, 372
navigational queries, 432
NDCG, 163
nested elements, 203
NEXI, 200
next word index, 44
nibble, 98
NLP, see natural language processing
NMI, 358
noise document, 303
noise feature, 271
nonlinear classifier, 305

nonlinear problem, 305
normal vector, 293
normalized discounted cumulative

gain, 163
normalized mutual information, 358
novelty detection, 395
NTCIR, 154, 174

objective function, 354, 360
odds, 221
odds ratio, 225
Okapi weighting, 232
one-of classification, 257, 284, 306
optimal classifier, 270, 310
optimal clustering, 393
optimal learning method, 310
ordinal regression, 344
out-links, 425
outlier, 363
overfitting, 271, 312

PageRank, 464
paid inclusion, 428
parameter tuning, 153, 314, 315, 348
parameter tying, 340
parameter-free compression, 100
parameterized compression, 106
parametric index, 110
parametric search, 197
parser, 75
partition rule, 220
partitional clustering, 355
passage retrieval, 217
patent databases, 195
perceptron algorithm, 286, 315
performance, 280
permuterm index, 53
personalized PageRank, 471
phrase index, 40
phrase queries, 39, 47
phrase search, 15
pivoted document length

normalization, 129
pointwise mutual information, 286
polychotomous, 306
polytomous classification, 306
polytope, 298
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pooling, 164, 174
pornography filtering, 338
Porter stemmer, 33
positional independence, 267
positional index, 41
posterior probability, 220
posting, 6, 7, 71, 86
postings list, 6
power law, 89, 426
precision, 5, 155
precision at k, 161
precision-recall curve, 158
prefix-free code, 100
principal direction divisive

partitioning, 400
principal left eigenvector, 465
prior probability, 220
Probability Ranking Principle, 221
probability vector, 466
prototype, 290
proximity operator, 14
proximity weighting, 145
pseudo relevance feedback, 187
pseudocounts, 226
pull model, 314
purity, 356
push model, 314

Quadratic Programming, 324
query, 5

free text, 14, 16, 117
simple conjunctive, 10

query expansion, 189
query likelihood model, 242
query optimization, 11
query-by-example, 201, 249

R-precision, 161, 174
Rand index, 359

adjusted, 373
random variable, 220
random variable C, 268
random variable U, 266
random variable X, 266
rank, 403
Ranked Boolean retrieval, 112
ranked retrieval, 81, 107

model, 14
ranking SVM, 345
recall, 5, 155
reduce phase, 75
reduced SVD, 409, 412
regression, 344
regular expressions, 3, 18
regularization, 328
relational database, 195, 214
relative frequency, 226
relevance, 5, 152
relevance feedback, 178
residual sum of squares, 360
results snippets, 146
retrieval model

Boolean, 4
Retrieval Status Value, 225
retrieval systems, 81
Reuters-21578, 154
Reuters-RCV1, 69, 154
RF, 178
Robots Exclusion Protocol, 447
ROC curve, 162
Rocchio algorithm, 181
Rocchio classification, 292
routing, 253, 314
RSS, 360
rule of 30, 86
rules in text classification, 255

Scatter-Gather, 351
schema, 199
schema diversity, 204
schema heterogeneity, 204
search advertising, 430
search engine marketing, 431
Search Engine Optimizers, 429
search result clustering, 351
search results, 351
security, 81
seed, 361
seek time, 68
segment file, 75
semi-supervised learning, 336
semistructured query, 197
semistructured retrieval, 2, 197
sensitivity, 162
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sentiment detection, 254
sequence model, 267

shingling, 438

single-label classification, 306
single-link clustering, 382

single-linkage clustering, see
single-link clustering

single-pass in-memory indexing, 73

singleton, 378
singleton cluster, 363
singular value decomposition, 407

skip list, 36, 46
slack variables, 327

SMART, 182
smoothing, 127, 226

add α, 226
add 1

2 , 232
add 1

2 , 226–229, 262
Bayesian prior, 226, 228, 245

linear interpolation, 245

snippet, 170
soft assignment, 350

soft clustering, 350, 355, 377
sorting

in index construction, 7
soundex, 63

spam, 338, 427

email, 254
web, 254

sparseness, 241, 244, 260

specificity, 162

spectral clustering, 400
speech recognition, 240
spelling correction, 147, 240, 242
spider, 443

spider traps, 433
SPIMI, 73

splits, 75

sponsored search, 430

standing query, 253
static quality scores, 138

static web pages, 424

statistical significance, 276
statistical text classification, 255

steady-state, 467, 468
stemming, 32, 46

stochastic matrix, 465
stop words, 117
stop list, 27

stop words, 117
stop words, 23, 27, 45, 127
structural SVM, 345
structural SVMs, 330
structural term, 207
structured document retrieval

principle, 201
structured query, 197
structured retrieval, 195, 197
summarization, 400
summary

dynamic, 171
static, 171

supervised learning, 256
support vector, 320
support vector machine, 319, 346

multiclass, 330
SVD, 373, 400, 408
SVM, see support vector machine
symmetric diagonal decomposition,

407, 408
synonymy, 177

teleport, 464
term, 3, 19, 22
term frequency, 16, 117
term normalization, 28
term partitioning, 454
term-at-a-time, 125, 140
term-document matrix, 123
term-partitioned index, 74
termID, 69
test data, 256
test set, 256, 283
text categorization, 253
text classification, 253
text summarization, 171
text-centric XML, 214
tf, see term frequency
tf-idf, 119
tiered indexes, 143
token, 19, 22
token normalization, 28
top docs, 149
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top-down clustering, 395
topic, 153, 253

in XML retrieval, 211
topic classification, 253
topic spotting, 253
topic-specific PageRank, 471
topical relevance, 212
training set, 256, 283
transactional query, 433
transductive SVMs, 336
translation model, 251
TREC, 153, 314
trec_eval, 174
truecasing, 30, 46
truncated SVD, 409, 412, 415
two-class classifier, 279
type, 22

unary code, 99
unigram language model, 240
union-find algorithm, 395, 440
universal code, 100
unsupervised learning, 349
URL, 422
URL normalization, 447
utility measure, 286

variable byte encoding, 96
variance, 311
vector space model, 120
vertical search engine, 254
vocabulary, 6
Voronoi tessellation, 297

Ward’s method, 399
web crawler, 443
weight vector, 322
weighted zone scoring, 110
Wikipedia, 211
wildcard query, 3, 49, 52
within-point scatter, 375
word segmentation, 25

XML, 20, 196
XML attribute, 197
XML DOM, 197
XML DTD, 199

XML element, 197
XML fragment, 216
XML Schema, 199
XML tag, 197
XPath, 199

Zipf’s law, 89
zone, 110, 337, 339, 340
zone index, 110
zone search, 197
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