Programming Paradigms
CT331 Week 8 Lecture 1

Finlay Smith

Finlay.smith@universityofgalway.ie

Recap

e Functional Programming cont. e Recursion
o (list..) o Well defined recursion:
o (append..) m Base Case
o (if expr expr expr) m Recursive Case
o (cond expr expr expr) o Single vs mutual recursion.

o General approach to recursive

problem solving

Tail Recursion

Advantages of Recursion

e Clearer, simpler, shorter solutions that may be easier to understand
e Program directly reflects the algorithm
e Use with recursive data structures (such as Trees)

e Multiple activations of a function; efficiency considerations

Efficiency Considerations

e Overheads associated with a function call;

o Space on call stack

o Space for parameters and local variables

e Time to allocate and release local memory;

o push and pop from stack

Efficiency Considerations

#lang racket

(define (fact num)
(cond
[(= num 1) 1]
[else (% num (fact (- num 1)))]

)
|

Need to keep space for 1 parameter: num
(fact 20) will activate 20 times.

=> (fact 20) will need space for 20 parameters

Efficiency Considerations

Problem:

Multiple activations of a function

Solution:

Efficiency Considerations

Problem:
Multiple activations of a function

Solution:

Try rewrite so that you don't have multiple activations of a function and thus

can have more efficient solutions.

Tail Recursion

Value of recursive call provides the complete result of the original call. No

waiting activations.

In Scheme: if last action of a function is another function call, then the new

function call replaces the old one on the call stack. (So no stack growth)

Tail Recursive Factorial

(define (tail_fact num) L Helper function
(tfact num 1))

(define (tfact num total) 5
(cond Tail Recursive

[(= 1 num) totall — function.
[else (tfact (- num 1) (% num total))l))

Note: Helper function serves to initialize total to

Tail Recursive Factorial

Recursive version Tail Recursive version

#lang racket (define (tail_fact num)

(tfact num 1))

(define (fact|num)

(cond _
[(= num 1) 1] (define (tfact|numltotal
lelse (*[num|{fact (- num 1))) (cond
)) [(= 1 num) totall
| X [else (tfact (-[num]1) (x|num|[total))]))

Function is called with unknown values.

_ _ Function is called with known values.
le. Cannot multiply until fact returns a value

le. Is not waiting for any other functions to return.

Sum versus Running Sum

Recursive sum function, adds
up the values in a list.

Each activation of the function
waits for “deeper” activations to
return before calculating.

Stack must hold all values in
order to return sum.

(sum *(12 3 47)
(+ 1 (sum ’(2 3 4)))

I— (sum *(2 3 49)

(+2 (sum (3 4)])

I_I:SUIH’I:E n
(+ 3 (sum *(41))
-
(+ 4 (sum "))
(sum ()
0
(+40
—_— 4
+3 4
e

Sum versus Running Sum

Tail Recursive sum function, (smim (1 23 47)
adds up the values in a list. (running- sum *(1 2 3 4 0)

. . . I— (running - sum '(2 3 43 1)
Each activation of the function

adds car of list tototal (ronning-sum (3 41 3)
I— (roning- s " (47 §)

No activations waiting on any L troing-sum () 10
other functions. 10

Stack does not need to hold
any values.

10

Advantages and Disadvantages of Tail Recursion

e Tail recursive procedures only require enough memory space for one active
invocation at a time. </
e Each invocation disappears upon calling the next.
o Therefore, more space efficient than other kinds of recursive procedures.
4
e Often more difficult to create and read than their non tail-recursive

counterparts. X

Advantages and Disadvantages of Tail Recursion

e If infinite loops are required, then tail recursive procedures are excellent. </
e However, if not required, then recursion will not stop due to lack of memory
as would happen with non tail-recursive procedures. X

e Unless you write a helper function, then have to remember the extra value(s)

to pass to function. X

General Approach to solving problems recursively:

1. What is the base case?

2. What should the answer be when we are at the base case?

3. How do you reduce to get to this base case ? (often taking the cdr of a list)
4

What other work needs to be done for each function call?

a. (e.g. creating a new list, etc.)?
5. How can these steps be put together?

6. Is this tail recursive?

Example problem

The built-in function reverse reverses the elements in a list. Write your own
version of reverse: write both a tail and non-tail recursive function, e.g.,

(reverse list ‘(a b c d))
(d ¢ b a)

(reverse list ‘((a b) ¢ (de f) g))
(g (d e f) ¢ (a b))

Non tail recursive

(define (reverse_list Ist)
(if (empty? Ist)
()

(append (reverse_list (cdr Ist)) (list (car Ist)))
)

)

Tail recursive

(define (rev_list Ist)
(rev_list_tr Ist '())

)

(define (rev_list_tr Ist res)
(if (empty? Ist)
res
(rev_list_tr (cdr Ist) (append (list (car Ist)) res))

)

