CT326 Programming III

S
AT OLLSCOILNAGAILLIMHE
flnl’-' UNIVERSITY OF GALWAY
twh

vav -

©

Obijectives for today

- Understand what streams are and their relationship to
collections

- lllustrate examples of using some stream operations from the
Stream API

- Distinguish between intermediate and terminal stream
operations

S
VAR OLLSCOILNAGAILLIMHE
& UNIVERSITY OF GALWAY

Stream Processing

. Introduced in Java 8

- A stream is a sequence of data items that are conceptually
produced one at a time
- Items from a stream can be read or written one by one
- Can be combined e.g., an output stream of one program can become the
input stream of another

o Unlx analogy catfile1file2 | tr"[A-Z]" "[a-z]" | sort | tail-3

Urma et al. Java 8 in action

S
AT OLLSCOILNAGAILLIMHE
flnl’-' UNIVERSITY OF GALWAY
twh

O —-_—

©

Streams AP

- java.util.stream

- Stream<T> is a sequence of items of type T

- Allows for programming at a higher level of abstraction
(streams rather than items)

- Contains many methods that can be chained to make a
pipeline
- Includes parallelism almost for free

- Processing streams on multiple CPUs concurrently
- Don’t have to deal with Threads

S

AT OLLSCOILNAGAILLIMHE
3|ﬂ|73 UNIVERSITY OF GALWAY
twh

O -

Limitations of Collections

- Operations like grouping by category, or searching involve
reimplementing lots of iterators

- Take an SQL query as a counter example:
- SELECT name FROM dishes WHERE calorie < 400
- No need to worry about implementing the filtering based on attribute
 Using iterator and accumulator
- Streams provide similar functionality for Collections.

- Can manipulate collections of data in a declarative way (i.e., expressing
query rather than implementing approach)

S
NVA T OLLSCOILNAGAILLIMHE
l_""!.ll’; UNIVERSITY OF GALWAY

* L wh

Declarative, composable, and parallelizable

- Declarative code — specify what you want to achieve

- Chain together building-block operations to create a
processing pipeline

- Can be tailored using different lambda expressions

- Don’t have to worry about threads and locks for multi-threaded
processing

lambda lambda lambda

5 . i

Y
[
I
t
{
e
=

'
U
c
e

A\

\J

S
NVA T OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

A
-slmgl -

* L wh

Streams are. ..

- sequences of elements...

- an interface to a sequenced set of values of a specific type (like
collections)

. ...from a source...

- Consume from a data-providing source (e.g. collections) preserving the
ordering

- ...that supports data processing operations
- E.g., filter, map, reduce, find, match, sort
- Sequential or in parallel

S
NVA T OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

A
-slmgl -

* L wh

Stream characteristics

- Pipelining
- Many stream operations return streams themselves

- Operations can be chained to form a larger pipeline to form a database-
like query

 Internal iteration
- |teration occurs behind the scenes

OLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

List<String> threeHighCalorieDishNames = menu.stream()
.filter((d) —> d.getCalories() > 300)
.map(Dish::getName)
limit(3)
.collect(foList());
System.out.println(threeHighCalorieDishNames);

Method reference operator
» <Class name>::<method name>
« Sameasd -> d.getName ()

QOLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

Menu stream

Stream<Dish>

filtexr(d -» d.getCalories() > 300)

...

map {Dish: :get.name)

Stream<String>

limit(3)

Stream<String>

..

collect (toList())

List<String>

S
NA T OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

- slmgls -

* L wh

Streams vs. Collections

- Interfaces to data structures representing sequenced set of values of
a particular type
- An analogy: Consider watching a pre-recorded football match
(Collection) compared to streaming it live over the web (Stream)
- The latter needs only download and buffer a few frames in advance

- Collections represented completely in memory
- Can be manipulated (add, remove)

- Streams are conceptually fixed data structures (can’'t add or remove
from them)

- Elements are computed on demand

- User only selects the values they require; values computed as and when
required (recall Producer-Consumer)

- Streams are lazily (just in time) constructed; Collections are eagerly
constructed

S l\, >
I OLLSCOILNAGAILLIMHE
& UNIVERSITY oF GALWAY

Stream iteration

- Like iterators, streams are traversable only once
- A stream that has been completely traversed is said to be consumed

- Attempting to traverse a consumed stream will result in an
IllegalStateException being thrown

- Unlike collections which require external iteration...

Explicitly iterate the list

List<String> names = new ArrayList<>(); p ol
for (Dish d: menu) { g—d e sequentia Iy
names.add(d.getName()) ; <

| Extract the name and add
| it to an accumulator.

. ...8treams use internal iteration

List<String> names menu.stream Parameterize map with the
.map (Dish: :getName < getName method to extract

Start executing the pipeline of i .collect (toList()); the name of a dish.

operations; no iteration!

S
AT OLLSCOILNAGAILLIMHE
'5';‘3.'7; UNIVERSITY OF GALWAY

* L wh

java.util.Stream operations

- Intermediate operations are those which can be connected
together to form a pipeline

- Terminal operations cause the pipeline to be executed and
closes it

OLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

java.util.Stream operations

Get a stream from

; : ‘ the list of dishes.
List<String> names = menu.stream|)
.tlltexfid -> d.'get?alorlesu > 300) < Int liate
.mép (Dish: :getName) <t operation.
C the .d1imic(3)
e inutom:ll.t’i-t > .collect (toList()); Intermediate Intermediate
lambda lambda integer
menu —{ filter > map » limit
l g I l I
I
Intermediate Terminal

operations operation

LD

AT OLLSCOILNAGAILLIMHE
3|ﬂ|7 UNIVERSITY OF GALWAY
twh

O _——

Intermediate operations

- Return another stream as the return type

- Allows operations to be combined to form a query

- Don’t perform any processing until terminal operation invoked
on pipeline (i.e, lazy)
- Intermediate operations can usually be merged and processed into single
pass by the terminal operation (/oop fusion)

- Operations include filter and sorted

S
NVA T OLLSCOILNAGAILLIMHE
':'|N|7.' UNIVERSITY OF GALWAY
Lwh

vav -

©

Terminal operations

- Produce a result from a pipeline
- Result is a non-stream value like a List, Integer, or even void

S
NVA T OLLSCOILNAGAILLIMHE
':'|ﬂ|='.' UNIVERSITY OF GALWAY
Lw’h

O —-_—

¢

What's this code doing?

- Which are the intermediate and the terminal operators?

long count = menu.stream()
filter(d -> d.getCalories() > 300)
.distinct()
Jimit(3)

.count();

S
AR OLLSCOILNAGAILLIMME
'5';‘3.'7; UNIVERSITY OF GALWAY

4

Lwh

Working with streams involves:

- A data source (e.g., a Collection) to perform a query on
- A chain of intermediate operations that form a stream pipeline

- A terminal operation that executes the stream pipeline and
produces a result

P OLLSCOILNAGAILLIMHE
U2 [UNIVERSITY OF GALWAY

Intermediate operations

Operation Type Return type | Argument of the | Function
operation descriptor

filter Intermediate Stream<T> Predicate<T> T -> boolean
map Intermediate Stream<R> Function<T,R> T->R

limit Intermediate Stream<T>

sorted Intermediate Stream<T> Comparator<T> (T,T) -> int

distinct Intermediate Stream<T>

P OLLSCOILNAGAILLIMHE
.1 [UNIVERSITY OF GALWAY

Terminal operations

forEach Terminal Consumes each element from a stream and applies a
lambda to each of them. The operation returns void.

count Terminal Returns the number of elements in a stream. The operation
returns a long.

collect Terminal Reduces the stream to create a collection such as a List, a
Map, or even an Integer.

S
VAR OLLSCOILNAGAILLIMHE
& UNIVERSITY OF GALWAY

Summary

- A stream is a sequence of elements from a sources that
supports data processing

- Streams make use of internal iteration and are computed on
demand

- Operations can be intermediate (return a stream; can be

chained) or terminal (return a non-stream value; process the
pipeline)

