
S T R E A M P R O C E S S I N G I

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives for today
• Understand what streams are and their relationship to

collections
• Illustrate examples of using some stream operations from the

Stream API
• Distinguish between intermediate and terminal stream

operations

Stream Processing
• Introduced in Java 8
• A stream is a sequence of data items that are conceptually

produced one at a time
• Items from a stream can be read or written one by one
• Can be combined e.g., an output stream of one program can become the

input stream of another
• Unix analogy:

Urma et al. Java 8 in action

Streams API
• java.util.stream
• Stream<T> is a sequence of items of type T
• Allows for programming at a higher level of abstraction

(streams rather than items)
• Contains many methods that can be chained to make a

pipeline
• Includes parallelism almost for free
• Processing streams on multiple CPUs concurrently
• Don’t have to deal with Threads

Limitations of Collections
• Operations like grouping by category, or searching involve

reimplementing lots of iterators
• Take an SQL query as a counter example:
• SELECT name FROM dishes WHERE calorie < 400
• No need to worry about implementing the filtering based on attribute

• Using iterator and accumulator

• Streams provide similar functionality for Collections.
• Can manipulate collections of data in a declarative way (i.e., expressing

query rather than implementing approach)

Declarative, composable, and parallelizable
• Declarative code – specify what you want to achieve
• Chain together building-block operations to create a

processing pipeline
• Can be tailored using different lambda expressions
• Don’t have to worry about threads and locks for multi-threaded

processing

Streams are…
• sequences of elements…
• an interface to a sequenced set of values of a specific type (like

collections)
• …from a source…
• Consume from a data-providing source (e.g. collections) preserving the

ordering
• …that supports data processing operations
• E.g., filter, map, reduce, find, match, sort
• Sequential or in parallel

Stream characteristics
• Pipelining
• Many stream operations return streams themselves
• Operations can be chained to form a larger pipeline to form a database-

like query
• Internal iteration
• Iteration occurs behind the scenes

Method reference operator
• <Class name>::<method name>
• Same as d -> d.getName()

Streams vs. Collections
• Interfaces to data structures representing sequenced set of values of

a particular type
• An analogy: Consider watching a pre-recorded football match

(Collection) compared to streaming it live over the web (Stream)
• The latter needs only download and buffer a few frames in advance

• Collections represented completely in memory
• Can be manipulated (add, remove)

• Streams are conceptually fixed data structures (can’t add or remove
from them)
• Elements are computed on demand
• User only selects the values they require; values computed as and when

required (recall Producer-Consumer)
• Streams are lazily (just in time) constructed; Collections are eagerly

constructed

Stream iteration
• Like iterators, streams are traversable only once
• A stream that has been completely traversed is said to be consumed
• Attempting to traverse a consumed stream will result in an
IllegalStateException being thrown

• Unlike collections which require external iteration...

• …streams use internal iteration

java.util.Stream operations
• Intermediate operations are those which can be connected

together to form a pipeline
• Terminal operations cause the pipeline to be executed and

closes it

java.util.Stream operations

Intermediate operations
• Return another stream as the return type
• Allows operations to be combined to form a query
• Don’t perform any processing until terminal operation invoked

on pipeline (i.e, lazy)
• Intermediate operations can usually be merged and processed into single

pass by the terminal operation (loop fusion)
• Operations include filter and sorted

Terminal operations
• Produce a result from a pipeline
• Result is a non-stream value like a List, Integer, or even void

What’s this code doing?
• Which are the intermediate and the terminal operators?

Working with streams involves:
• A data source (e.g., a Collection) to perform a query on
• A chain of intermediate operations that form a stream pipeline
• A terminal operation that executes the stream pipeline and

produces a result

Intermediate operations
Operation Type Return type Argument of the

operation
Function
descriptor

filter Intermediate Stream<T> Predicate<T> T -> boolean
map Intermediate Stream<R> Function<T,R> T -> R
limit Intermediate Stream<T>
sorted Intermediate Stream<T> Comparator<T> (T,T) -> int
distinct Intermediate Stream<T>

Terminal operations
Operation Type Purpose
forEach Terminal Consumes each element from a stream and applies a

lambda to each of them. The operation returns void.
count Terminal Returns the number of elements in a stream. The operation

returns a long.
collect Terminal Reduces the stream to create a collection such as a List, a

Map, or even an Integer.

Summary
• A stream is a sequence of elements from a sources that

supports data processing
• Streams make use of internal iteration and are computed on

demand
• Operations can be intermediate (return a stream; can be

chained) or terminal (return a non-stream value; process the
pipeline)

