
CT420 REAL-TIME SYSTEMS

WCET ANALYSIS

Dr. Michael Schukat

Lecture Overview
2

 This slide deck provides an overview of

methodologies to estimate the Worst-Case

Execution Time (WCET) of a task or function using

 empirical evidence (empirical WCET analysis)

 analytical methods (control flow graph-based WCET

analysis)

Recall: CE and Task Execution Times

 Before we can determine
whether or not a
scheduling algorithm will
allow all periodic /
sporadic tasks to satisfy
their deadlines, we must
be aware of their
execution time

 Principal question: How
do we determine the
(worst case) execution
times of tasks?

3

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

Estimating Worst-Case Execution Times
4

 Many tasks exhibit non-uniform run times, e.g.:

 A task may inspect an environmental condition by simply recording
some data; however, occasionally, the task may have to react to a
situation that has been observed, that takes up additional CPU time

 Thus, we must estimate for each task the worst-case execution
time (WCET) for each task and determine whether or not all
deadlines can still be met under such circumstances

 This can be done via

 an analysis of the source code (CFG-based WCET analysis), or

 an estimation from empirical evidence (empirical WCET analysis)

 The goal of WCET analysis is to generate a safe (i.e. no
underestimation) and tight (i.e. small overestimation) estimate of
the worst-case execution time of a program (or program
fragment)

Empirical WCET Analysis
5

• To perform such a WCET analysis, a multitude of measurements with different task inputs and

task states are done

• To get meaningful results,

• the program execution must be uninterrupted (no pre-emptions or interrupts)

• there must be no interfering background activities, such as garbage collection, blocking,

synchronisation, or inter-task communication

Example empirical WCET Analysis

Example 1

int a, b, z, t;

while (1) {

 a = rand();

 b = rand();

 t = 0;

 reset_timer();

 start_timer();

 z = Voter(a, b);

 stop_timer();

 t = read_timer();

 store_timer_content(t);

}

Example 2

int a, t;

while (1) {

 reset_timer();

 t = 0;

 start_timer();

 a = ReadTempSensorA();

 stop_timer();

 t = read_timer();

 store_timer_content(t);

}

7

Empirical WCET Analysis in Practice

• Execute tests (with different inputs and states), store execution times (store_timer_content() in

previous example), quantise determined execution times (e.g., 1ms bin width), plot a histogram

for visualisation of results, and determine WCET, possibly also BCET and ACET

• Note: Light bars represent obtained results, black bars represent a (hypothetical) exhaustive test

Limitations of empirical WCET Analysis

 Measuring all different execution traces of a real size

program is intractable in practice

 e.g., even a mid-size task may have millions of different

paths

 Selected task inputs and task states may fail to trigger

the longest execution trace

 Rare execution scenarios may be missed (see example

on slide 4)

9

CFG-based WCET Analysis
10

 For hard RTS we can’t effort to miss only a single deadline, so
we need to make sure to capture a task’s WCET

 Starting point is to implement tasks with a low complexity

 i.e. limit the number of nested loops, if-then-else statements, etc.

 Software testing tools like Cobertura (a Java tool) allow
measuring method complexity

 Subsequently, flow analysis techniques using control flow
graphs (CFG) are used to identify possible ways a program
can execute

 These are combined with the execution times of programme
blocks

 Both used in tandem allow the calculation of a task’s WCET

Steps of a CFG-based WCET Analysis

11

Create the CFG

 Draw nodes for each basic block of code

 Connect nodes with directed edges to represent control flow (including if
statements and loops)

Annotate execution times

 Annotate each node with the execution time of the corresponding basic
block

Identify possible paths

 Traverse the graph to identify all possible paths from the entry node to the
exit node; incorporate maximum number of loop iterations

 Calculate the total execution time for each path by summing up the
execution times of the nodes along that path

Determine WCET

 The WCET is the maximum execution time among all possible paths in the
CFG

Example for a CFG-based WCET

Analysis
for (…) { // A

 if (…) { // B

 … // C

 }

 else {

 … // D

 }

 if (…) { // E

 … // F

 }

 else {

 … // G

 }

 … // H

}

Acquiring Execution Times of Building

Blocks: From C to Assembly Language

 Each instruction requires a set amount of CPU cycles for its
execution (CPU spec will tell)

 CPU cycle length is derived from a CPU’s clock rate

 E.g.

 4 MHz CPU clock ➔ 4 x 10-6 [s] cycle length (4 microseconds)

 An instruction that requires 10 CPU cycles has an execution time of 4 x
10-5 [s] (40 microseconds)

Pitfalls when calculating Execution

Paths
14

Recall: Two’s Complement Integer

Representation
15

 C and other programming

languages do not check for

numeric (signed and

unsigned integer) overflows

 E.g., with 4-bit signed int

“7 + 1” =

“0111 + 0001” =

“1000” = -8

WCET and SOTA CPUs

 Modern processors increase performance by using caches, pipelines, and

branch prediction

 These features make WCET computation difficult, as execution times of

instructions vary widely

 Best case - everything goes smoothly: no cache miss, operands ready, needed
resources free, branch correctly predicted

 Worst case - everything goes wrong: all loads miss the cache, resources needed
are occupied, operands are not ready

◼ Span may be several hundred cycles

 This makes it very problematic to use such CPUs for empirical WCET

analysis

 In CFG-based WCET analysis, performance optimising features are
simply ignored

Summary
19

 The determination of reliable WCET estimates is
fundamental for hard, and even soft RTS

 WCET analysis can be done via empirical methods
or flow analysis, with both options having their pros,
cons, and limitations

 A good starting point, particularly when dealing
with hard RTS, is the implementation of tasks with
low cyclomatic complexity, that are executed on
CPU / hardware with constant instruction execution
times, and with no timing accidents

	Slide 1: CT420 Real-Time Systems WCET Analysis
	Slide 2: Lecture Overview
	Slide 3: Recall: CE and Task Execution Times
	Slide 4: Estimating Worst-Case Execution Times
	Slide 5: Empirical WCET Analysis
	Slide 7: Example empirical WCET Analysis
	Slide 8: Empirical WCET Analysis in Practice
	Slide 9: Limitations of empirical WCET Analysis
	Slide 10: CFG-based WCET Analysis
	Slide 11: Steps of a CFG-based WCET Analysis
	Slide 12: Example for a CFG-based WCET Analysis
	Slide 13: Acquiring Execution Times of Building Blocks: From C to Assembly Language
	Slide 14: Pitfalls when calculating Execution Paths
	Slide 15: Recall: Two’s Complement Integer Representation
	Slide 16: WCET and SOTA CPUs
	Slide 19: Summary

