OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Last Lecture - First Java Code

* In the last session, you wrote your first class and created several objects from it

* You were introduced to the notion of state
* Every object has its own state

* An object’s state is generally defined by the values it holds

* Multiple objects can be created from a single class. Each object can have its own state.

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

Topics

By the end of this lecture you will be able to implement the following in Java:

* Correct class and method structure

* Define and initialise an int variable

* Use accessor and mutator methods
* Explain the concept of encapsulation
* Print out the object state

* Use the Java conditional statement (if else)

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Today’s Learning exercise

In Blue J:

* Create a Bicycle class and a Car class

* Each Bicycle object should its own speed, gear and cadence (e.g. 1%, 29, 3™ etc) state

 What type of variable in Java could be used to represent speed, gear and cadence (look it up on the
Web)?

* Create setSpeed, setGear and setCadence method that can set the speed /gear state of a bicycle and a
car object and print out the current speed of each

 Then Create 3 Bicycle and 3 Car objects

* Using the methods above set and print different speed, gear and cadence values for each

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. &lils -
o iy, UNIVERSITY OF GALWAY

C av
4w

Class Structure:

Every class has the following structure

public class ClassName

{
Fields
Constructors
Methods

}

\LL 7
NV OLLSCOILNAGAILLIMHE
> Clnls
j'-'f UNIVERSITY 0F GALWAY

LW

Fields

* Fields store values for an object.

* They are also known as instance variables.

* Fields define the state of an object.

* Use Inspect in Bluel to view the state.
* Some values change often.

* Some change rarely (or not at all).

public class Bicycle

{
private int speed;
private int gear;
private int cadence;

Further details omitted.

o ... Ltype .
v1s1b1l1tq‘d1ﬁer l variable name

private int speed;

Data Type:

int

Java Primitive Types

Type Size Range Default
boolean 1 bit true or false false
byte 8 bits [-128, 127] 0
short 16 bits [-32,768, 32,767] 0

| int 32 bits [-2,147 483,648 to 0

2,147 483 ,647]
long 64 bits 27, 271] 0
float 32 bits 32-bit IEEE 754 floating-point 0.0
double 64 bits 64-bit IEEE 754 floating-point 00
P OLLSCOILNA GAILLIMUE

"KAXI’
o [eBiN =
. slmals -
N

UNIVERSITY oF GALWAY

Principle 1 of OOP: Encapsulation

In encapsulation, the variables of a class will be hidden from other classes
and can be accessed only through the methods of their current class,
therefore it is also known as data hiding.

e Why?

» Basic OOP philosophy: each object is responsible for its own data

* This allows an object to have much greater control

o Which data is available to be viewed externally
o How external objects may change (mutate) the object’s state

\LLly
;%T_‘; OLLSCOILNA GAILLIMHE
- - .

el [JNIVERSITY OF GALWAY

&
AL
4w

Encapsulation Type: Private

* Making the fields private encapsulates their values inside each object

* No external class or object can access them.

public class Bicycle

{
private int speed;
private int gear;
private int cadence;

Further details omitted.

\LLy
;@T} OLLSCOILNA GAILLIMHE
. sliils -

= UNIVERSITY oF GALWAY

O T A
LW

10

© |

. wjmale -
‘lnl’
4 ™

Constructors (1)

* Initialize an object.
* Have the same name as their class.

e Close association with the fields:
o Initial values stored into the fields.
o Parameter values often used for these.

public Bicycle (int spd,
{

speed = spd;

gear = gr;

< cadence = cad;
VAW OLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY }

O T A
LW

int gr,

int cad)

11

© |

. wjmale -
‘lnl’
4 ™

Constructors (2)

* If input parameter variables have the same name as your fields
* Then you must use the this keyword to distinguish between the two
* this = “belonging to this object”

public Bicycle(int speed, int gear, 1int cadence)
{

this.speed = speed;

this.gear = gear;

this.cadence = cadence;

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

O T A
LW

12

© |

. il -
‘lnl’
4 ™

Choosing Variable Names

* There is a lot of freedom over choice of names. Use it wisely!
* Choose expressive names to make code easier to understand:
o price, amount, name, age, etc.
* Avoid single-letter or cryptic names:
o W, t5, xyz123

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

O T A
LW

13

Methods

 Methods implement the behaviour of an object.
* Methods have a consistent structure comprised of a header and a body.

* Accessor methods provide information about the state of an object.
* Mutator methods alter the state of an object.

e Other sorts of methods accomplish a variety of tasks.

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
- =

Lalld UNIVERSITY oF GALWAY

el
4w

Method structure

* The header:
o publicint getSpeed ()

* The header tells us:
o the visibility to objects of other classes;
o Wwhether the method returns a result;
o the name of the method;
o Wwhether the method takes parameters.

* The body encloses the method’ s statements.

\LLy
;@T} OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY
L W

g
3 A LN
& r

15

Accessor (get) methods

return type
visibility modifier method name

\ / _— parameter list

public int getSpeed () (empty)

return speed; < return statement

\ start and end of method body (block)

\“L/(
VAW OLLSCOILNA GAILLIMHE
3~y UNIVERSITY OF GALWAY

16

Accessor methods

* An accessor method always has a return type that is not void.

* An accessor method returns a value (result) of the type given in the
header.

* The method will contain a return statement to return the value.

* NB: Returning is not printing!

WLLy,
;@Tjﬁ OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY

.r“
C av
4w

17

C vs. Java

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Headers

Global variables

function-1

function-n

A function (in C) is not well-encapsulated

Name
— / Attributes =
‘ i ame
T — Behaviors ‘
Attributes
Behawors
Behavnors
\ messages
Name | Name
Attributes Attributes
Behaviors Behaviors

An object-oriented program consists of many well-encapsulated
objects and interacting with each other by sending messages

* Unlike a C program, an OOP program will not have a pool of
global variables that each method can access

* Instead, each object has its own data — and other objects rely
upon the accessor methods of the object to access the data

18

public class Bicycle {

* The instance variables

[NN D (or fields) are declared

private int speed; -—

private int gear; private

public int getCadence() { e Cannot be accessed
return cadence; .

} directly

public void setCadence(int newValue) {
cadence = newValue;

}

ubTBe 1t geiGeary 3 e accessor/mutator methods

} return gear; used to access the data

public void setGear(int newValue) {

gear = newValue; * These are often called

}
getter/setter methods

public int getSpeed() {
return speed;

}

19

blic class Bicycle
Test: F°
= {

private speed;

public Bicycle ()

{
speed = 300
}
public int getSpeed
{
return Speed;
}

\“L/(
GBS OLLSCOILNAGAILLIMHE
- - .
) :* UNIVERSITY oF GALWAY

What is wrong here?

(there are five errors!)

20

Mutator Methods (1)

* Have a similar method structure: header and body.
 Used to mutate (i.e., change) an object’ s state.

* Achieved through changing the value of one or more fields.

They typically contain one or more assignment statements.
Often receive parameters.

\LLy
;@T} OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY
L W

g
3 A LN
& r

21

Mutator Methods (2)

visibility modifier return type method name

\ / / formal parameter

public void speedUp (int amount)

{
speed = speed + amount;

} I \

field being mutated assignment statement

/_g;\ QOLLSCOILNA GAILLIMHE
Jla UNIVERSITY 0F GALWAY

o ol
4, W

22

Mutator Methods: ‘set’

e Each field may have a dedicated set mutator method.

* These have a simple, distinctive form:
void return type
method name related to the field name

single formal parameter, with the same type as the type of the field
a single assignment statement

\LLly
B OLLSCOILNA GAILLIMHE

N EJ UNIVERSITY OF GALWAY

23

Mutator Methods: ‘set’

* Atypical ‘set’ method

public void setGear (int number)

{

gear = number;

}

 We can easily infer that gear is a field of type ‘int/,
* private int gear;

\LLy
;@T} OLLSCOILNA GAILLIMHE
- [
= UNIVERSITY oF GALWAY
L W

"N
(A~ £8
4

24

Protective Mutators

* A set method does not have to always assign unconditionally to the
field.

* The parameter may be checked for validity and rejected if inappropriate.

* Mutators thereby protect fields.

* Mutators support encapsulation.

\LLy
;@T} OLLSCOILNA GAILLIMHE
- - .
» &y UNIVERSITY OF GALWAY
LW

o

25

Printing From Methods

public void printState ()

{

WLLy,
AW\ OLLSCOILNA GAILLIMUE
- [
) :* UNIVERSITY oF GALWAY

// Simulates output from a bike computer.

System.
System.
System.
System.
System.
System.

out
out
out
out
out
out

println ("HFHAFFFFFFAAAAFAFFFF") S
.println("# Speed: " + speed);
.println ("# Gear : " + gear);
.println ("# Cadence: " + cadence);
println ("H#HAFFFFFFAFFAFFAASIS") S
.println() ;

26

Printing From Methods 2

public void printState()

{

\LLly
AW\ OLLSCOILNA GAILLIMUE
- [
X :* UNIVERSITY oF GALWAY

// Simulates output from a bike computer.
System.out.println ("#########HH44HH4HE")
System.out.printf ("# Speed: %d \n ", speed);
System.out.printf ("# Gear : %d \n ”, gear);
System.out.printf ("# Cadence: %$d \n”, cadence);

System.out.println ("#####4F444HHHHHHHH");
System.out.println () ;

27

Conditional Statement

if (I have enough money left) {

I will go out for a meal;
} else {

I will stay home and watch a movie;

* |t has the same format that you have seen in C

Wb 7
VA OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY

28

Making choices in Java

. .||_a||. .

o ol

4w

‘if’ keyword

}

boolean condition to be tested

actions if condition is true

f (perform some test) { ////

Do these statements 1f the test gave a true result

else {

‘else’ keyword

Do these statements 1f the test gave a false result

N

actions if condition is false

,*/n\ OLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY

Protecting a Field (1)

public void setGear (int gearing)
{
1f (gearing <= 18) {
gear = gearing;
}
else {
System.out.println (
"Exceeds maximum gear ratio.
Gear not set”);

This conditional statement avoids an inappropriate action. It
AATe O NAG :
(g oo oot protects the gear field from too large values

© vav
LW

30

Protecting a Field (2)

public void setGear (i1nt gearing)
{
1f (gearing >= 1 && gearing <= 18) {
gear = gearing;
}
else {
System.out.println (
"gear 1nput value not 1in the
correct range”);
}
o oLLSCOILNAGAILjMHE This conditional statement avoids an inappropriate action. It
82 Universityor Gatway protects the gear field from too large AND too small values

© vav <
LW

31

Summary

You have encountered some of the fundamental ideas in OOP
A class has fields, a constructor(s) and methods

Encapsulation - each object’s data (fields) is protected by its
accessor/mutator methods

If you want to access/change an object’s state, you must use
its accessor/mutator methods

The use of the ‘private’ keyword prevents external access to an
object’s data

\LLlys
NV OLLSCOILNAGAILLIMHE

- gjms
o Umrmly
A 4v‘v LS

LW

UNIVERSITY oF GALWAY

