QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Today’s topics

Equal Method

Java.lang.Object

Checking type of a variable
Casting

Type hierarchy

Understanding basic inheritance
Overriding

\LLly
AT OLLSCOILNAGAILLIMHE
. slmls -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

equals

Your equals method should look like this

[**

* version 1 of an equals method
* @param object a parameter of type Bicycle
* @returns true or false
* [
public boolean equals(Bicycle bike) {

return false;

ULy,
o

NI\ OLLSCOILNAGAILLIMHE

> Lemle ™
r‘;lv-..lfh UNIVERSITY OF GALWAY
LW

How to use it (even though it’s incomplete)

We would use it the same way we used the equals method of the String
class

Bicycle bike1l
Bicycle bike2

new Bicycle(4,280);
new Bicycle(2,10);

E.g.

if(bike2.equals(bike1)){
System.out.println(“true”);

}else{
System.out.println(“false");

}

[L 7
N OLLSCOILNA GAILLIMHE
> Llifhile

slagl UNIVERSITY OF GALWAY

O vaw
4w

Bicycle Equality

 What would make two Bicycle objects equal in terms of value?
* Their state. i.e. their field values: speed and gear

* The same applies for every object

SV
N OLLSCOILNAGAILLIMHE

[A

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

Your task

In the section marked //TODO in the equals method write code so that

[*%

* version 1 of an equals method

* @param object a parameter of type Bicycle
* @returns true or false

*/

public boolean equals(Bicycle bike){

return false; // default return value

\LLly
N OLLSCOILNA GAILLIMHE
> Clitnls
cﬁlv-..li UNIVERSITY OF GALWAY

4w

equals

Your equals method should look like this

[*%
* version 1 of an equals method
* @param bike a parameter of type Bicycle
* @return true or false
*/
public boolean equals(Bicycle bike) {
if(speed == bike.getSpeed() && gear == bike.getGear())({
return true;
} //no need for an else statement
return false; // default return value

}

Ly
@ OLLSCOILNAGAILLIMHUE
A ;' UNIVERSITY oF GALWAY

Test in CodePad (or in a main method)

public static void main(String[] args)
{
Bicycle bike1 = new Bicycle(4,20);
Bicycle bike2 = new Bicycle(2,19);

if(bike2.equals(bike1)){
System.out.println(“true”);
}else{

System.out.println(“false");
}

Wbl
N OLLSCOILNA GAILLIMHE

[Al

. slmifs -
c,‘}l-lf* UNIVERSITY OF GALWAY
7

Tip

Java has a shorthand for writing if/else statements

if (bike2.equals (bikel)) {
System.out.println(“true”) ;
telse{
System.out .println(“false”) ;
}

SV

AT OLLSCOILNAGAILLIMHE
ELS

E'-'E UNIVERSITY oF GALWAY
L W

C aw

10

Tip: Ternary operator

It can be reduced to one line

System.out .println (bike2.equals (bikel) ?

"true”

:"false") ;

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

11

O Loy) ™

. slmals -
ojl-lf& UNIVERSITY oF GALWAY
L W

Ok, so we cheated

e Our version of the equals method doesn’t comply with the standard
equals method expected by the Java language.

* It is nearly there but not quite

* To understand this fully we will encounter a fundamental concept in
OOP : inheritance

SV
VAT OLLSCOILNAGAILLIMHE

12

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

Correct version

* All equals methods must have the following method signature

* public boolean equals(Object object)

Ll
VAT OLLSCOILNAGAILLIMHE

13

V1 of equals method for Bicycle class

Your equals method should look like this

EZS
* version 1 of an equals method
* @param bike a parameter of type Bicycle
* @return true or false
*/
public boolean equals(Bicycle bike)
if(speed == bike.getSpeed() && gear == bike.getGear())({
return true;
} //no need for an else statement

return false; // default return value

Ly
@ OLLSCOILNAGAILLIMHUE
A ;' UNIVERSITY oF GALWAY

14

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

However

This version of the equals method doesn’t comply with the standard
equals method expected by the Java language.

Ll
VAT OLLSCOILNAGAILLIMHE

15

fe
D_ﬁ
-

oV gli ’

Correct version

The Java language has a standard signature for the equals method:

public boolean equals(java.lang.Object object)

Ll
YT OLLSCOILNAGAILLIMHE

;—; UNIVERSITY OF GALWAY

16

Version2 of equals method

37

38

39

42

41

42

43

44

45

46

a7

48

49

/ k%

* version 2 of an equals method
* @param object a parameter of type Bicycle
* @returns true or false

*/

public boolean equals(Object obj) {

|

if(obj==null){
return false;

}
if (obj instanceof Bicycle){
Bicycle bike = (Bicycle)obj;
if(this.speed ==bike.getSpeed() && this.gear==bike.getGear())
return true;

}
}

return false;

17

5 minute challenge

* Write down in pseudocode (or your own words) what you think this
method is doing?

* Question to try to answer:
o What is the meaning of Object in this piece of code?
o Why is there a check for null?
o What does the instanceof operator do?
o What is happening in this line of code:
= Bicycle bike = (Bicycle)obj;
* |t may be helpful to contrast if with the previous version

SV
B\ OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

18

Checking for null

* Checking for a null value is very commonly done.
* |t anticipates the program throwing a null pointer exception

* For example, the following code would throw a NullPointerException if
we didn’t check for null in the equals method

Bicycle bikel
Bicycle bike2

null;
new Bicycle(2,10);

System.out.println(bike2.equals(bike1)? "true" : "false");

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

19

instanceof

iInstanceof is an operator that is used to determine if
pointing to an object with a particular type;

if (bike2 instanceof Bicycle){
System.out.println(“true");

}else{
System.out.println(“false");

}

SV
VAT OLLSCOILNAGAILLIMHE
UNIVERSITY oOF GALWAY

n‘l-'-lr‘
AN
4w

variable iIs

20

instanceof

instanceof is an operator that is used to determine if a variable is pointing
to an object with a particular type;

System.out.println(bike2 instanceof Bicycle? "true" : "false");

__

' From now on | will use this notation to
' represent if/else examples :

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

21

Object | . .
public boolean equals(Object obj)

Q: What is the parameter Object obj?
A: obj is variable whose type is java.lang.Object

Q: What is java.lang.Object?
A: It is a class that provides the most generic definition
of an object in Java

\LLly
VAT OLLSCOILNAGAILLIMHE
. slmls -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

22

Java.lang.Object

* java.lang.Object is the parent class of every class in Java
* A Bicycle object is a Bicycle object AND a java.lang.Object object

* A String object is a String object AND a java.lang.Object object

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

23

Let’s test these ideas

Open Bluel

Create a new Project

Download the Bicycle class from Blackboard

Right-click on the BlueJ workbench, select “Add Class from File”

Add the Bicycle class you have downloaded
Compile

SV
N OLLSCOILNAGAILLIMHE

s |
oV
4 LW

siols -

vav -

UNIVERSITY oF GALWAY

'S

24

Open Bluel

Open the project where you have the Bicycle class defined

Make sure CodePad is open . .
Variable anObject of type

Object is pointing to a Bicycle
object

Bicycle bike = new Bicycle(2,12); This is allowed because the
Bicycle bike2 = new Bicycle(3,15); Bicycle object is a Bicycle type
Object anObject = new Bicycle(3,15); and an Object type

Object obj = "Hello World"; // String object
All Java objects are an Object

type

Object type is short for
java.lang.Object type

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

Open Bluel

bike Bicycle New Bicycle(2,12) Bicycle
bike2 Bicycle New Bicycle(3,15) Bicycle
anObject Object New Bicycle(3,15) Bicycle
obj Object “Hello World” String

Bicycle bike = new Bicycle(2,12);

Bicycle bike2 = new Bicycle(3,15);

Object anObject = new Bicycle(3,15);
Object obj = "Hello World"; // String object

Variables of type Object can point to any type of Object

v Ly
NI OLLSCOILNAGAILLIMHE
” gJarnls
5}'_-.,'5 UNIVERSITY oF GALWAY

4w

25

26

©

[Al
- ujilnlw -
‘l"-l'

O v A

Using instanceof to check object type

boolean isBike = anObject instanceof Bicycle; // is the object referenced a Bicycle

isBike
true (boolean)

boolean isString = anObject instanceof String; // is the object referenced a String object

isString
false (boolean)

isString = obj instanceof String; // is the object referenced a String object

isString
true (boolean)

sLL,
VAT OLLSCOILNAGAILLIMHE

) & UNIVERSITY OF GALWAY
4w

27

Using the new equals method

boolean isEqual = bike2.equals(anObject);

isEqual
true (boolean)

iIsEqual = bike2.equals(obj);

isEqual
false (boolean)

L L
.f_\fﬁ“%”s OLLSCOILNA GAILLIMUE
- slegl -

A

) v UNIVERSITY oF GALWAY
LW

28

Casting

* Here we cast (convert) a variable from a higher type (Object) to a lower
type (Bicycle)
* We do the same for the String

* This is allowed as
- anObject points to a Bicycle object — we®e checked this using instanceof
- ob7j pointsto a String object - we®e checked this using instanceof
Bicycle bike3 = (Bicycle)anObject;
String str5 = (String)obj;

Ly
™A OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

29

Note that it is the variable type that is being converted not the object

Bicycle bike3 = (Bicycle)anObject;
String str5 = (String)obj;

Object Type

anObject Object New Bicycle(3,15) Bicycle
obj Object “Hello World” String

L L
.f_\fﬁ“%”s OLLSCOILNA GAILLIMUE
- slegl -

A

) v UNIVERSITY oF GALWAY
LW

30

Java organises all its classes in a class hierarchy

Ly
@ OLLSCOILNAGAILLIMUE
A ;' UNIVERSITY oF GALWAY

31

Consider The Real World...
. OPject
. V{ahicle

e Car

* In the most general sense, a single car is an object.
* But more specifically, it is a vehicle
* And more specifically still, it is a car

SV

AT OLLSCOILNAGAILLIMHE
ELS

E'-'E UNIVERSITY oF GALWAY
L W

C aw

32

The Real World

e Object
I

* Vehicle
N

* Car e Truck

* In the most general sense, a single truck is an object.
* But more specifically it is also a Vehicle
* And more specifically still it is a type of Truck

Ll
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

33

The Real World

/ e Object
* Writing I

Implement * Vehicle

. Ba{l‘point I \

p * Car * Truck
en

* In the most general sense, a ballpoint pen is an object.
* But more specifically it is a writing implement
* And more specifically still it is a ballpoint pen

Ll
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

34

|s-a

These relationships can be described as “is-a” relationships

A car is-a vehicle; a vehicle is-a(n) object

Object
We can call the higher up types as I lsa
parents and the lower ones children Vehicle
Car is a child of Vehicle
Vehicle is a parent of Car I ls-3
Object is the parent of Vehicle and Car Car

Ll
P\ (OLLSCOILNAGAILLIMUE

A ;' UNIVERSITY oF GALWAY

35

The Real World

=
* Writing

implement

/ oa

e Ballpoint
Pen

v Ly
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

e Object
I Is-a
* Vehicle
Ils—a \Is-a
* Car * Truck

36

We see these concept hierarchies all over the non-Java world

bikes

N

vehicles

bicycles

motor
cycles

UNIVERSITY oF GALWAY

cars

/\

private
motorcars

A A

transporters

N T

mountain tandem sports cars limousines icku truck school
bike p/\ \ P P bus
; Rolls
Lotus Ferrari R
oyce
QLLSCOILNA GAILLIMHE

Ferrari 488

: o vehicles
a. vehicle \ A
b . Car Q? bikes cars
C. private car 'Q//’ / .
bicycles ?i:g; mE:I:ractaers transporters
d. sportscar <« 5‘
e' Ferrarl Q? mo::(t:in | tandem | |sportscars| |Iimousines| |pickup| |truck | S?L?SO]
| Lotus | |Ferrari| RRoo;r[cSe

Ferrari 488 has is-a relationships with all these types
Its most specific type is Ferrari
Its most generic type is vehicle

WLLy,
VAT OLLSCOILNAGAILLIMUE
- s[mals -

=|.-| UNIVERSITY OF GALWAY

4
O aw A
Lw '

vehicles

N

a. vehicle

)
bikes cars
b. car 4 ' —
M / bicycles motor private transporters

C. private car « ries || s p

d J Sports Car Q/ m”:i':;ai" tandem | [sports cars |ir>sines plclwp/hfsol
e. Ferrari v AN

Lotus Ferrari Sc?;]cse

Question: what distinguishes each type? \H

E.g. a car from a sports car, a vehicle from a car

Ly
@ OLLSCOILNAGAILLIMHUE
A ;' UNIVERSITY oF GALWAY

39

L L
;_\(ﬁhﬁ_"’; OLLSCOILNA GAILLIMUE
sl -

What are features and behaviours of each

Private

motorcar

UNIVERSITY oF GALWAY

O T A
& ™

t W

40

What are features and behaviours of each:

N
e Man made object that moves and carries people or goods
e wheels
J
N
e Has an engine
J
¢ 4 wheels)
S Capacity 2-6 people
teite el ® Private ownership)
e High performance engine
e Ultra streamlined body
e Capacity 2-3 people

Ly
VAW OLLSCOILNAGAILLIMHE
> Lemle ™
c,'ilv-..lﬂ UNIVERSITY OF GALWAY

41

Key idea in a class hierarchy

 The top of the hierarchy represents the most generic attributes and
behaviours

 The bottom (the leaves) represent the most specific attributes and
behaviours

 Each level inherits and customises the attributes and behaviours from
the level above it

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

Back to Java

 Java.lang.Object is THE superclass, the parent of all classes in Java
e Every class in Java has java.lang.Object as its superclass (its parent)

Is-3 String
java.lang.Object Is-a
Is-a Is-a
ISV T Is-a \s-a
Engine Bicycle Wheel Rocket Customer || ShoppingCart

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

42

Superclass

* |In Java all child, or sub-classes inherit properties and methods from their
superclasses

java.lang.Object

Scanner Bicycle Cube Rocket Computer || ShoppingCart

 All the classes shown above inherit (receive) methods from the
superclass java.lang.Object

* Even though these methods may not be shown in the Class code — they
are still available to objects of the Class

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

44

OOP Inheritance

 The means by which objects automatically receive features (fields) and
behaviours (methods) from their superclasses

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

45

Java.lang.Object

e equals is one of the methods provided by java.lang.Object
* Look up the java.lang.Object class definition on the Web:

* http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

SV
;%T:’; QLLSCOILNA GAILLIMHE
U725 UNIVERSITY oF GALWAY

DL~ LN
Ik’

46

http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

java.lang

Class Object

java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has 0bject as a superclass. All objects, including arrays,
implement the methods of this class.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

47

java.lang

Class Object

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Modifier and Type

protected Object

Method and Description

clone()
Creates and returns a copy of this object.

boolean

equals (0Object obij)
Indicates whether some other object is "equal to" this one.

protected wvoid

Class<?>

int

void

void

String

void

void

void

finalize()

Called by the garbage collector on an object when garbage collection determines that there are
no more references to the object.

getClass()

Returns the runtime class of this Object.

hashCode()
Returns a hash code value for the object.

notify()
Wakes up a single thread that is waiting on this object's monitor,

notifyAll()
Wakes up all threads that are waiting on this object's monitor.

toString()
Returmns a string representation of the object.

wait()

Causes the cumrent thread to wait until another thread invokes the notify () method or the
notifyAll () method for this object.

wait({long timeout)

Causes the current thread to wait until either another thread invokes the notify () method or
the notifyall () method for this object, or a specified amount of time has elapsed.
wait(long timeout, int nanos)

Causes the current thread to wait until another thread invokes the notify () method or the
notifyAll () method for this object, or some other thread interrupts the current thread, or a
certain amount of real time has elapsed.

48

Generic methods

* All the methods provided by java.lang.Object are generic

* They only relate to java.lang.Object but not to the subclasses

* When a subclass inherits these methods, it needs to customise them

* This is why we have to write own version of equals() for the Bicycle class

e Overriding: when you write your own version of a method that you have
inherited from a superclass

SV
AT OLLSCOILNAGAILLIMHE
UNIVERSITY oOF GALWAY

. =||= .
NV
4w

Overriding

When overriding a method, you must keep every part of the method signature the same
You only change the code in method body

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

49

38

39

42

VEL
* version 2 of an equals method

* @param object a parameter of type Bicycle Method signature
* @returns true or false /
*/

public boolean equals(Object obj){
\

if(obj==null){
return false;
}
if (obj instanceof Bicycle){
Bicycle bike = (Bicycle)obj;
\ if(this.speed ==bike.getSpeed() && this.gear==bike.getGear()){
return true;

}
}

—— Method Body

return false;

50

Overriding rules

* Overriding a method means creating a specific version of a method
inherited from a parent (superclass) class

The only rule is that you keep the signature of the method the same
Its name (e.g. equals)

* |ts parameter types and order

Its access level (e.g. public, protected)

* |ts return type (e.g. boolean)

vLLs
N OLLSCOILNAGAILLIMHE

Nl

. slmals -
ojl-lf* UNIVERSITY oF GALWAY
L W

This is called an Annotation. Your code will compile and run without it. But is
considered good practice to annotate the methods that are overridden
versions inherited from the superclass

/*
* [version 2 of an equals method

*[{@param object a parameter of type Bicycle
@returns true or false

/

@0verride

public boolean equals(Object obj){

o o (4] w
' w N -

W w w o]
O (-} ~ o w

if(obj==null){

6 return false;
61 }
62
63 if (obj instanceof Bicycle){
64
65 Bicycle bike = (Bicycle)obj;
66
67 if(this.speed ==bike.getSpeed() && this.gear==bike.getGear()){
68 return true;
QOLLSCOILNA GAILLIMHE 6? }
UNIVERSITY oF GALWAY e }
71
72 return false;

73 }

52

After this week’s work, you should know how to:

* Write an equals method with the correct signature for any object

e Explain what java.lang.Object is

* Explain why you may need to check if a reference variable points to null

* Write an expression that uses instanceof to check the type (class) of an object

* Explain the concept of superclass and subclass

* Explain that the type of a reference variable can differ from the type of the object it points to

* Following from the last point, explain that the type of the variable can only be of a class (type) higher in the class
hierarchy that the object that it points to

* Object obj = new Bicycle(2,14);

* Explain the basic idea of inheritance: properties and methods are received (inherited) from the superclass(es)

* Explain and demonstrate that subclasses can specialise and create their own versions of methods inherited from
the superclass. This is called overriding. Inherited methods that are customised by the subclass are said to be
“overridden”

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

