2425-CS4423: Sample Exam Paper

For more information on this paper, and how it relates to the actual example, refer to discussion in Class in Week 12.

- Q1. (a) Give an example (e.g., by sketching) of a simple connected graph of order 6, and size 7. Is there any simple graph of order 6 and size 16? Explain your answer.
 Explain why there is no simple connected graph of order 6 and size 4.
 - (b) Consider the graph, G_1 , shown in Figure 1. Write down the adjacency matrix, A_1 , for G_1 .
 - (c) Explain why G_1 is not bipartite.

Give an example of a subgraph of G_1 which is of order 7 and size 8 which *is* bipartite. Give an example of a subgraph of G_1 which is of order 7 and is a tree.

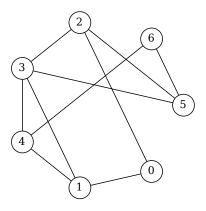


Figure 1: Graph G_1 from Question 1

Q2. (a) Sketch the graph with adjacency matrix

$\sqrt{0}$	1	1	0	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{array}$	0	0\
1	0	0	1	0	1	0
1	0	0	1	1	0	0
0	1	1	0	1	1	0
0	0	1	1	0	0	1
0	1	0	1	0	0	1
$\setminus 0$	0	0	0	1	1	0/

- (b) Let A be the adjacency matrix of a graph G. Explain how one can compute the size of G as a function of the entries of A.
- (c) Let A be the adjacency matrix of a graph G. Explain how one can compute the degree of the nodes of G as a function of the entries of A^2 .
- (d) Let A be the adjacency matrix of a graph G. Explain how one can compute the number of triangles in G as a function of A^3 .

Q3. Consider the graph, G_3 , generated by the following **networkx** instruction:

G3 = nx.Graph([[0,2], [1,2], [2,3], [2,4], [3,4], [2,5], [3,4], [3,6], [4,6]])

- (a) Sketch G_3 .
- (b) Calculate the normalised degree centrality of all nodes in G_3 .
- (c) Determine both the radius and diameter of G_3 .
- (d) Compute the *closeness centrality* of all nodes in G_3 .
- (e) If one was to add another edge to G_3 . Would that necessarily change both the degree centrality and closeness centrality of some of the nodes in G_3 ? If so, would they increase or decrease. Explain your answer.

.....

- Q4. (a) Describe Breadth First Search as an algorithm for computing distances between nodes in a (simple) graph. What is its input, what is its output, and what sequence of steps is taken to produce the output from the input?
 - (b) Consider the graph, G_4 shown in Figure 2. Show how to apply the Breadth First Search algorithm, starting at Node a, to determine, for every node, its *predecessors* on the shortest path between it and Node f. Use this information to list all shortest paths from Node a to Node f.

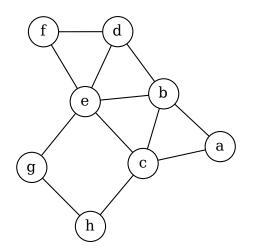


Figure 2: Graph G_4 from Question 4

Q5. (a) Let G_5 be the tree on the nodes $\{0, 1, 2, 3, 4, 5, 6\}$ that has as its Laplacian matrix

(2	-1	-1	0	0	0	0 \
-1	3	0	-1	-1	0	0
-1	0	1	0	0	0	$\begin{array}{c} 0\\ 0\\ -1\\ 0\\ \end{array}$
0	-1	0	3	0	-1	-1
0	$^{-1}$	0	0	1	0	0
0	0	0	-1	0	1	0
$\int 0$	0	0	-1	0	0	1/

Sketch G_5 .

- (b) How does one construct the Prüfer code for a tree? Compute the Prüfer code for G_5 from Part (a).
- (c) How does a tree's Prüfer code relate to its degree sequence? Construct the degree sequence for the tree on the nodes $\{0, 1, 2, 3, 4, 5, 6\}$ with Prüfer code (1, 2, 1, 3, 1). Then construct and sketch the tree itself.

.....

- Q6. (a) Define the two Erdös-Rényi models, $G_{ER}(n,m)$ and $G_{ER}(n,p)$ of random graphs.
 - (b) [5 MARKS] In each model, what is the probability that a randomly chosen graph G has exactly m edges? Justify your answer.
 - (c) A graph on 120 nodes is constructed by rolling a (fair) 6-sided die once for each possible edge: the edge is added only if the number shown is 3 or 6. What is the probability that a node chosen at random has degree 50? (You do not need to compute a numerical value. It is enough to give an explicit formula in terms of the given data).
- Q7. (a) What is the *node clustering coefficient* of a node x in a graph G? What is the graph clustering coefficient C of G?
 - (b) Determine the graph clustering coefficient C of a random graph in the $G_{ER}(n,p)$ model. How does C behave in the limit $n \to \infty$, when the average node degree is kept constant? What practical consequence does this observation have?
 - (c) Describe the Watts-Strogatz small-world model (WS model). What properties does a random graph sampled from the WS model have, that one wouldn't find in a random graph sampled from the $G_{ER}(n,p)$ model, or in an (n,d)-circle graph?