
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct420 2025–03–19

Assignment 2: POSIX Programming & Benchmarking

1 Host Environment
For my host environment, I chose to run Ubuntu Server 24.04.2 LTS using a VirtualBox hypervisor. I chose this operating
system as I have sufficient Linux experience to feel confident using an operating system with no graphical interface (as opposed
to Ubuntu Desktop), and the absence of a GUI means a smaller ISO file, memory footprint, & CPU footprint. I chose Ubuntu
specifically because it’s a Linux system with which I have previous experience, and is well-document with plenty of packages
available to install if needs be. Ubuntu also makes it easy to install the PREEMPT_RT patches, which transform the standard Linux
kernel into a fully preemptible, real-time kernel, which I felt was more suitable for this assignment, as the standard Linux kernel
is not suitable for a hard real-time system due to its lack of preemption.

Figure 1: Virtual machine hardware configuration

I set the virtual machine to have a single CPU and set the amount of RAM to 2048MB which is the recommended minimum
for Ubuntu Server1. I left the hard disk size at the default of 25GB as I saw no reason to change it. The real-time kernel with
the PREEMPT_RT patches installed is available with Ubuntu Pro, which is free for personal use. After setting up an Ubuntu Pro
account, I enabled the real-time kernel using the pro command.

Figure 2: Enabling the real-time kernel with the pro command

Finally, I transferred over the following C file (taken from the lecture slides) via scp3 to the virtual machine to get the clock
resolution, which is 1 nanosecond:

1 #include<unistd.h>

2 #include<time.h>

3 #include <stdio.h>

4

5 int main(){

6 struct timespec clock_res;

7 int stat;

8 stat=clock_getres(CLOCK_REALTIME, &clock_res);

9 printf("Clock resolution is %d seconds, %ld nanoseconds\n",clock_res.tv_sec,clock_res.tv_nsec);

10 return 0;

11 }

1

mailto://a.hayes18@universityofgalway.ie

Figure 3: Getting the clock resolution of the virtual machine

2 Benchmarking Code
I combined the provided benchmarking programs bm1.c and bm2.c into a single file, and added logic to benchmark the usleep()
function as well as outputting the relevant data to CSV files. Additionally, I updated the #define ITERATIONS constant to
have value 10000 and I also tweaked the while (!timer_expired) loop to sleep for 100 nanoseconds in-between evaluations
of the loop condition, as I found that the “busy waiting” was greatly slowing down the program when I ran it on my virtual
machine. There is a potential drawback to this however: adding the nanosleep() to the while loop could artificially introduce a
delay into obtaining the data, as there could be a maximum delay of 100 nanoseconds before the timer is registered as expired.
However, since the busy wait was artificially increasing the runtime, and much more so than the version with the sleep, it too
would introduce delay, and much more than the modified version, as the modified version ran around 10 times more quickly.
Therefore, while this modification could potentially introduce noise to the data collected for the interval timer benchmark, it
introduces less error than the busy wait, so I decided to include the modification.

1 // Compile code with gcc -o merged merged.c -lrt -Wall -O2

2 // Execute code with sudo ./merged

3

4 #include <stdio.h> // Standard I/O functions

5 #include <stdlib.h> // Standard library functions

6 #include <time.h> // Time-related functions

7 #include <signal.h> // Signal handling

8 #include <sys/mman.h> // Memory locking

9 #include <unistd.h> // POSIX standard functions

10 #include <sched.h> // Scheduling policies

11 #include <errno.h> // Error handling

12 #include <string.h> // String manipulation

13 #include <limits.h> // Limits of integral types

14

15 // Constants

16 #define ITERATIONS 10000 // Number of benchmark iterations

17 #define NS_PER_SEC 1000000000L // Nanoseconds per second

18

19 // Global Variables

20 timer_t timer_id; // Timer identifier

21 volatile sig_atomic_t timer_expired = 0; // Flag for timer expiration

22 volatile sig_atomic_t signal_received = 0; // Flag for signal reception

23 struct timespec start, end, sleep_time; // Time structures for benchmarking

24

25 // Function to save benchmark results to a CSV file

26 void save_results(const char *filename, long long *data) {

27 FILE *file = fopen(filename, "w");

28 if (!file) {

29 perror("fopen");

30 exit(EXIT_FAILURE);

31 }

32 fprintf(file, "Iteration,Latency/Jitter (ns)\n");

33 for (int i = 0; i < ITERATIONS; i++) {

34 fprintf(file, "%d,%lld\n", i, data[i]);

35 }

36 fclose(file);

37 }

38

39 // Signal handler for signal-based latency measurement

2

40 void signal_handler(int signum) {

41 signal_received = 1; // Mark signal as received

42 clock_gettime(CLOCK_MONOTONIC, &end); // Capture end time

43 }

44

45 // Timer signal handler

46 void timer_handler(int signum) {

47 timer_expired = 1; // Mark timer as expired

48 clock_gettime(CLOCK_MONOTONIC, &end); // Capture end time

49 }

50

51 // Configures real-time scheduling with FIFO priority

52 void configure_realtime_scheduling() {

53 struct sched_param param;

54 param.sched_priority = sched_get_priority_max(SCHED_FIFO);

55 if (sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) {

56 perror("sched_setscheduler");

57 exit(EXIT_FAILURE);

58 }

59 }

60

61 // Locks memory to prevent paging for real-time performance

62 void lock_memory() {

63 if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {

64 perror("mlockall");

65 exit(EXIT_FAILURE);

66 }

67 }

68

69 // Measures jitter of nanosleep function

70 void benchmark_nanosleep() {

71 long long jitter_data[ITERATIONS];

72 sleep_time.tv_sec = 0;

73 sleep_time.tv_nsec = 1000000; // 1 ms sleep

74

75 for (int i = 0; i < ITERATIONS; i++) {

76 clock_gettime(CLOCK_MONOTONIC, &start);

77 nanosleep(&sleep_time, NULL);

78 clock_gettime(CLOCK_MONOTONIC, &end);

79

80 jitter_data[i] = ((end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec)) -

sleep_time.tv_nsec;↪→

81 }

82 save_results("nanosleep.csv", jitter_data);

83 }

84

85 // Measures latency of sending and handling a signal

86 void benchmark_signal_latency() {

87 long long latency_data[ITERATIONS];

88 signal(SIGUSR1, signal_handler); // Register signal handler

89

90 for (int i = 0; i < ITERATIONS; i++) {

91 clock_gettime(CLOCK_MONOTONIC, &start);

92 kill(getpid(), SIGUSR1); // Send signal to itself

93 while (!signal_received); // Wait for signal to be handled

94

95 latency_data[i] = (end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec);

96 signal_received = 0;

97 }

98 save_results("signal_latency.csv", latency_data);

99 }

3

100

101 // Measures jitter of a real-time timer

102 void benchmark_timer() {

103 long long jitter_data[ITERATIONS];

104 struct sigevent sev;

105 sev.sigev_notify = SIGEV_SIGNAL;

106 sev.sigev_signo = SIGRTMIN;

107 sev.sigev_value.sival_ptr = &timer_id;

108

109 if (timer_create(CLOCK_MONOTONIC, &sev, &timer_id) == -1) {

110 perror("timer_create");

111 exit(EXIT_FAILURE);

112 }

113

114 struct itimerspec its;

115 its.it_value.tv_sec = 0;

116 its.it_value.tv_nsec = 1000000; // 1 ms

117 its.it_interval = its.it_value;

118 signal(SIGRTMIN, timer_handler);

119

120 if (timer_settime(timer_id, 0, &its, NULL) == -1) {

121 perror("timer_settime");

122 exit(EXIT_FAILURE);

123 }

124 clock_gettime(CLOCK_MONOTONIC, &start);

125 for (int i = 0; i < ITERATIONS; i++) {

126 while (!timer_expired) {

127 struct timespec ts = {0, 100};

128 nanosleep(&ts, NULL);

129 }

130

131 clock_gettime(CLOCK_MONOTONIC, &end);

132 jitter_data[i] = ((end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec)) -

its.it_interval.tv_nsec;↪→

133 timer_expired = 0;

134 start = end;

135 }

136 save_results("timer.csv", jitter_data);

137 }

138

139 // Measures jitter of usleep function

140 void benchmark_usleep() {

141 long long jitter_data[ITERATIONS];

142

143 for (int i = 0; i < ITERATIONS; i++) {

144 clock_gettime(CLOCK_MONOTONIC, &start);

145 usleep(1000); // Sleep for 1 ms

146 clock_gettime(CLOCK_MONOTONIC, &end);

147

148 jitter_data[i] = ((end.tv_sec - start.tv_sec) * NS_PER_SEC + (end.tv_nsec - start.tv_nsec)) -

1000000;↪→

149 }

150 save_results("usleep.csv", jitter_data);

151 }

152

153 // Main function to execute all benchmarks

154 int main() {

155 configure_realtime_scheduling(); // Set high priority scheduling

156 lock_memory(); // Prevent memory paging

157

158 printf("Getting nanosleep benchmark\n");

4

159 benchmark_nanosleep();

160

161 printf("Getting signal benchmark\n");

162 benchmark_signal_latency();

163

164 printf("Getting timer benchmark\n");

165 benchmark_timer();

166

167 printf("Getting usleep benchmark\n");

168 benchmark_usleep();

169

170 return 0;

171 }

Listing 1: merged.c

3 CPU & Data-Intensive Applications

To develop my CPU& data-intensive programs, I chose to use Python for ease of development. I chose htop2 as my resource-
monitoring tool as I have often used it in the past, it has easy to read & understand output, and shows you exactly what
proportion of the CPU&memory is in use at that time. It also allows you to list processes by CPU consumption or memory
consumption which is a useful option to have for this assignment.

1 import multiprocessing

2 import time

3 import argparse

4 import os

5

6 def stress_cpu(workload: float):

7 """

8 Function to create CPU load. Uses a busy-wait method to simulate CPU usage.

9

10 :param workload: The fraction of time (0.0 to 1.0) the CPU should be busy.

11 """

12 cycle_time = 0.1 # Total cycle time (100ms per iteration)

13 busy_time = cycle_time * workload # Time to stay busy

14 idle_time = cycle_time - busy_time # Time to stay idle

15

16 while True:

17 start_time = time.time()

18 while (time.time() - start_time) < busy_time:

19 pass # Busy wait

20 time.sleep(idle_time) # Sleep to control CPU usage

21

22 def start_stress_test(load: str):

23 """

24 Starts CPU stress test based on load level.

25

26 :param load: 'medium' (~50% load) or 'high' (~100% load)

27 """

28 num_cores = os.cpu_count() or 4 # Use all available CPU cores

29 workload = 0.5 if load == "medium" else 1.0 # Set workload percentage

30

31 print(f"Starting {load.upper()} CPU stress test on {num_cores} cores...")

32

33 processes = []

34 for _ in range(num_cores):

35 p = multiprocessing.Process(target=stress_cpu, args=(workload,))

36 p.start()

37 processes.append(p)

38

5

39 try:

40 for p in processes:

41 p.join()

42 except KeyboardInterrupt:

43 print("Stopping stress test...")

44 for p in processes:

45 p.terminate()

46 p.join()

47

48 if __name__ == "__main__":

49 parser = argparse.ArgumentParser(description="CPU Stress Test Script")

50 parser.add_argument("--load", choices=["medium", "high"], required=True, help="Choose CPU load level

(medium or high)")↪→

51 args = parser.parse_args()

52

53 start_stress_test(args.load)

Listing 2: stress_cpu.py

Figure 4: htop output when running python3 stress_cpu.py --load medium

6

Figure 5: htop output when running python3 stress_cpu.py --load high

1 import argparse

2 import time

3 import psutil

4

5 def stress_memory(target_usage: float):

6 """

7 Stress the system memory to a given percentage.

8

9 :param target_usage: Target memory usage (0.0 to 1.0, where 1.0 is 100%)

10 """

11 total_memory = psutil.virtual_memory().total # Get total RAM in bytes

12 target_memory = int(total_memory * target_usage) # Calculate target memory size

13

14 print(f"Total Memory: {total_memory / (1024**3):.2f} GB")

15 print(f"Target Memory Usage: {target_memory / (1024**3):.2f} GB ({target_usage * 100:.0f}%)")

16

17 try:

18 memory_hog = [] # List to store allocated memory chunks

19 chunk_size = 100 * 1024 * 1024 # Allocate in 100MB chunks

20

21 while sum(len(chunk) for chunk in memory_hog) < target_memory:

22 memory_hog.append(bytearray(chunk_size)) # Allocate memory

23 time.sleep(0.1) # Small delay to allow system response

24

25 print("Memory fully allocated. Holding...")

26 while True: # Keep the memory occupied

27 time.sleep(1)

28

29 except MemoryError:

30 print("Memory limit reached. Exiting...")

31 except KeyboardInterrupt:

32 print("Memory stress test stopped.")

33

34 if __name__ == "__main__":

35 parser = argparse.ArgumentParser(description="Memory Stress Test Script")

36 parser.add_argument("--usage", type=float, default=1.0, help="Target memory usage (default: 1.0 for

100%)")↪→

37 args = parser.parse_args()

7

38

39 stress_memory(args.usage)

Listing 3: stress_memory.py

I found that the maximum --usage value I could set without getting the process killed by the Linux kernel’s Out-Of-Memory
(OOM) killer was 0.85, so this is the value I used for my experiments.

Figure 6: htop output when running python3 stress_memory.py --usage 0.85

4 Experiments
I ran the experiments in quick succession on the virtual machine by running the appropriate stresser script(s), forking it into the
background using the & shell operator, and running the merged benchmark program. I then transferred the generated CSV files
to my host machine using scp. To generate the plots, I wrote a Python script which will plot the mean, minimum, maximum,
or standard deviation of the values collected in a bar chart for a number of given CSV files.

1 import pandas as pd

2 import matplotlib.pyplot as plt

3 import os

4 import argparse

5

6 parser = argparse.ArgumentParser(description="Plot specified metric from CSV files.")

7 parser.add_argument("metric", choices=["min", "max", "mean", "std"], help="Metric to plot (min, max, mean,

std)")↪→

8 args = parser.parse_args()

9

10 metric_to_plot = args.metric.lower()

11 valid_metrics = {"min": "Min", "max": "Max", "mean": "Mean", "std": "Std"}

12

13 csv_files = [

14 ("../../data/Locking Enabled/1. Low CPU Load, No Swap/usleep.csv", "Locking Enabled, Low CPU

Load, No Swap"),↪→

15 ("../../data/Locking Enabled/2. Medium CPU Load, No Swap/usleep.csv", "Locking Enabled, Medium CPU

Load, No Swap"),↪→

8

16 ("../../data/Locking Enabled/3. High CPU Load, No Swap/usleep.csv", "Locking Enabled, High CPU

Load, No Swap"),↪→

17 ("../../data/Locking Enabled/4. Medium CPU Load, Swap/usleep.csv", "Locking Enabled, Medium CPU

Load, Swap"),↪→

18 ("../../data/Locking Enabled/5. High CPU Load, Swap/usleep.csv", "Locking Enabled, High CPU

Load, Swap"),↪→

19 ("../../data/Locking Disabled/1. Low CPU Load, No Swap/usleep.csv", "Locking Disabled, Low CPU

Load, No Swap"),↪→

20 ("../../data/Locking Disabled/2. Medium CPU Load, No Swap/usleep.csv", "Locking Disabled, Medium

CPU Load, No Swap"),↪→

21 ("../../data/Locking Disabled/3. High CPU Load, No Swap/usleep.csv", "Locking Disabled, High CPU

Load, No Swap"),↪→

22 ("../../data/Locking Disabled/4. Medium CPU Load, Swap/usleep.csv", "Locking Disabled, Medium

CPU Load, Swap"),↪→

23 ("../../data/Locking Disabled/5. High CPU Load, Swap/usleep.csv", "Locking Disabled, High CPU

Load, Swap")↪→

24]

25

26 column_name = "Latency/Jitter (ns)"

27

28 stats = {

29 "Metric": [],

30 "Label": [],

31 "Value": []

32 }

33

34 for file, label in csv_files:

35 if os.path.exists(file):

36 df = pd.read_csv(file)

37

38 if column_name not in df.columns:

39 print(f"Warning: Column '{column_name}' not found in {file}. Available columns:

{list(df.columns)}")↪→

40 continue

41

42 values = df[column_name].dropna()

43 if values.empty:

44 print(f"Warning: Column '{column_name}' in {file} is empty after removing NaN values.")

45 continue

46

47 stats["Metric"].append(valid_metrics[metric_to_plot])

48 stats["Label"].append(label)

49 if metric_to_plot == "min":

50 stats["Value"].append(values.min())

51 elif metric_to_plot == "max":

52 stats["Value"].append(values.max())

53 elif metric_to_plot == "mean":

54 stats["Value"].append(values.mean())

55 elif metric_to_plot == "std":

56 stats["Value"].append(values.std())

57 else:

58 print(f"Warning: File {file} not found.")

59

60 stats_df = pd.DataFrame(stats)

61

62 if stats_df.empty:

63 print("Error: No valid data found. Ensure the column name is correct and files are properly

formatted.")↪→

64 else:

65 fig, ax = plt.subplots(figsize=(16,4))

66 ax.bar(stats_df["Label"], stats_df["Value"], color="black")

9

67

68 ax.set_xticklabels(stats_df["Label"], rotation=45, ha="right")

69 ax.set_ylabel("Jitter (ns)")

70 ax.set_title(f"{valid_metrics[metric_to_plot]} usleep()")

71

72 plt.tight_layout()

73 plt.show()

Listing 4: barchart.py

It’s important to note that the plots which display the mean value for each experiment could be misleading: if there was a
high degree of variance in the collected results, with positive & negative values, they could cancel each other out and result in a
deceptively small mean.

4.1 Signal Handling
The experimental data collected for the signal handling metric surprised me, as it did not match my expected results. Since this
benchmark measures the latency between sending a signal to a process and the process executing it in its signal handler function,
I would expect the mean latency to increase as CPU & memory load were increased. As the CPU load increases, processes
can be delayed in their execution due to scheduling, and processes may be preempted, causing higher latency. I would expect
high memory consumption to have similar effects, especially when memory locking is disabled, as the process data may then be
swapped out, which is extremely slow & costly.

However, as can be seen in the figures below, this wasn’t really the case for my collected data. The variance in my charted results
seem to just be artefacts of noise in the system and fluctuations in the experimental conditions, as they don’t seem to follow
any discernible pattern. The main reason why I think this may have happened is because of the PREEMPT_RT kernel patches
that I installed, which turned the OS into a fully-preemptible RTS, resulting in more predictable response times, and better
prioritisation of tasks; since the benchmark program runs with maximum priority, lower priority processes like my stresser
scripts could get preempted in favour of the high priority benchmarking program, thus resulting in the benchmarking program
not being majorly effected by the system load.

I found these results very surprising, but upon reflection, they make sense, and are indicative of the power of the Linux
kernel for use in hard RTS applications when the PREEMPT_RT patches are applied.

Figure 7: Mean latency for the signal handling benchmark

10

Figure 8: Minimum latency for the signal handling benchmark

Figure 9: Maximum latency for the signal handling benchmark

11

Figure 10: Standard deviation of latency for the signal handling benchmark

4.2 Interval Timer
Since the interval timer benchmark uses a POSIX interval timer to trigger a signal at precise intervals, I would expect the time
interrupts to be precisely scheduled under low CPU load, and greater delay to appear under higher CPU load due to the CPU
being busy. I would also expect swapping to worsen the jitter, as accessing the memory will be in the order of milliseconds rather
than microseconds. However, as previously discussed, the PREEMPT_RT patches will help to mitigate these issues. We can see
from the output data that, while not a clean trend upwards, there tends to be a higher jitter value for higher CPU loads. The
most telling metric is the standard deviation; we can see from the standard deviation plot below that the variance in jitter trends
upwards as CPU load &memory load increase, as one would expect.

Figure 11: Mean jitter for the interval timer benchmark

Figure 12: Minimum jitter for the interval timer benchmark

12

Figure 13: Maximum jitter for the interval timer benchmark

Figure 14: Standard deviation of jitter for the interval timer benchmark

4.3 nanosleep()

Since the nanosleep() benchmark measures the actual time elapsed versus the requested sleep duration, we would expect it to
increase as the CPU load increases due to scheduling latency inducing jitter. Memory swapping adds large delays, and one would
expect high CPU and high swap to cause erratic & unpredictable behaviour, making sleep times unreliable. The application of
the PREEMPT_RT patches should increase the accuracy of sleep times, as the wake-ups will happen closer to the requested sleep
duration and result in a lower maximum jitter value as the process can preempt other lower-priority tasks. The plotted charts
don’t bear a great deal of resemblance to the expected results, which is likely in large part due to the PREEMPT_RT patches, but
also likely due to the large number of background tasks that are running at a given time on an Ubuntu system, which could be
introducing noise into the data.

Figure 15: Mean jitter for the nanosleep() benchmark

13

Figure 16: Minimum jitter for the nanosleep() benchmark

Figure 17: Maximum jitter for the nanosleep() benchmark

Figure 18: Standard deviation of jitter for the nanosleep() benchmark

4.4 usleep()

The usleep() function serves a similar role to nanosleep(), with the primary difference being that usleep() has precision in the
microseconds (the u is an ASCII approximation of the µ symbol typically used to symbolise the “micro” prefix) rather than in
the nanoseconds, and is thus far less precise. For this reason, greater jitter is to be expected. At low CPU usage, we would expect
slightly worse performance than nanosleep(), and for this performance to decrease as CPU usage increases; similar behaviour
is to be expected as memory usage increases also. Since usleep() relies on signals internally, it could potentially suffer more
greatly under high CPU strain. The PREEMPT_RT patches can help to improve response times due to the preemptible kernel, but
swapping will still cause performance issues.

The most interesting plot for this benchmark is the standard deviation plot below, as it corresponds pretty much exactly
to what we would expect; clearly, usleep() derives less performance benefit from PATCHES_RT than nanosleep(). The jitter
is lowest when locking is enabled, there is low CPU load, and no swap, and increases as the CPU load & memory load are
increased. When locking is disabled, there is greater performance degradations between the low CPU/memory experiment and
the subsequent experiments, with the high CPU, high memory, no locking experiment yielding the greatest standard deviation,
and thus the least predictability.

14

Figure 19: Mean jitter for the usleep() benchmark

Figure 20: Minimum jitter for the usleep() benchmark

Figure 21: Maximum jitter for the usleep() benchmark

Figure 22: Standard deviation of jitter for the usleep() benchmark

15

5 Conclusions
To conclude, as CPU load & memory load increase, performance in terms of jitter & latency are to be expected to degrade.
Memory locking helps to mitigate the negative effects of high memory consumption, by preventing the memory from being
swapped. Using a fully preemptible kernel like the Linux kernel with the PREEMPT_RT patches applied can limit the negative
effects of system strain, and help to ensure that deadlines are met, making such kernels a good choice for any kind of RTS, but
particularly hard real-time systems.

References
[1] Canonical Group Ltd. Basic Ubuntu Server Installation. Accessed: 2025-03-18. 2025. url: https://documentation.

ubuntu.com/server/tutorial/basic-installation/.
[2] HishamMuhammad. htop(1). Accessed: 2025-03-18. 2025. url: https://www.man7.org/linux/man-pages/man1/htop.

1.html.
[3] Timo Rinne. scp(1). Accessed: 2025-03-18. 2022. url: https://www.man7.org/linux/man-pages/man1/scp.1.html.

16

https://documentation.ubuntu.com/server/tutorial/basic-installation/
https://documentation.ubuntu.com/server/tutorial/basic-installation/
https://www.man7.org/linux/man-pages/man1/htop.1.html
https://www.man7.org/linux/man-pages/man1/htop.1.html
https://www.man7.org/linux/man-pages/man1/scp.1.html

	Host Environment
	Benchmarking Code
	CPU & Data-Intensive Applications
	Experiments
	Signal Handling
	Interval Timer
	nanosleep()
	usleep()

	Conclusions

