
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct404 2024–11–13

Assignment 2: Image Processing & Analysis

1 A Morphological Image Processing Pipeline for Medical Images

Figure 1: Original Skin Biopsy Image

1.1 Conversion to A Single-Channel Image

1 # Task 1: A Morphological image processing pipeline for medical images

2 # Task 1.1: Conversion to a single channel image

3 import cv2

4

5 # read in original image (in BGR format)

6 image = cv2.imread("../../Task1.jpg")

7

8 # convert to greyscale

9 greyscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

10 cv2.imwrite("./output/greyscale.jpg", greyscale)

11

12 # convert to blue channel only

13 b_channel = image.copy()

14 b_channel[:, :, 1] = 0

15 b_channel[:, :, 2] = 0

16 cv2.imwrite("./output/b_channel.jpg", b_channel)

17

18 # convert blue channel to greyscale

19 b_channel_greyscale = cv2.cvtColor(b_channel, cv2.COLOR_BGR2GRAY)

20 b_channel_greyscale_contrast = b_channel_greyscale.std()

21 cv2.imwrite("./output/b_channel_greyscale.jpg", b_channel_greyscale)

22

23 # convert to green channel only

24 g_channel = image.copy()

25 g_channel[:, :, 0] = 0

1

mailto://a.hayes18@universityofgalway.ie


26 g_channel[:, :, 2] = 0

27 cv2.imwrite("./output/g_channel.jpg", g_channel)

28

29 # convert green channel to greyscale

30 g_channel_greyscale = cv2.cvtColor(g_channel, cv2.COLOR_BGR2GRAY)

31 g_channel_greyscale_contrast = g_channel_greyscale.std()

32 cv2.imwrite("./output/g_channel_greyscale.jpg", g_channel_greyscale)

33

34 # convert to red channel only

35 r_channel = image.copy()

36 r_channel[:, :, 0] = 0

37 r_channel[:, :, 1] = 0

38 cv2.imwrite("./output/r_channel.jpg", r_channel)

39

40 # convert red channel to greyscale

41 r_channel_greyscale = cv2.cvtColor(r_channel, cv2.COLOR_BGR2GRAY)

42 r_channel_greyscale_contrast = r_channel_greyscale.std()

43 cv2.imwrite("./output/r_channel_greyscale.jpg", g_channel_greyscale)

44

45 # assess objectively which allows most contrast

46 print("Blue Channel Greyscale Contrast: " + str(b_channel_greyscale_contrast))

47 print("Green Channel Greyscale Contrast: " + str(g_channel_greyscale_contrast))

48 print("Red Channel Greyscale Contrast: " + str(r_channel_greyscale_contrast))

Listing 1: 1_single_channel_conversion.py

Since the image has predominant hues of pink-purple, we would expect the green-channel-only image to be the one that yields
the highest contrast, as pink & purple colours are made up primarily by the blue & red channels: the dominance of these
channels results in little variance in intensity within these channels, and therefore green will have the highest intensity variance.
This is proven true by the text output of the above code, where the standard deviation of the greyscale image based off the green
channel alone is by far the highest:

Figure 2: Output of 1_single_channel_conversion.py

Figure 3: Original image

Figure 4: Greyscale original

Figure 5: B-Channel

Figure 6: B-Greyscale

Figure 7: G-Channel

Figure 8: G-Greyscale

Figure 9: R-Channel

Figure 10: R-Greyscale

My selected single-channel image is the greyscale version of the green-channel-only image, as it yields the greatest contrast:

2



Figure 11: Selected single-channel image: greyscale green-channel-only

1.2 Image Enhancement

1 # Task 1.2: Image Enhancement

2 import cv2

3

4 # read in chosen single-channel greyscale image

5 image = cv2.imread("./output/g_channel_greyscale.jpg", cv2.IMREAD_GRAYSCALE)

6

7 # apply histogram equalisation

8 equalised_image = cv2.equalizeHist(image)

9 equalised_image_contrast = equalised_image.std()

10 cv2.imwrite("./output/histogram_equalised.jpg", equalised_image)

11

12 # apply contrast stretching

13 stretched_image = cv2.normalize(image, None, 0, 255, cv2.NORM_MINMAX)

14 stretched_image_contrast = stretched_image.std()

15 cv2.imwrite("./output/contrast_stretched.jpg", stretched_image)

16

17 print("Histogram Equalisation Contrast: " + str(equalised_image_contrast))

18 print("Contrast Stretching Contrast: " + str(stretched_image_contrast))

Listing 2: 2_image_enhancement.py

Figure 12: Output of 2_image_enhancement.py

I chose to use the histogram equalisation technique as it gave the best contrast, as seen from the calculated standard deviation in
contrast above and in the output images below.

3



Figure 13: Histogram-equalised image Figure 14: Contrast-stretched image

1.3 Thresholding

1 # Task 1.3: Thresholding

2 import cv2

3

4 # read in chosen enhanced image

5 image = cv2.imread("./output/histogram_equalised.jpg", cv2.IMREAD_GRAYSCALE)

6

7 # perform otsu thresholding to find the optimal threshold

8 threshold_value, otsu_thresholded = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

9 cv2.imwrite("./output/otsu.jpg", otsu_thresholded)

10

11 print("Threshold value used: " + str(threshold_value))

Listing 3: 3_thresholding.py

Figure 15: Output of 3_thresholding.py

I used Otsu’s algorithm to find the optimal threshold value that best separated the foreground (objects of interest) from the
background. As can be seen from the above output, the optimal value chosen was 129.

Figure 16: Image with Otsu thresholding

4



1.4 Noise Removal

1 # Task 1.4: Noise Removal

2 import cv2

3

4 # read in thresholded image

5 image = cv2.imread("./output/otsu.jpg", cv2.IMREAD_GRAYSCALE)

6

7 # try several different sizes of structuring element (must be odd)

8 for kernel_size in range(1, 32, 2):

9 # define a disk-shaped structuring element

10 structuring_element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))

11

12 # apply morphological opening to remove noise

13 opened_image = cv2.morphologyEx(image, cv2.MORPH_OPEN, structuring_element)

14 cv2.imwrite(f"./output/kernel_size_{kernel_size}.jpg", opened_image)

Listing 4: 4_noise_removal.py

Figure 17: kernel_size = 1 Figure 18: kernel_size = 3 Figure 19: kernel_size = 5 Figure 20: kernel_size = 7

Figure 21: kernel_size = 9 Figure 22: kernel_size = 11 Figure 23: kernel_size = 13 Figure 24: kernel_size = 15

Figure 25: kernel_size = 17 Figure 26: kernel_size = 19 Figure 27: kernel_size = 21 Figure 28: kernel_size = 23

Figure 29: kernel_size = 25 Figure 30: kernel_size = 27 Figure 31: kernel_size = 29 Figure 32: kernel_size = 31

I chose to open the image with a structuring element that had kernel_size = 17 as it seemed to give the optimal balance
between removing noise without significantly reducing the size of the remaining fat globules.

5



Figure 33: Chosen noise threshold: kernel_size = 17

1.5 Extraction of Binary Regions of Interest / Connected Components

1 import cv2

2 import numpy as np

3

4 # Load and pre-process binary image

5 binary_image = cv2.imread("./output/kernel_size_17.jpg", cv2.IMREAD_GRAYSCALE)

6 binary_image = cv2.medianBlur(binary_image, 3)

7

8 # Step 1.5: Extraction of Binary Regions of Interest / connected components

9 num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image, connectivity=8)

Listing 5: Task 1.5 section of 5-7.py

I’m not sure why, but no matter what level of noise removal I tried the connected components extraction with, the connected
components always came out quite jagged. To correct for this, I did some additional noise reduction by using a blur on the
image to remove some of the white noise that was appearing in. I also used a higher value of connectivity with connectivity=8,
keeping components that were touching at all rather than components that just shared an edge.

1.6 Filtering of Fat Globules

11 # Initialize an empty mask for filtered regions

12 filtered_mask = np.zeros(binary_image.shape, dtype=np.uint8)

13

14 total_globules = 0

15

16 # Task 1.6: Filtering of Fat Globules

17 for i in range(1, num_labels):

18 area = stats[i, cv2.CC_STAT_AREA]

19

20 # Calculate compactness

21 perimeter = cv2.arcLength(cv2.findContours((labels == i).astype(np.uint8), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)[0][0], True)↪→

22 compactness = (perimeter ** 2) / area if area > 0 else 0

23

24 if (300 < area) and (compactness < 27):

25 total_globules += 1

26 filtered_mask[labels == i] = 255

27

28 cv2.imwrite("./output/filtered_fat_globules.jpg", filtered_mask)

29 print("Total globules: " + str(total_globules))

Listing 6: Task 1.6 section of 5-7.py

6



I filtered the fat globules based off size & compactness, using the compactness measure to remove globules that were not
globule-shaped and the area measure to remove globules that were too small to be a globule. I used a maximum compactness of
27 and a minimum area of 300 to filter the globules, resulting in a total of 35 fat globules.

Figure 34: Result of fat globule filtering

1.7 Calculation of the Fat Area

31 # Task 1.7: Calculation of the Fat Area

32 # Total area of the image in pixels (excluding the background)

33 total_image_area = binary_image.shape[0] * binary_image.shape[1]

34

35 # Total fat area (in pixels)

36 fat_area = np.sum(filtered_mask == 255)

37

38 # Calculate fat percentage

39 fat_percentage = (fat_area / total_image_area) * 100

40 print(f"Fat Area Percentage: {fat_percentage:.2f}%")

Listing 7: Task 1.7 section of 5-7.py

The percentage of the image covered by fat globules was 15.33%.

7



2 Filtering of Images in Spatial & Frequency Domains

Figure 35: Original Facial Image

2.1 Spatial Domain

5 # Task 2.1: Spatial Domain

6 image = cv2.imread("../../Task2.jpg")

7

8 kernel_size = (15, 15)

9 variance = 2

10

11 smoothed_image = cv2.GaussianBlur(image, kernel_size, variance)

12

13 cv2.imwrite("./output/1_spatial_domain.jpg", smoothed_image)

Listing 8: Task 2.1 section of task2.py

After some experimentation, I chose parameter values of kernel_size = (15,15) and variance = 2 as, in my opinion, these
yielded the best balance between blurring imperfections like wrinkles without causing the entire image to become too blurry.

8



Figure 36: Output of 1_spatial_domain.jpg

2.2 Frequency Domain Low-Pass Filter

15 # Task 2.2: Frequency Domain Low-Pass Filter

16 gaussian_kernel = cv2.getGaussianKernel(kernel_size[0], variance)

17 gaussian_kernel_2d = gaussian_kernel @ gaussian_kernel.T

18 fft_gaussian = np.fft.fft2(gaussian_kernel_2d)

19

20 # shift zero frequency component to center

21 fft_gaussian_shifted = np.fft.fftshift(fft_gaussian)

22

23 # calculate the magnitude spectrum for visualization

24 magnitude_spectrum = np.log(np.abs(fft_gaussian_shifted) + 1)

25

26 # Plot the magnitude spectrum (Frequency Domain Representation)

27 plt.imshow(magnitude_spectrum, cmap='gray')

28 plt.axis('off')

29 plt.savefig("./output/2_frequency_domain_low-pass_filter.jpg", bbox_inches='tight', pad_inches=0)

Listing 9: Task 2.2 section of task2.py

9



Figure 37: Zero-centered low-pass filter of Gaussian Kernel

2.3 Frequency Domain Filtering

31 # Task 2.3: Frequency Domain Filtering for

32 channels = cv2.split(image)

33 filtered_channels = []

34

35 for channel in channels:

36 fft_channel = np.fft.fft2(channel)

37

38 # shift the zero frequency component to the center

39 fft_channel_shifted = np.fft.fftshift(fft_channel)

40

41 # create a Gaussian filter the same size as the channel

42 gaussian_kernel = cv2.getGaussianKernel(kernel_size[0], variance)

43 gaussian_kernel_2d = gaussian_kernel @ gaussian_kernel.T

44

45 # pad the Gaussian filter to match the size of the image channel

46 gaussian_kernel_padded = np.pad(gaussian_kernel_2d,

47 ((0, fft_channel_shifted.shape[0] - gaussian_kernel_2d.shape[0]),

48 (0, fft_channel_shifted.shape[1] - gaussian_kernel_2d.shape[1])),

49 mode='constant', constant_values=0)

50

51 # shift the padded filter in the frequency domain

52 fft_gaussian_padded_shifted = np.fft.fftshift(np.fft.fft2(gaussian_kernel_padded))

53

54 # apply the low-pass filter to the channel

55 low_pass_filtered = fft_channel_shifted * fft_gaussian_padded_shifted

56

57 # perform the inverse FFT to get the filtered channel in the spatial domain

58 ifft_filtered = np.fft.ifft2(np.fft.ifftshift(low_pass_filtered))

59

60 # take the real part and normalize it

61 filtered_channel = np.real(ifft_filtered)

62 filtered_channel = np.clip(filtered_channel, 0, 255).astype(np.uint8)

63

64 # append the filtered channel to the list

65 filtered_channels.append(filtered_channel)

66

67 filtered_image_color = cv2.merge(filtered_channels)

10



68

69 cv2.imwrite("./output/3_filtered_color_image.jpg", filtered_image_color)

Listing 10: Task 2.3 section of task2.py

Figure 38: Frequency domain filtered image

The low pass filter type used was the same as in Section 2.2: a Gaussian filter with (15,15) and 2.

11



2.4 Comparison

Figure 39: Spatial domain filtered image Figure 40: Frequency domain filtered image

The two images are very similar, having shared the same type of low pass filter. However, the frequency domain filtered image
has retained more colour range, and has an overall less blurred appearance. The spatial domain filtering has applied a general
blur across the entire image, making the filtering more obvious. On the other hand, the frequency domain filtering is more
subtle and reduces the visibility of wrinkles while retaining some definition in the eyes, lips, and stubble. Overall, I would prefer
the frequency domain filtering for this task; despite its increased complexity, it creates a more subtle and convincing effect that
would be easily mistakable for an unfiltered image.

2.5 Unseen Image Testing

Figure 41: Original Image Figure 42: Spatial domain filtered image Figure 43: Frequency domain filtered

Again, the two filtered images are very similar. In my opinion, the frequency domain filtered image performed better here again,

12



as it has a more dynamic colour range and more subtle blurring. The skin looks very artificially smoothed in the spatial domain
filtered image, but more natural in the frequency domain filtered image. The hair looks more blurred and out-of-focus in the
spatial domain filtered image, but looks sharper and more natural in the frequency domain filtered image.

13


	A Morphological Image Processing Pipeline for Medical Images
	Conversion to A Single-Channel Image
	Image Enhancement
	Thresholding
	Noise Removal
	Extraction of Binary Regions of Interest / Connected Components
	Filtering of Fat Globules
	Calculation of the Fat Area

	Filtering of Images in Spatial & Frequency Domains
	Spatial Domain
	Frequency Domain Low-Pass Filter
	Frequency Domain Filtering
	Comparison
	Unseen Image Testing


