
Recovery

Basic approach is to maintain a log. If a crash occurs we can scan log
for operations to redo and operations that need to be undone.

Recap: A commit point of a transaction indicates that a transaction
has completed and its effects are considered to reflected in the
database. At commit point, we force-write the system log to disk and
then append a [commit, T] to the system log.

General approach to recovery following a system crash.

Search log for:

transactions that have not yet reached commit point - the
effects of these transactions can be undone.

transactions that have reached commit point- the effects of
these transactions can be redone.

The system log is also kept on disk. It is common to keep block in
memory until it is full. Hence, a part of the log may be lost is there is
a system crash.

Hence, if a transaction T reaches its commit point, force write block
of log to disk prior to appending {commit, T} to log.

A log may become quite large which can cause the recovery process
to be quite slow.

Checkpoints are often used to improve performance.

A checkpoint involves:

suspend all transactions

force write all database pages in memory

append checkpoint to log

resume all suspended transactions

Usually issued a regular intervals. The recovery system need not look
at transactions that have committed prior to the last checkpoint

Transactions usually operate under one of two protocols:

Deferred update:
updates not made to database until the transaction has
committed.

Immediate update:
updates are immediately reflected in database

Deferred Update Protocol

Recovery Protocol

1. Examine system log back as far as the last [checkpoint] entry,
making two lists: uncommitted transactions and committed
transactions.

2. Ignore all the operations of the uncommitted transactions.

3. Redo all the operations of committed transactions.

Under the deferred update protocol, the system log needs only to
contain the following entry types:

i) [start_transaction, T]
ii) [write_item, T, X, new_value]
iii) [commit, T]

Immediate Update Protocol

1. Make two lists: uncommitted transactions and committed
transactions.

2. Undo all the operations of the uncommitted transactions

3. Undo all the operations of committed transactions that have read
an item of previously written by a rolled back transaction.

4. Redo all the operations of committed transactions that have not
read an item by a rolled back transaction

Can have cascading rollback.

We need to keep extra records in log to facilitate recovery:

[write_item, T, X, old_value, new_value]
[read_item, T, X]

SQL Support for Transactions

A single SQL statement is always considered to be
atomic. Either the statement completes execution
without error or it fails and leaves the database
unchanged.

In SQL, there is no explicit Begin Transaction
statement. Transaction initiation is done implicitly
when particular SQL statements are encountered.

Every transaction must have an explicit end
statement, which is either a COMMIT or
ROLLBACK.

Can specify the characteristics of an SQL statement
with the SET command.

Can specify the access mode and isolation level.

Access mode: READ ONLY or READ WRITE.

The default is READ WRITE unless the isolation
level of READ UNCOMITTED is specified, in which
case READ ONLY is assumed.

Isolation level <isolation>, where <isolation> can be:

READ UNCOMMITTED,
READ COMMITTED,
REPEATABLE READ
SERIALIZABLE.

The default is SERIALIZABLE.

With SERIALIZABLE: the interleaved execution of
transactions will adhere to our notion of
serializability. However, if any transaction executes
at a lower level, then serializability may be violated.

Potential problem with lower isolation levels:

Temporary Update Problem:

Reading a value that was written by a
transaction which failed.

Nonrepeatable Read:
Allowing another transaction to write a new value between
multiple reads of one transaction.

Phantoms:
New rows being read using the same read with a condition.

Sample SQL transaction:
EXEC SQL whenever sqlerror go to UNDO;
EXEC SQL SET TRANSACTION

READ WRITE
DIAGNOSTICS SIZE 5
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT
INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)
VALUES ('Robert','Smith','991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1
WHERE DNO = 2;

EXEC SQL COMMIT;
GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;
THE_END;

Summary:

Concurrency control – potential problems.

Transaction – states

Desirable properties of transactions

Schedules – serial, serializability

2 phase locking, timestamping

Recovery – system log, entries, algorithms for
recovery

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

