
Introduction

Single-User System: At most one user at a time can
use the system.

Multiuser System: Many users can access the system
concurrently.

Concurrency:

Interleaved processing: concurrent execution of
processes is interleaved in a single CPU

Parallel processing: processes are concurrently
executed in multiple CPUs.

Concurrency Control, Recovery Mechanisms

Transactions - states, properties; Schedules

Concurrency Control - problems, approaches
(locking, timestamping)

Recovery - problems, recovery mechanisms

Transactions - introduction

A transaction: logical unit of database processing
that includes one or more access operations (read -
retrieval, write - insert or update, delete).

A transaction (set of operations) may be stand-
alone specified in a high level language like SQL
submitted interactively, or may be embedded within
a program.

Transaction boundaries: Begin and End transaction.

An application program may contain several
transactions separated by the Begin and End
transaction boundaries.

Reading involves:

finding address of a disk block that contains
the item X

copying that disk block to a buffer

copying item X from buffer to program
variable X.

Writing involves:

Find the address of the disk block that
contains item X.

Copy that disk block into a buffer in main
memory (if that disk block is not already in
some main memory buffer).

Copy item X from the program variable
named X into its correct location in the buffer.

Store the updated block from the buffer back
to disk (either immediately or at some later
point in time).

Sample Transaction

read_item(X)

X : = X - N

write_item(X)

Concurrency Control

In most DBMS environments, it is desirable to allow
many people to access the database at the same
time.

Hence, many transactions running at once.

Needed to overcome problems that will arise if we
allow unchecked access to the database.

The Lost Update Problem:
T1 T2

read_item(X);

X := X-N;

read_item(X);

X := X+M;

write_item(X);

write_item(X);

This results in the `incorrect' value being stored.

Temporary Update Problem:
T1 T2

read_item(X);

X := X-N;

write_item(X);

read_item(X);

X := X+M;
write_item(X);

read_item(Y);

.

.

<CRASH>

Recovery mechanism will undo the effect of T1; the value of X
will be changed back; T2 has the`incorrect' values

Incorrect Summary Problem

occurs when one transaction is calculating a sum
(or some other aggregate function) of a range of
values and another transaction is concurrently
changing those items.

We need means to prevent these types of problems
occurring.

Exercise: Draw a sample schedule that shows the
incorrect summary problem.

Recovery

If a transaction is submitted to the DBMS, the
system should ensure that either:

the transaction is completed successfully and
it's effect recorded or

the transaction fails and has no effect on the
database.

Partial execution of a transaction should not occur

Transactions can fail for a variety of reasons:

System Crash

Transaction Error

Exception Conditions

Concurrency Control Enforcement

Disk Error

Catastrophes

Main operations of a transaction

begin_transaction

read_item or write_item

end_transaction

commit

rollback (a transaction)

Undo (an operation)

Redo (an operation)

States of a transaction

Active state

Partially committed state

Committed state

Failed state

Terminated State

System Log

A system log or journal is usually maintained by the
DBMS in order to facilitate recovery

The following operations for each transaction are
recorded.

System Log

start_transaction, T

write_item, T, X, old_value, new_value

read_item, T, X

commit, T

Commit Point

A transaction reaches its commit point if:

It finishes successfully

effects are recorded in log

Following a commit point of a transaction any
updates by that transaction are considered to
permanently stored in the database

A {commit, T} entry is recorded in the log

Desirable Properties of transactions:

Atomicity: a transaction should be performed
completely or not at all

Consistency Preservation: a transaction should take
the database from one consistent state to another

Isolation: updates of a transaction T should not be
visible to other transactions until T commits.

Durability: updates made by a committed
transaction should not be undone later due to
failure.

These four properties are often referred to the ACID
properties of a transaction.

Serializability

A schedule is any collection of transactions T_1,
T_2, … , T_N). Each transaction can contain a
number of read and write operations.

A desirable property of a schedule is that it is
serializable.

A serial schedule is a schedule such that there is no
interleaving of the operations of the transactions

If a schedule is serial we can guarantee that no lost
updates, incorrect summary problems etc. will arise

One potential means to enforce concurrency control
is to allow only serial schedules

However, this is far too limiting a constraint and
would severely limit the throughput of the system

Ideally, we wish to allow interleaving of operations
but maintain `equivalence' to a serial schedule.

A schedule that is `equivalent' to a serial schedule
is known as a serializable schedule.

Need to define `equivalence' of schedules. The
most commonly adopted definition is that of conflict
equivalence.

Defn: Conflicting operations: 2 operations are said
to conflict if (i) they access the same item and (ii)
at least one of these operations is a write.

We say there is a conflict between two transactions
T_1 and T_2 if they contain operations that conflict
with each other.

A schedule S is said to be conflict serializable if the
conflicting operations occur in exactly the same
order as in some serial schedule

Given a schedule S of transactions (T_1, … T_N) we
can test for conflict serializability using the
following algorithm:

for each transaction create a node

Create an edge between node T1 and T2 if:

i) T1 issues read_item(X) before

T2 issues write_item(X) or

ii) T1 issues write_item(X) before

T2 issues read_item(X) or

iii) T1 issues write_item(X) before

T2 issues write_item(X)

If a cycle exists => not conflict-serializable

else conflict-serializable

Consider again the schedule we had to illustrate the
lost update problem.

Graph contains a cycle, hence not serializable

If a cycle exists => not conflict-serializable

else conflict-serializable

This method of checking for conflict serializability is
not practical in real world scenarios, as we do not
know:

which transactions will be run

which operations they will contain.

We need to develop techniques that will guarantee
conflict-serializability. We need to reject any
operation that violates the principles of conflict
serializability

The two main approaches are:

locking protocols

time-stamping

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

