
Design by synthesis

Colm O’Riordan

School of Computer Science



Design by Synthesis - Background
Typically, we have the relation R and a set of functional
dependencies F .
We wish to create a decomposition D = R1,R2, ...Rm.
Clearly, all attributes of R must occur in a least one schema Ri ,
i.e.,

Um
i=1Ri = R

This is known as the attribute preservation constraint.



Functional dependencies
A functional dependency is a constraint between two sets of
attributes. A functional dependency X → Y exists if for all
tuples t1 and t2, if t1[X ] = t2[X ], then t1[Y ] = t2[Y ].

Usually only specify the obvious functional dependencies.
There may exist many more.

Given a set of functional dependencies F , the closure of F
(denoted F+) refers to all dependencies that can be derived
from F .



A set of inference rules exist, that allow us to deduce or infer all
functional dependencies from a given initial set.

Known as Armstrong’s Axioms



Armstrong’s Axioms
Reflexivity: if X ⊇ Y , then X → Y
Augmentation: if X → Y , then XZ → YZ
Transitivity: if X → Y ,Y → Z , then X → Z
Projectivity: if X → YZ , then X → Z
Additivity: if X → Y ,X → Z , then X → YZ
Pseudo-transitivity: if X → Y ,WY → Z , then WX → Z



The first three rules have be shown to be sound and complete.

Sound
Given a set F specified on a relation R, any dependency we
can infer from F using the first three rules, holds for every state
r of R that satisfies the dependencies in F .

Complete
We can use the first three rules repeatedly to infer all possible
dependencies that be can be inferred from F .



For any set of attributes A, we can infer A+, the set of attributes
that are functionally determined by A given a set of functional
dependencies.



Algorithm to determine the closure of A under F

A+ := A;
repeat
oldA+ := A+

for each functional dependency Y → Z ∈ F do
if A+ ⊇ Y , then

A+ := A+ ∪ Z
until (A+ == oldA+)



Cover Sets
A set of functional dependencies, F , covers a set of functional
dependencies E , if every functional dependency in E is in F+

Equivalence
Two set of functional dependencies, E and F are equivalent is
E+ = F+

We can check if F covers E by calculating A+ with respect to F
for each functional dependency A→ B and then checking that
A+ includes the attributes of B



Minimal Cover Sets
A set of functional dependencies, F, is minimal if:

Every functional dependency in F has a single attribute for
its right hand side.
We cannot remove any dependency from F and maintain a
set of dependencies equivalent to F .
We cannot replace any dependency X → A with a
dependency Y → A where Y ⊂ X , and still maintain a set
of dependencies equivalent to F .



All functional dependencies X → Y , specified in F , should exist
in one of the schema Ri , or should be inferrable from the
dependencies in Ri .

This is known as the dependency preservation constraint.

Each functional dependency specifies some constraint; if the
dependency is absent then some desired constraint is also
absent.

If a functional dependency is absent then we must enforce the
constraint in some other manner. This can be inefficient.



Given F and R, the projection of F on Ri , denoted πRi (F ) where
Ri is a subset of R, is the set X → Y in F+ such that attributes
X ∪ Y ∈ Ri .

A decomposition of R is dependency-preserving if
((πR1(F )) ∪ . . . ∪ (πRm(F )))+ = F+.



Theorem:
It is always possible to find a decomposition D with respect to F
such that:

1 the decomposition is dependency-preserving
2 all Ri in D are in 3NF



We can always guarantee a dependency-preserving
decomposition to 3NF.
Algorithm:

1 Find a minimal cover set G for F.
2 for each left hand side X of a functional dependency in G,

create a relation X ∪ A1 ∪ A2 . . .Am in D, where
X → A1X → A2 . . . are the only dependencies in G with X
as a left hand side.

3 Group any remaining attributes into a single relation.



Lossless joins
Consider the following relation:
EMPPROJ: ssn, pnumber, hours, ename, pname, plocation

and its decomposition to:

EMPPROJ1: ename, plocation
EMPLOCAN: ssn, pno, hrs, pname, plocation

If we perform a natural join on these relations, we may generate
spurious tuples.



Lossless Joins
Also known as non-additive joins.

When a natural join is issued against relations, no spurious
tuples should be generated.

A decomposition D = {R1,R2, . . .Rn} of R has the lossless join
property wrt to F on R if for every instance r the following holds:

./ (πR1(r), . . . πRm(r)) = r)



We can automate procedure for testing for lossless property.

Can also automate the decomposition of R into R1, . . .Rm such
that it possesses the lossless join property.



A decomposition D = {R1,R2} has the lossless property iff:
functional dependency (R1 ∩ R2)→ {R1 − R2} is in F+

or functional dependency (R1 ∩ R2)→ {R2 − R1} is in F+



Furthermore, if a decomposition has the lossless property, and
we decompose one of Ri such that this also is a lossless
decomposition, then replacing that decomposition of Ri in the
original decomposition will result in a lossless decomposition.



Algorithm to decompose to BCNF
Let D = R
while there is a schema B in D that violates BCNF do

choose B
find functional dependency (X → Y ) that violates BCNF
replace B with
(B − Y ) and (X ∪ Y )



So, we guarantee a decomposition such that:

all attributes are preserved
lossless join property is enforced
all Ri are in BCNF

It is not always possible to decompose R into a set of Ri such
that all Ri satisfy BCNF and properties of lossless joins and
dependency preservation are maintained.



We can guarantee a decomposition such that:

all attributes are preserved
all relations are in 3NF
all functional dependencies are maintained
the lossless join property is maintained



Algorithm: Finding a key for relation schema R
set K := R.
For each attribute A ∈ K.

compute (K − A)+ wrt to set of functional dependencies.
if e (K − A)+ contains all the attributes in R, the set K :=

K - {A}.



Summary
Given a set of functional dependencies F, we can develop a
minimal cover set.
Using this we can decompose R into a set of relations such that
all attributes are preserved, all functional dependencies are
preserved, the decomposition has the lossless join property
and all relations are in 3NF.

Advantages
Provides a good database design.
Can be automated.

Disadvantages
Oftentimes, numerous good designs are possible.


