
Introduction Dynamic Hashing Linear Hashing

Dynamic Hashing

Dynamic Hashing 1 / 20



Introduction Dynamic Hashing Linear Hashing

Introduction

Dynamic Hashing 2 / 20



Introduction Dynamic Hashing Linear Hashing

Can we improve upon logarithmic searching?

Hashing is a technique that attempts to provide constant time for searching and
insertion, i.e O(K)

The basic idea for both searching and insertion is to apply a hash function to the
search field of the record.

The return value of the hash function is used to reference a location in the hash
table

‘

Dynamic Hashing 3 / 20



Introduction Dynamic Hashing Linear Hashing

Different approaches

Create a hash table containing N addressable ‘slots’

Each “slot’ may contain one record

Create a hash function that returns a value to be used in insertion and searching

The value returned by the hash function must be in the correct range, i.e, the
address space of the hash table

If the range of the keys is that of the address space of the table, we can guarantee
constant time lookup

Usually, this is not the case as the address space of the table is much smaller than
that of the search field

Dynamic Hashing 4 / 20



Introduction Dynamic Hashing Linear Hashing

With numeric keys can use modulo-division or truncation

With character keys must first convert to integer value. Can achieve this by
multiplying ASCII code of characters together and then applying modulo-division

Cannot guarantee constant time performance as collisions will occur i.e., two
records with different search values being hashed to the same location in the table

we require a collision resolution policy

Dynamic Hashing 5 / 20



Introduction Dynamic Hashing Linear Hashing

Efficiency then depends on the number of collisions. Number of collisions depends
mainly on the load factor, λ, of the file:

λ =
no of records

no of slots

Dynamic Hashing 6 / 20



Introduction Dynamic Hashing Linear Hashing

Collision Resolution Policy

Chaining: if location is full, add item to a linked list

performance degrades if load factor is high.

lookup time is, on average, 1 + λ (average case)

Linear Probing: if location is full, check in a linear manner for next free space.

This can degrade to a linear scan: performance:

if successful: 0.5(1 + 1
1−λ

)

if unsuccessful: 0.5(1 + 1
(1−λ)2

)

one big disadvantage is that this leads to the formation of clusters

Quadratic probing: if location is full, check location x + 1, location x + 4, ...
(x + n)2

less clustering

Double hashing: if location x occupied, then apply second hash function can
help guarantee even distribution (a fairer hash function)

Dynamic Hashing 7 / 20



Introduction Dynamic Hashing Linear Hashing

Dynamic Hashing

Dynamic Hashing 8 / 20



Introduction Dynamic Hashing Linear Hashing

Care should be taken in designing hash function. Usually require fair hash
function.

Difficult to guarantee if no/limited information available about the type of data to be
stored.

Often heuristics can be used if domain knowledge available

Can have both internal (some data structure in memory) or external hashing (to
file locations)

Size of original table or file?

Dynamic Hashing 9 / 20



Introduction Dynamic Hashing Linear Hashing

We considered hashing to an array (in memory).

In reality, in database systems, we are typically hashing to a disk block (bucket)
each of which can contain a fixed number of records.

If a block is full, then we have a collision.

Typically dealt with using overflow buckets (chaining).

Dynamic Hashing 10 / 20



Introduction Dynamic Hashing Linear Hashing

The cases we’ve considered thus far deal with the idea of a fixed hash table; this
is referred to as static hashing.

Problems arise if the database grows larger than planned; too many overflow
buckets and performance degrades.

A more suitable approach is dynamic hashing, where the table/file can be resized
as needed.

Dynamic Hashing 11 / 20



Introduction Dynamic Hashing Linear Hashing

General Approach

use a family of hash functions h0, h1, h2, etc.

hi+1 is a refinement of hi

For example, Kmod2i

Develop a base hash function that maps key to a positive integer

Then use, h0(x) = xmod2b for a chosen b. There will be 2b buckets initially.

Can effectively double the size of the table by incrementing b

Dynamic Hashing 12 / 20



Introduction Dynamic Hashing Linear Hashing

Common dynamic hashing approaches: extendible hashing and linear hashing.

Conceptually double the number of buckets when re-organising. From an
implementation perspective, we do not actually double size as it may not be
needed.

Extendible hashing - reorganise buckets when and where needed

Linear hashing - reorganise buckets when but not where needed.

Dynamic Hashing 13 / 20



Introduction Dynamic Hashing Linear Hashing

Extendible Hashing

When a bucket overflows, split that bucket in two.

Conceptually, split all the buckets in two A directory (a form of index) is use to
achieve this conceptual doubling.

Dynamic Hashing 14 / 20



Introduction Dynamic Hashing Linear Hashing

Extendible Hashing

If a collision or overflow occurs, we don’t re-organise the file by doubling the
number of buckets; too expensive.

Instead we maintain a directory of pointers to buckets, we can effectively double
the number of buckets by doubling the directory, splitting just the bucket that
overflowed.

As the directory is much smaller than file, so doubling it is much cheaper.

Dynamic Hashing 15 / 20



Introduction Dynamic Hashing Linear Hashing

On overflow, we split the bucket (allocate new bucket and re-distribute contents).

We double the directory size if necessary.

For each bucket, we maintain a local depth (effectively the number of bits needed
to hash an item here).

Also maintain a global depth for the directory; the number of bits used in indexing
items.

These values can be used to determine when to split the directory.

Dynamic Hashing 16 / 20



Introduction Dynamic Hashing Linear Hashing

If overflow in bucket with local depth = global depth, then split bucket, re-distribute
contents, double the directory.

If overflow into bucket with local depth < global depth, then split bucket,
re-distribute contents. Increase local depth.

If directory can fit in memory, then retrieval for point queries can be achieved with
one disk read.

Dynamic Hashing 17 / 20



Introduction Dynamic Hashing Linear Hashing

Linear Hashing

Dynamic Hashing 18 / 20



Introduction Dynamic Hashing Linear Hashing

Another approach to indexing to a dynamic file. Similar idea in that a family of
hash functions are used (h = K mod 2i ), but differs in that no index is needed.

Initially, create a file of M buckets. K mod M1 is a suitable hash function.

We will use a family of such functions K mod (2i × M), i = 0 initially.

Can view the hashing as comprising a sequence of phases.

For phase j, the hash functions K mod 2j × M and K mod 2j+1 × M are used.

Dynamic Hashing 19 / 20



Introduction Dynamic Hashing Linear Hashing

Splitting a bucket means to redistribute the records into two buckets: the original
one and a new one.

In phase j , to determine which ones go into the original while the others go into
the new one, we use hj+1(K ) = Kmod2j+1 × M to calculate their address.

Irrespective of the bucket which causes the overflow, we always split the next
bucket in a linear order.

We begin with bucket 0, and keep track of which bucket to split next, p.

At the end of a phase when p is equal to the number of buckets present at the
start of the phase, we reset p and a new phase begins (j incremented).

Dynamic Hashing 20 / 20


	Introduction
	Dynamic Hashing
	Linear Hashing

