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Details

Lecture slides to be made available weekly on canvas.

Discussion boards for any queries people may have.

Short regular exercise sheets (not graded) to help/guide study.

Assignments during the semester



Recommended Texts

Fundamentals of Database Systems by Elmasri and Navathe 005.74 
ELM

Database system concepts by Silberschatz, A. 005.74 SIL

Plenty of other good database books in library – (e.g. Date and by 
Ullman)



Course Grading

• Assignments account for 30%

• Plagiarism of assignment work not permitted. Strictly enforced.

• Remainder awarded in examination



DESIGN

Design by synthesis
Functional dependencies
Armstrong’s axioms
Closure and cover set
Algorithm for generating design
Normal forms
Non-additive join property



DESIGN

Physical Design
Indexing strategies
Denormalisation
Choice of keys



QUERY PROCESSING

Indexing
Indexing fundamentals
B-trees; B+trees
Extendible Hashing



QUERY PROCESSING

Query execution and optimisation
Relational algebra and SQL
Heuristic optimisation
Algorithms for SQL operators



QUERY PROCESSING

Algorithms for SQL operators
Algorithms for select, project, set operators, join
Indexed based approaches
Hashing approaches
Sorting methods
Parallel approaches



TRANSACTIONS

Transactions
Properties
States
Schedules
Properties of schedules
Serializability



TRANSACTIONS

Concurrency Control
locking techniques
2 phase locking
time-stamping
multi-version timestamp control



TRANSACTIONS

Recovery

Immediate update and deferred update protocol
Algorithms for recovery under these protocols



Models

• Object Relational

• Object Oriented Databases

• Comparison of Models



Models

• NOSQL database
• Types
• Languages and models
• Advantages/Limitations



Models

• Distributed Databases
• query processing
• concurrency control (locking and time-stamping)
• recovery



Models

• Parallel Databases
• approaches
• parallel algorithms for relational operators



Models

• Graph Databases
• structure
• languages
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Recap - ER modelling
ER modelling concepts
Guidelines to map to a relational model



Recap - Normalisation
Normalisation can be used to:

develop a normalised relational schema given the
universal relation
verify correctness of relational schema developed from
conceptual design.

Decompose relation such that it satisfies successively
restrictive normal forms



Desirable properties of a relational schema
Clear semantics of a relation
Reducing the number of redundant values in tuples
Reducing the number of null values in tuples
Disallowing the possibility of generating spurious tuples.



Clear semantics
The semantics of a relation refers to how the attributes grouped
together in a relation are to be interpreted.

If ER modelling is done carefully and the mapping undertaken
correctly, it is likely the semantics of the resulting relation will be
clear.

One should try to design a relation so that it is easy to explain
its meaning.



Reducing redundancy
The presence of redundancy leads to:

1 waste of storage space
2 potential for anomalies (deletion, update, insertion). One

try to design relations so that no anomalies may occur. If
an anomaly can occur, it should be noted.

3 Normalisation will remove many of the potential anomalies.



Reducing the number of null values
Having nulls is often necessary; however having nulls can
create problems.

waste of space
different interpretations:

attribute does not apply to this tuple
attribute value is unknown
attribute value is known but absent.

difficulty with aggregate functions
different meanings with respect to different join operations.



Disallowing generation of spurious tuples
If a relation R is decomposed into R1 and R2 and connected via
a primary key - foreign key pair, then performing an equi-join
between R1 and R2 on the involved keys should not produce
tuples that were not in the original relation R.



Desirable properties - more formally
Typically we have a relation, R, and a set of functional
dependencies, F , defined over R.

We wish to create a decomposition:
D = {R1, R2, . . . , Rn}

We wish to guarantee certain properties of this decomposition.



Desirable properties - more formally
We require that all attributes in the original R be maintained in
the decomposition. i.e.,

R = R1 ∪ R2 ∪ . . . ∪ Rn



Normalisation - Recap
A relation R is said to be in first normal form if there are no
repeating fields.
A relation R is said to be in 2NF if it is in 1NF and if every
non-prime attribute is fully functionally dependent on the
key.
A relation is said to be in third normal form (3NF) if it is in
2NF and if no non-prime attribute is transitively dependent
on the key.



Boyce-Codd Normal Form
A relation is said to be in Boyce-Codd Normal form (BCNF) if
the relation is in 3NF and if every determinant is a candidate
key.



Sample data
StudentNo Major Advisor

123 I.T. Smith
123 Econ Murphy
444 Biol. O’ Reilly
617 I.T. Jones
829 I.T. Smith



Constraints:
A student may have more than one major
For each major a student has only one advisor
Each major can have several advisors
Each advisor advises one major
Each advisor can advise several students



Functional Dependencies
{StudentNo, Major} → {Advisor}
{Advisor} → Major



Update anomaly may exist
If student 444 changes major, we lose information that O’ Reilly
supervises Biology

Decompose tables so as to satisfy BCNF
TAKES: StudentNo, Advisor
ADVISES: Advisor, Major



General Rule
Consider relation R with functional dependencies F.
If X → Y violates BCNF, decompose R into

{R − Y}
{XY}.



Let R = {A, B, C, D, E , F , G, H}
The functional dependencies defined over R are:

A → D
B → E
E → F
F → G
F → H
{A, B} → C
C → A

Decompose R such that BCNF is satisfied.
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Design by Synthesis - Background
Typically, we have the relation R and a set of functional
dependencies F .
We wish to create a decomposition D = R1,R2, ...Rm.
Clearly, all attributes of R must occur in a least one schema Ri ,
i.e.,

Um
i=1Ri = R

This is known as the attribute preservation constraint.



Functional dependencies
A functional dependency is a constraint between two sets of
attributes. A functional dependency X → Y exists if for all
tuples t1 and t2, if t1[X ] = t2[X ], then t1[Y ] = t2[Y ].

Usually only specify the obvious functional dependencies.
There may exist many more.

Given a set of functional dependencies F , the closure of F
(denoted F+) refers to all dependencies that can be derived
from F .



A set of inference rules exist, that allow us to deduce or infer all
functional dependencies from a given initial set.

Known as Armstrong’s Axioms



Armstrong’s Axioms
Reflexivity: if X ⊇ Y , then X → Y
Augmentation: if X → Y , then XZ → YZ
Transitivity: if X → Y ,Y → Z , then X → Z
Projectivity: if X → YZ , then X → Z
Additivity: if X → Y ,X → Z , then X → YZ
Pseudo-transitivity: if X → Y ,WY → Z , then WX → Z



The first three rules have be shown to be sound and complete.

Sound
Given a set F specified on a relation R, any dependency we
can infer from F using the first three rules, holds for every state
r of R that satisfies the dependencies in F .

Complete
We can use the first three rules repeatedly to infer all possible
dependencies that be can be inferred from F .



For any set of attributes A, we can infer A+, the set of attributes
that are functionally determined by A given a set of functional
dependencies.



Algorithm to determine the closure of A under F

A+ := A;
repeat
oldA+ := A+

for each functional dependency Y → Z ∈ F do
if A+ ⊇ Y , then

A+ := A+ ∪ Z
until (A+ == oldA+)



Cover Sets
A set of functional dependencies, F , covers a set of functional
dependencies E , if every functional dependency in E is in F+

Equivalence
Two set of functional dependencies, E and F are equivalent is
E+ = F+

We can check if F covers E by calculating A+ with respect to F
for each functional dependency A→ B and then checking that
A+ includes the attributes of B



Minimal Cover Sets
A set of functional dependencies, F, is minimal if:

Every functional dependency in F has a single attribute for
its right hand side.
We cannot remove any dependency from F and maintain a
set of dependencies equivalent to F .
We cannot replace any dependency X → A with a
dependency Y → A where Y ⊂ X , and still maintain a set
of dependencies equivalent to F .



All functional dependencies X → Y , specified in F , should exist
in one of the schema Ri , or should be inferrable from the
dependencies in Ri .

This is known as the dependency preservation constraint.

Each functional dependency specifies some constraint; if the
dependency is absent then some desired constraint is also
absent.

If a functional dependency is absent then we must enforce the
constraint in some other manner. This can be inefficient.



Given F and R, the projection of F on Ri , denoted πRi (F ) where
Ri is a subset of R, is the set X → Y in F+ such that attributes
X ∪ Y ∈ Ri .

A decomposition of R is dependency-preserving if
((πR1(F )) ∪ . . . ∪ (πRm(F )))+ = F+.



Theorem:
It is always possible to find a decomposition D with respect to F
such that:

1 the decomposition is dependency-preserving
2 all Ri in D are in 3NF



We can always guarantee a dependency-preserving
decomposition to 3NF.
Algorithm:

1 Find a minimal cover set G for F.
2 for each left hand side X of a functional dependency in G,

create a relation X ∪ A1 ∪ A2 . . .Am in D, where
X → A1X → A2 . . . are the only dependencies in G with X
as a left hand side.

3 Group any remaining attributes into a single relation.



Lossless joins
Consider the following relation:
EMPPROJ: ssn, pnumber, hours, ename, pname, plocation

and its decomposition to:

EMPPROJ1: ename, plocation
EMPLOCAN: ssn, pno, hrs, pname, plocation

If we perform a natural join on these relations, we may generate
spurious tuples.



Lossless Joins
Also known as non-additive joins.

When a natural join is issued against relations, no spurious
tuples should be generated.

A decomposition D = {R1,R2, . . .Rn} of R has the lossless join
property wrt to F on R if for every instance r the following holds:

./ (πR1(r), . . . πRm(r)) = r)



We can automate procedure for testing for lossless property.

Can also automate the decomposition of R into R1, . . .Rm such
that it possesses the lossless join property.



A decomposition D = {R1,R2} has the lossless property iff:
functional dependency (R1 ∩ R2)→ {R1 − R2} is in F+

or functional dependency (R1 ∩ R2)→ {R2 − R1} is in F+



Furthermore, if a decomposition has the lossless property, and
we decompose one of Ri such that this also is a lossless
decomposition, then replacing that decomposition of Ri in the
original decomposition will result in a lossless decomposition.



Algorithm to decompose to BCNF
Let D = R
while there is a schema B in D that violates BCNF do

choose B
find functional dependency (X → Y ) that violates BCNF
replace B with
(B − Y ) and (X ∪ Y )



So, we guarantee a decomposition such that:

all attributes are preserved
lossless join property is enforced
all Ri are in BCNF

It is not always possible to decompose R into a set of Ri such
that all Ri satisfy BCNF and properties of lossless joins and
dependency preservation are maintained.



We can guarantee a decomposition such that:

all attributes are preserved
all relations are in 3NF
all functional dependencies are maintained
the lossless join property is maintained



Algorithm: Finding a key for relation schema R
set K := R.
For each attribute A ∈ K.

compute (K − A)+ wrt to set of functional dependencies.
if e (K − A)+ contains all the attributes in R, the set K :=

K - {A}.



Summary
Given a set of functional dependencies F, we can develop a
minimal cover set.
Using this we can decompose R into a set of relations such that
all attributes are preserved, all functional dependencies are
preserved, the decomposition has the lossless join property
and all relations are in 3NF.

Advantages
Provides a good database design.
Can be automated.

Disadvantages
Oftentimes, numerous good designs are possible.
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We have seen that through design by synthesis we can obtain a
good design.

This guarantees that the final design schema exhibits certain
desirable features



However, occasionally we wish to violate the above guidelines
to improve performance.
We must pay attention to transaction requirements.
Try to:

Identify future required transactions
their relative frequency
the required response time



Indexing strategies
The information gleaned from the above analysis can inform
the design of the indexing strategy.

Usually place index on fields that are to be frequently queried
upon.



Choice of index (primary, secondary, B-tree, B+-tree,
clustering) will depend on:

type of query expected
types permitted by DBMS
type of field involved

Also try to identify which tables will be joined frequently and on
which attributes. Common to build indexes on these attributes.



Key choice
Performance requirements can lead to a change in the logical
design.
Consider a table containing 1000 employees. The SSN number
was chosen in the conceptual design as a choice of key.

Now consider the performance requirements involve joining this
table to another table which has SSN as a foreign key.

This query is expected to be very frequent with a short short
response time required.



SSN numbers are 8 characters long. Any index built on this will
contain index values of 8 characters wide.

We only have 1000 employees - could introduce surrogate key
(emp id) and use this for indexes to handle joins.



Denormalisation
Denormalisation is the process of making compromises to the
normalised tables by introducing intentional redundancy for
performance reasons.

Decisions regarding denormalisation are made during the
transaction requirements analysis.

Denormalisation involves a tradeoff between:
introducing redundancy and potential for anomalies
increased efficiency of certain transactions



Downward Denormalisation
Consider the following relations:

CUSTOMER: ID, address, name, telephone
ORDER: orderno, date, date invoice, cus ID

Assume that the queries of the following type are extremely
frequent and require a fast response time:

SELECT ID, name
FROM CUSTOMER, ORDER
WHERE CUSTOMER.ID = ORDER.cus_ID
AND orderno = 46;



Main cost in evaluating this query is the join operation.
We can avoid this costly join be adding the name field to
ORDER table.

This gives us:

ORDER: orderno, date, date invoice, cus ID, name

We have now introduced redundancy (violates 3NF), which
leads to potential update, delete and insert anomalies.
However, queries of the type above can be dealt with more
efficiently.



Other types of denormalisation exist:
Upward denormalisation: store aggregate of values from
one table in another
Intra-table denormalisation: explicitly store information in a
table that can be derived from other attributes
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Introduction B Trees

Generalised Search Tree
Each node has format:

P1,K1,P2,K2, ...Pn1,Kn1,Pn

where Pi are tree values and Ki are search values.
In a database context, a node corresponds to a disk block.
Hence, the number of values per node depends on the size of the key field, block size
and block pointer size.

B Trees September 26, 2023 2 / 19



Introduction B Trees

Constraints
The following constraints hold:

K1 < K2 < ... < Kn1 < Kn

For all values x in a subtree pointed to Pi , Ki1 < x < Ki

The number of tree pointers per node is known as the order /rho of the tree

B Trees September 26, 2023 3 / 19



Introduction B Trees

Efficiency

For a generalised search tree:

T (N) = 1 + T (N/) = .... = O(log(N))

This assumes a balanced tree

In order to guarantee this efficiency in searching and in other operations, we need
techniques to ensure a balanced tree

B Trees September 26, 2023 4 / 19



Introduction B Trees

B Trees

A B Tree is a balanced generalised search tree

Can be viewed as a dynamic multi-level index

The properties of a search tree still hold.

The algorithms for insertion and deletion of values are modified in order

B Trees September 26, 2023 5 / 19



Introduction B Trees

B Trees: Node structure

The node structure contains a record pointer for each key value.

Node structure is as follows:

P1, < K1,Pr1 > P2, < K2,Pr2 >, ...Pn1, < Kn1,Prn1 >,Pn

B Trees September 26, 2023 6 / 19



Introduction B Trees

Example

Consider a B tree of order 3 (two values and 3 tree pointers per node/block).

Insert records with key values: 10, 6, 8, 14, 4, 16, 19, 11, 21

B Trees September 26, 2023 7 / 19



Introduction B Trees

Algorithm to insert value into B Tree

1 Find appropriate leaf level node to insert value

2 If space remains in leaf-level node, then insert the new value in correct location.

3 If no space remains, we need to deal with collision.

B Trees September 26, 2023 8 / 19



Introduction B Trees

Dealing with collisions

1 split node into left and right nodes

2 propagate middle value up a level and place value in node there (*)

3 place values less than middle value in the left node

4 place values greater than the middle value in the right node

*
Note: this propagation may cause further propagations and even the creation of a new
root node

B Trees September 26, 2023 9 / 19



Introduction B Trees

This maintains the balanced nature of the tree.

RightarrowO(logρ(N)) for search, insertion and deletion

However, there is always potential for unused space in the tree.

Note: Empirical analysis has shown that B-trees remain 69

B Trees September 26, 2023 10 / 19



Introduction B Trees

Exercises

Can you define an algorithm for deletion (at a high level)?

How much work is needed in the various cases (best, average, worst)?

B Trees September 26, 2023 11 / 19



Introduction B Trees

B+ tree

The most commonly used index type is the B+-tree - a dynamic, multi-level index.

Differs from a B Tree in terms of structure.

Insertion and deletion algorithms slightly more complicated.

Offers increased efficiency over B Tree. Ensures a higher order ρ.
Two different node structures in B+ Trees:

internal nodes
leaf-level nodes

B Trees September 26, 2023 12 / 19



Introduction B Trees

Node structure

All record pointers are maintained at the leaf level in a B+tree.

internal node structure

P1,K1,P2,K2, . . .Pn1,Kn1,Pn

No record pointers.

Less information per record; hence more search values per node
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Introduction B Trees

Node structure

leaf level node structure

One tree pointer is maintained at each leaf-level node. This points to the next
leaf-level node.

Each node’s structure K1,Pr1,K2,Pr2, ...Km,Prm,Pnext

The Pnext pointer facilitates range queries.

Note only one tree pointer per node at the leaf-level.
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Introduction B Trees

Example

Let B = 512,P = 6, Pr = 7,K = 10

Assume 30000 records as before.

Assume tree is 69% full.

How many blocks will the tree require? How many block accesses will a search
require?
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Introduction B Trees

Example

A tree of order ρ has at most ρ− 1 search values per node

For a B+ Tree, there are two types of tree nodes; hence there are 2 different
orders ρ and ρleaf

To calculate ρ:

ρ(|P|) + (ρ− 1)(|K |) ≤ B

⇒ 16ρ < 522

⇒ ρ = 32
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Introduction B Trees

To calculate ρleaf

|P|+ (ρleaf )(|K |+ |Pr |) ≤ B

⇒ 17(ρleaf ) ≤ 506

ρleaf = 29
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Introduction B Trees

Given fill factor = 69%:

Each internal node will have, on average, 22 pointers

Each leaf level node will have, on average, 20 pointers

Root: 1 node 21 entries 22 pointers

level1: 22 nodes 462 entries 484 pointers

level2: 484 nodes .. etc.

leaf level: ....

Hence, 4 levels are sufficient

Number of block accesses = 4 + 1

Number of block 1 + 22 + 484 + ..

B Trees September 26, 2023 18 / 19



Introduction B Trees

Recap

Looked at structure of a BTree;

Looked at insertion algorithm for BTrees.

Introduced a B+Tree and looked at some calculations in order to illustrate how to
work out the required size and number of accesses.

B Trees September 26, 2023 19 / 19
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Introduction Dynamic Hashing Linear Hashing

Can we improve upon logarithmic searching?

Hashing is a technique that attempts to provide constant time for searching and
insertion, i.e O(K)

The basic idea for both searching and insertion is to apply a hash function to the
search field of the record.

The return value of the hash function is used to reference a location in the hash
table

‘
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Introduction Dynamic Hashing Linear Hashing

Different approaches

Create a hash table containing N addressable ‘slots’

Each “slot’ may contain one record

Create a hash function that returns a value to be used in insertion and searching

The value returned by the hash function must be in the correct range, i.e, the
address space of the hash table

If the range of the keys is that of the address space of the table, we can guarantee
constant time lookup

Usually, this is not the case as the address space of the table is much smaller than
that of the search field

Dynamic Hashing 4 / 20



Introduction Dynamic Hashing Linear Hashing

With numeric keys can use modulo-division or truncation

With character keys must first convert to integer value. Can achieve this by
multiplying ASCII code of characters together and then applying modulo-division

Cannot guarantee constant time performance as collisions will occur i.e., two
records with different search values being hashed to the same location in the table

we require a collision resolution policy

Dynamic Hashing 5 / 20



Introduction Dynamic Hashing Linear Hashing

Efficiency then depends on the number of collisions. Number of collisions depends
mainly on the load factor, λ, of the file:

λ =
no of records

no of slots

Dynamic Hashing 6 / 20



Introduction Dynamic Hashing Linear Hashing

Collision Resolution Policy

Chaining: if location is full, add item to a linked list

performance degrades if load factor is high.

lookup time is, on average, 1 + λ (average case)

Linear Probing: if location is full, check in a linear manner for next free space.

This can degrade to a linear scan: performance:

if successful: 0.5(1 + 1
1−λ

)

if unsuccessful: 0.5(1 + 1
(1−λ)2

)

one big disadvantage is that this leads to the formation of clusters

Quadratic probing: if location is full, check location x + 1, location x + 4, ...
(x + n)2

less clustering

Double hashing: if location x occupied, then apply second hash function can
help guarantee even distribution (a fairer hash function)

Dynamic Hashing 7 / 20
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Dynamic Hashing
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Introduction Dynamic Hashing Linear Hashing

Care should be taken in designing hash function. Usually require fair hash
function.

Difficult to guarantee if no/limited information available about the type of data to be
stored.

Often heuristics can be used if domain knowledge available

Can have both internal (some data structure in memory) or external hashing (to
file locations)

Size of original table or file?

Dynamic Hashing 9 / 20



Introduction Dynamic Hashing Linear Hashing

We considered hashing to an array (in memory).

In reality, in database systems, we are typically hashing to a disk block (bucket)
each of which can contain a fixed number of records.

If a block is full, then we have a collision.

Typically dealt with using overflow buckets (chaining).
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Introduction Dynamic Hashing Linear Hashing

The cases we’ve considered thus far deal with the idea of a fixed hash table; this
is referred to as static hashing.

Problems arise if the database grows larger than planned; too many overflow
buckets and performance degrades.

A more suitable approach is dynamic hashing, where the table/file can be resized
as needed.

Dynamic Hashing 11 / 20



Introduction Dynamic Hashing Linear Hashing

General Approach

use a family of hash functions h0, h1, h2, etc.

hi+1 is a refinement of hi

For example, Kmod2i

Develop a base hash function that maps key to a positive integer

Then use, h0(x) = xmod2b for a chosen b. There will be 2b buckets initially.

Can effectively double the size of the table by incrementing b

Dynamic Hashing 12 / 20



Introduction Dynamic Hashing Linear Hashing

Common dynamic hashing approaches: extendible hashing and linear hashing.

Conceptually double the number of buckets when re-organising. From an
implementation perspective, we do not actually double size as it may not be
needed.

Extendible hashing - reorganise buckets when and where needed

Linear hashing - reorganise buckets when but not where needed.

Dynamic Hashing 13 / 20



Introduction Dynamic Hashing Linear Hashing

Extendible Hashing

When a bucket overflows, split that bucket in two.

Conceptually, split all the buckets in two A directory (a form of index) is use to
achieve this conceptual doubling.

Dynamic Hashing 14 / 20



Introduction Dynamic Hashing Linear Hashing

Extendible Hashing

If a collision or overflow occurs, we don’t re-organise the file by doubling the
number of buckets; too expensive.

Instead we maintain a directory of pointers to buckets, we can effectively double
the number of buckets by doubling the directory, splitting just the bucket that
overflowed.

As the directory is much smaller than file, so doubling it is much cheaper.

Dynamic Hashing 15 / 20



Introduction Dynamic Hashing Linear Hashing

On overflow, we split the bucket (allocate new bucket and re-distribute contents).

We double the directory size if necessary.

For each bucket, we maintain a local depth (effectively the number of bits needed
to hash an item here).

Also maintain a global depth for the directory; the number of bits used in indexing
items.

These values can be used to determine when to split the directory.

Dynamic Hashing 16 / 20



Introduction Dynamic Hashing Linear Hashing

If overflow in bucket with local depth = global depth, then split bucket, re-distribute
contents, double the directory.

If overflow into bucket with local depth < global depth, then split bucket,
re-distribute contents. Increase local depth.

If directory can fit in memory, then retrieval for point queries can be achieved with
one disk read.

Dynamic Hashing 17 / 20



Introduction Dynamic Hashing Linear Hashing

Linear Hashing

Dynamic Hashing 18 / 20



Introduction Dynamic Hashing Linear Hashing

Another approach to indexing to a dynamic file. Similar idea in that a family of
hash functions are used (h = K mod 2i ), but differs in that no index is needed.

Initially, create a file of M buckets. K mod M1 is a suitable hash function.

We will use a family of such functions K mod (2i × M), i = 0 initially.

Can view the hashing as comprising a sequence of phases.

For phase j, the hash functions K mod 2j × M and K mod 2j+1 × M are used.

Dynamic Hashing 19 / 20



Introduction Dynamic Hashing Linear Hashing

Splitting a bucket means to redistribute the records into two buckets: the original
one and a new one.

In phase j , to determine which ones go into the original while the others go into
the new one, we use hj+1(K ) = Kmod2j+1 × M to calculate their address.

Irrespective of the bucket which causes the overflow, we always split the next
bucket in a linear order.

We begin with bucket 0, and keep track of which bucket to split next, p.

At the end of a phase when p is equal to the number of buckets present at the
start of the phase, we reset p and a new phase begins (j incremented).

Dynamic Hashing 20 / 20
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Joins and Sorts 2 / 12



Join Sorting

Quite a few approaches/algorithms can be used

Nested Loop Join

To perform the join r ./ s:

for each tuple t_r in r do
for each tuple t_s in s do

if t_r and t_s satisfy join condition
add (t_r,t_s) to result

end
end

Performance ..

expensive approach

every pair of tuples is checked to see if they satisfy join condition

If one of the relations fits in memory, it is beneficial to use this in the inner loop.
(known as the inner relation).
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Join Sorting

Block Nested Loop Join

Variation on the nested loop-join. Increases efficiency by reducing number of block
accesses.

for each block B_r in r do
for each block B_s in s do

for each tuple t_r in B_r do
for each tuple t_s in B_s do

if t_r and t_s satisfy join condition
add (t_r,t_s) to result

end
end

end
end

Joins and Sorts 4 / 12



Join Sorting

Indexed Nested Loop Join

If in a nested loop join, there is an index available for the inner table, replace file scans
with index accesses

Joins and Sorts 5 / 12



Join Sorting

Merge Join

If both relations are sorted on the joining attribute, then merge relations.

Technique is identical to merging two sorted lists (like the merge step in a
merge-sort algorithm)

Much more efficient that a nested join

Can also be computed for relations not ordered on a joining attribute, but have
indexes on joining attribute

Efficiency?

Joins and Sorts 6 / 12



Join Sorting

Hash Join

Create a hashing function which maps the join attribute(s) to partitions in a range
1 . . .N

For all tuples in r , hash the tuples to Hri

For all tuples in s, hash the tuples to Hsi

For i = 1 to N, join partitions Hri = Hsi

Joins and Sorts 7 / 12



Join Sorting

Sorting
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Join Sorting

Sorting

Important operation because:

if a query specifies ORDER BY

used prior to relational operators (e.g. Join) to allow more efficient processing of
operation

Joins and Sorts 9 / 12



Join Sorting

Can sort a relation:

physically: - actual order of tuples re-arranged on disk

logically: - build an index and sort index entries

Two main cases:

where relation to be sorted fits in memory- can then use standard sorting
techniques (e.g. quicksort)

where relation doesn’t fit in memory. The most common approach is to use
external sort-merge

Joins and Sorts 10 / 12



Join Sorting

External Sort Merge - Step 1

i := 0;
repeat

read M blocks of the relation
sort M blocks in memory
write sorted data to file Ri

until end of relation

M = number of page frames in main memory buffer
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Join Sorting

External Sort Merge - Step 2

Wish to merge the files from each run in step 1

read first block of each Ri into memory

repeat
choose first (in sort order) from pages
write tuple to output
remove tuple from buffer
if any buffer Ri if empty and not eof(Ri)

read next block from Ri into memory
until all pages empty

effectively a N-way merge (extension of idea in the merge step of the merge sort
algorithm)

Joins and Sorts 12 / 12



Introduction Partitioning Parallelism Intra-Operation Parallelism

Parallel Databases

increased transaction requirements
increased volumes of data (particularly in
data-warehousing
Many queries lend themselves easily to parallel execution
Can reduce time required to retrieve relations from disk by
partitioning relations onto a set of disks
Horizontal partitioning usually used. Subsets of a relation
are sent to different disks



Introduction Partitioning Parallelism Intra-Operation Parallelism

Partitioning approaches

Round Robin
Assume n disks.
With Round Robin: Relation is scanned in some order. The
i th relation is sent to disk Dimodn
Guarantees an even distribution.

Hash Partitioning
choose attributes to act as partitioning attributes.
define a hash function with range 0 . . . n − 1
Each tuple is placed according to the result of the hash
function



Introduction Partitioning Parallelism Intra-Operation Parallelism

Range Partitioning
partitioning attribute is chosen
Partitioning vector is defined < v0, v1, . . . vn−2 >

tuples are placed according to value of partitioning
attribute. If t[partitioning attribute] < v0, place tuple t on
disk D0



Introduction Partitioning Parallelism Intra-Operation Parallelism

Query Types
Common types of queries

1 Scanning entire relation (batch processing)
2 Point-Queries (return all tuples that match some value)
3 Range-Queries (return all tuples with some value in some

range)



Introduction Partitioning Parallelism Intra-Operation Parallelism

Comparison of Partitioning techniques
Round Robin

useful for batch processing
not very suitable for point or range querying as all disks
have to be accessed.

Hash partitioning
very useful if point query based on partitioning attribute.
usually useful for batch querying is a fair hash function is
used
poor for range querying

Range Partitioning
Useful for point and range querying
Can lead to inefficiency in range querying if many tuples
satisfy condition



Introduction Partitioning Parallelism Intra-Operation Parallelism

Comparison of Partitioning techniques
Round Robin

useful for batch processing
not very suitable for point or range querying as all disks
have to be accessed.

Hash partitioning
very useful if point query based on partitioning attribute.
usually useful for batch querying is a fair hash function is
used
poor for range querying

Range Partitioning
Useful for point and range querying
Can lead to inefficiency in range querying if many tuples
satisfy condition



Introduction Partitioning Parallelism Intra-Operation Parallelism

Comparison of Partitioning techniques
Round Robin

useful for batch processing
not very suitable for point or range querying as all disks
have to be accessed.

Hash partitioning
very useful if point query based on partitioning attribute.
usually useful for batch querying is a fair hash function is
used
poor for range querying

Range Partitioning
Useful for point and range querying
Can lead to inefficiency in range querying if many tuples
satisfy condition



Introduction Partitioning Parallelism Intra-Operation Parallelism

Inter-query Parallelism
different transactions run in parallel on different processors
Transaction throughput is increased
The times for individual queries remains the same
easiest form of parallelism to implement



Introduction Partitioning Parallelism Intra-Operation Parallelism

Intra-query parallelism
Can run a single query in parallel on multiple processors
(and disks)
Can speed up running time of query
Can achieve parallel execution by parallelising individual
components ( intra-operation parallelism)
Can also achieve parallel execution by evaluating portions
of the query in parallel (inter-operation parallelism)
Can also combine both



Introduction Partitioning Parallelism Intra-Operation Parallelism

Intra-Operation Parallelism

Parallel Sorting
Range-Partitioning Sort
Distribute the relation using a range-partitioning strategy
on the sort attribute
Each subset is sorted in parallel. The final merge is not
expensive due to the range partitioning strategy chosen



Introduction Partitioning Parallelism Intra-Operation Parallelism

Intra-Operation Parallelism

Parallel External Sort-Merge
Relation is partitioned.
Each processor Pi sorts the tuples at Di

The sorted runs are then merged in parallel.
Sorted runs are range-partitioned across a set of
processors.
Each processor performs a merge on the incoming
streams
These sorted runs are then concatenated.



Introduction Partitioning Parallelism Intra-Operation Parallelism

Intra-Operation Parallelism

Parallel Join
Wish to compute r ./ s

Partitioned Join
Partition relations across the n processors
Compute r0 ./ s0 at at processor P0, r1 ./ s1 at processor
P1 etc.
can partition relations using hash or range partitioning
suitable for equi-joins; not suitable for other types.

Fragment and Replicate
Wish to calculate r ./x>y s
partition r across the processors
s is replicated at all processors
ri ./x>y s is calculated at all processors

Can parallelise other operations as well; project, aggregation,
set operators



Introduction Partitioning Parallelism Intra-Operation Parallelism

Intra-Operation Parallelism

Parallel Join
Wish to compute r ./ s

Partitioned Join
Partition relations across the n processors
Compute r0 ./ s0 at at processor P0, r1 ./ s1 at processor
P1 etc.
can partition relations using hash or range partitioning
suitable for equi-joins; not suitable for other types.

Fragment and Replicate
Wish to calculate r ./x>y s
partition r across the processors
s is replicated at all processors
ri ./x>y s is calculated at all processors

Can parallelise other operations as well; project, aggregation,
set operators



Introduction

Single-User System: At most one user at a time can 
use the system. 

Multiuser System: Many users can access the system 
concurrently.

Concurrency:

Interleaved processing: concurrent execution of 
processes is interleaved in a single CPU

Parallel processing: processes are concurrently 
executed in multiple CPUs. 



Concurrency Control, Recovery Mechanisms

Transactions - states, properties; Schedules

Concurrency Control - problems, approaches 
(locking, timestamping)

Recovery - problems, recovery mechanisms



Transactions - introduction

A transaction: logical unit of database processing 
that includes one or more access operations (read -
retrieval, write - insert or update, delete).

A transaction (set of operations) may be stand-
alone specified in a high level language like SQL 
submitted interactively, or may be embedded within 
a program.

Transaction boundaries: Begin and End transaction.

An application program may contain several 
transactions separated by the Begin and End 
transaction boundaries. 



Reading involves:

finding address of a disk block that contains 
the item X

copying that disk block to a buffer

copying item X from buffer to program 
variable X.



Writing involves:

Find the address of the disk block that 
contains item X.

Copy that disk block into a buffer in main 
memory (if that disk block is not already in 
some main memory buffer).

Copy item X from the program variable 
named X into its correct location in the buffer.

Store the updated block from the buffer back 
to disk (either immediately or at some later 
point in time). 



Sample Transaction

read_item(X)

X : = X - N

write_item(X)



Concurrency Control

In most DBMS environments, it is desirable to allow 
many people to access the database at the same 
time.

Hence, many transactions running at once.

Needed to overcome problems that will arise if we 
allow unchecked access to the database.



The Lost Update Problem:
T1                          T2

read_item(X);

X := X-N;

read_item(X);

X := X+M;

write_item(X);

write_item(X);

This results in the `incorrect' value being stored.



Temporary Update Problem:
T1                          T2

read_item(X);

X := X-N;

write_item(X);

read_item(X);

X := X+M;                        
write_item(X);

read_item(Y);

.

.

<CRASH>

Recovery mechanism will undo the effect of T1; the value of X 
will be changed back; T2 has the`incorrect' values



Incorrect Summary Problem

occurs when one transaction is calculating a sum 
(or some other aggregate function) of a range of 
values and another transaction is concurrently 
changing those items.

We need means to prevent these types of problems 
occurring.

Exercise: Draw a sample schedule that shows the 
incorrect summary problem.



Recovery

If a transaction is submitted to the DBMS, the 
system should ensure that either:

the transaction is completed successfully and 
it's effect recorded or

the transaction fails and has no effect on the 
database.

Partial execution of a transaction should not occur



Transactions can fail for a variety of reasons:

System Crash

Transaction Error

Exception Conditions

Concurrency Control Enforcement

Disk Error

Catastrophes



Main operations of a transaction

begin_transaction

read_item or write_item

end_transaction

commit 

rollback ( a transaction)

Undo (an operation)

Redo (an operation)



States of a transaction

Active state

Partially committed state

Committed state

Failed state

Terminated State 





System Log

A system log or journal is usually maintained by the 
DBMS in order to facilitate recovery

The following operations for each transaction are 
recorded.



System Log

start_transaction, T 

write_item, T, X, old_value, new_value 

read_item, T, X

commit, T



Commit Point

A transaction reaches its commit point if:

It finishes successfully

effects are recorded in log

Following a commit point of a transaction any 
updates by that transaction are considered to 
permanently stored in the database

A {commit, T} entry is recorded in the log



Desirable Properties of transactions:

Atomicity: a transaction should be performed 
completely or not at all

Consistency Preservation: a transaction should take 
the database from one consistent state to another

Isolation: updates of a transaction T should not be 
visible to other transactions until T commits. 

Durability: updates made by a committed 
transaction should not be undone later due to 
failure.

These four properties are often referred to the ACID 
properties of a transaction.



Serializability

A schedule is any collection of transactions T_1, 
T_2, … , T_N). Each transaction can contain a 
number of read and write operations.

A desirable property of a schedule is that it is 
serializable.

A serial schedule is a schedule such that there is no 
interleaving of the operations of the transactions



If a schedule is serial we can guarantee that no lost 
updates, incorrect summary problems etc. will arise

One potential means to enforce concurrency control 
is to allow only serial schedules

However, this is far too limiting a constraint and 
would severely limit the throughput of the system



Ideally, we wish to allow interleaving of operations 
but maintain `equivalence' to a serial schedule.

A schedule that is `equivalent' to a serial schedule 
is known as a serializable schedule.

Need to define `equivalence' of schedules. The 
most commonly adopted definition is that of conflict 
equivalence.



Defn: Conflicting operations: 2 operations are said 
to conflict if (i) they access the same item and (ii) 
at least one of these operations is a write.

We say there is a conflict between two transactions 
T_1 and T_2 if they contain operations that conflict 
with each other.

A schedule S is said to be conflict serializable if the 
conflicting operations occur in exactly the same 
order as in some serial schedule



Given a schedule S of transactions (T_1, … T_N) we 
can test for conflict serializability using the 
following algorithm:

for each transaction create a node

Create an edge between node T1 and T2 if:

i) T1 issues read_item(X) before

T2 issues write_item(X)   or

ii) T1 issues write_item(X) before

T2 issues read_item(X)  or

iii) T1 issues write_item(X) before

T2 issues write_item(X) 



If a cycle exists => not conflict-serializable

else conflict-serializable

Consider again the schedule we had to illustrate the 
lost update problem.

Graph contains a cycle, hence not serializable



If a cycle exists => not conflict-serializable

else conflict-serializable

This method of checking for conflict serializability is 
not practical in real world scenarios, as we do not 
know:

which transactions will be run

which operations they will contain.

We need to develop techniques that will guarantee 
conflict-serializability. We need to reject any 
operation that violates the principles of conflict 
serializability



The two main approaches are:

locking protocols

time-stamping



The two main approaches are to guaranteeing 
conflict-serializability are:

locking protocols

time-stamping



Locking

A lock is a variable associated with a data item in 
the database is used to signify the status of that 
variable wrt to possible access to the item.

Binary Locks:

A binary lock may have two states: locked or 
unlocked. If an item is locked by one transaction it 
cannot be accessed by another transaction



Transaction must be well-formed.

For a transaction T to gain any access to a database 
item x, T must first issue a lock(x) request.

If this request is successful, T can access X. 
Otherwise it must wait.

Having completed accessing item X, T must issue 
an unlock(x) to free up the database item.

Must not unlock free item, or attempt to lock an 
item it has already locked.



Consider:

T1           T2

read_item(X);
X := X + 50;

read_item(X)
X := X - 50;

write_item(X)
write_item(X)



By applying a locking procedure to the above, T2's 
read_item is queued until T1 finishes and issues an 
unlock(X)

Causes a different ordering of accesses to the 
database items.

The binary lock approach is too restrictive for real-
world applications.



Shared and Exclusive Locks

The lock(X) variable can be in one of three states:

read locked
write locked
unlocked



It an item is write locked, no other transaction can 
obtain a read or write lock on the database item.

If an item is read locked, no other transaction can 
attain a write lock.

Hence, we allow multiple readers but only one 
writer.

Transaction can issue read_lock(x),
write_lock(x) and unlock(x).

Often augmented with upgrade(x) and 
downgrade(x).



These locking schemes on their own do not 
guarantee serializability.

Two phase locking

They are used in conjunction with locking protocols 
to ensure correctness. The most commonly used 
protocol is the 2-phase locking protocol.

Two phase locking (2PL) states that a 
transaction cannot issue a lock request once 
an unlock request has been issued.



Hence, there are 2 phases: the growing phases 
(where transactions obtain locks) and the shrinking 
phase where the transactions release locks.

2PL locking guarantees conflict serializability.

Exercise: Apply 2PL to the example of the lost 
update problem and the temporary update 
problem.

Exercise: Prove that 2PL guarantees conflict 
serializability (hint: proof by contradiction).



Consider the following schedule:

T1             T2
write_lock(X)
write_item(X)

write_lock(Y)
write_item(Y)

write_lock(Y)

/* queued */
write_lock(X)
/* queued */



-> Deadlock

We need some means to handle deadlock.

We need to first detect deadlock and then resolve 
the deadlock.

Usually, the lowest priority transaction is 
terminated. Other transactions can then continue.



Deadlock detection usually involves the creation of 
a dependency graph. If a cycle exists in the 
dependency graph, deadlock exists.

Usually triggered by a transaction that has been 
queued for a certain period of time.



Two-Phase Locking Techniques:

Different variations exist.

Basic: Transaction locks data items incrementally.  
This may cause deadlock.

Conservative:  

Prevents deadlock by locking all desired data items 
before transaction begins execution.

Strict: A stricter version of Basic algorithm where 
unlocking is performed after a transaction 
terminates (commits or aborts and rolled-back).  
This is the most commonly used two-phase locking 
algorithm



LOCK(X):

B: if LOCK (X) = 0 //item is unlocked
then LOCK (X) ← 1  //lock the item
else begin

wait (until lock (X) = 0) and
the lock manager wakes up the transaction);

goto B
end;

UNLOCK(X):
LOCK (X) ← 0
if any transactions are waiting for X, 

wake up a waiting transaction.



Shared and Exclusive Locks:

read_lock(X)

B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “read-locked”;

no_of_reads (X) ← 1;
end

else
if LOCK (X) ← “read-locked” then

no_of_reads (X) ← no_of_reads (X) +1
else 

begin wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);

go to B
end;



write_lock(X):

B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “write_locked”;

end
else 

begin wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);
go to B

end;



unlock(X):

if LOCK (X) = “write-locked” then
begin LOCK (X) ← “unlocked”;

wakes up one of the transactions, if any
end
else if LOCK (X) ← “read-locked” then

begin
no_of_reads (X) ← no_of_reads (X) -1
if  no_of_reads (X) = 0 then 
begin

LOCK (X) = “unlocked”;
wake up one of the transactions, if any

end
end;



Timestamping

A timestamp is a unique identifier created by the DBMS to identify a 
transaction.

Sequentially assigned by the system

We will use TS(T) to identify transaction T.



we associate timestamps with each database item X:

read_TS: the largest timestamp of those transactions that have read 
X

write_TS: the largest timestamp of those transactions that have 
written X

We can use these and timestamps on transactions to enforce a 
`timestamp ordering', which will guarantee serializability.



For every request by a transaction T to read an item (read_item(X)) 
or to write an item (write_item(X)), must check timestamp of 
transaction with timestamps of database item

If ordering is violated, operation is rejected



T issues a write_item(X)

if (read_TS(X) > TS(T)) or
(write_TS(X) > TS(T))
rollback(T)

else
allow operation
write_TS(X) := TS(T)



T issues a read_item(X):

if write_TS(X) > TS(T)
rollback T

if write_TS(X) =< TS(T)
allow read
read_TS(X) := max (TS(T), read_TS(X))



Time-stamping can be used to enforce conflict serializable schedules:

Consider:

T1        T2
read_item(X);  
X := X+M;

read_item(X);
X := X-N;

write_item(X);
write_item(X);



With time-stamping:

Let TS(T1) = 1; Let TS(T2) = 2; 

T1             T2    r_ts(x) w_ts(x)
read_item(X);              1
X := X+M;

read_item(X); 2   
X := X-N;

write_item(X);
/* rollback */

write_item(X); 2



Thomas' write rule

A common modification to the timestamping ordering is as follows:

write_item(X):

if (read_TS(X) > TS(T))
rollback(T)

else if write_TS(X) > TS(T)
ignore write and allow T to continue

else
allow operation
write_TS(X) := TS(T)



Effect: no longer guarantees conflict serializability but rejects fewer 
operations.

One of the disadvantages of time-stamping is that a transaction 
maybe repeatedly aborted and restarted (cyclic restart problem). 
Similar to unfairness in a locking scheme



Although 2PL and time-stamping both guarantee conflict-serializable 
schedules, not all schedules allowed under 2PL will be allowed under 
time-stamping and vice-versa



Multi-version time-stamping:

Time-stamping can be extended to allow multi-version techniques

For each database item X, we maintain a set of versions X1 ...  XN

If a read or write request is submitted, the timestamp of the 
transaction can be checked against those of the items involved in the 
read or write, and the appropriate version used. 

Limits the number of transactions that need to be restarted and 
hence leads to increased concurrency and increased throughput.

Requires much more storage



Granularity

For both locking and time-stamping we have assumed that all lock 
and timestamps were maintained for database items. The database 
item could be a record, a field value, a block, a whole file or the 
entire database.

The larger the item the lower the degree of concurrency.

The smaller the item, the higher the number of locks (or timestamp 
values) that have to be maintained.



Although 2PL and time-stamping both guarantee conflict-serializable 
schedules, not all schedules allowed under 2PL will be allowed under 
time-stamping and vice-versa



Recovery

Basic approach is to maintain a log. If a crash occurs we can scan log 
for operations to redo and operations that need to be undone.

Recap: A commit point of a transaction indicates that a transaction 
has completed and its effects are considered to reflected in the 
database. At commit point, we force-write the system log to disk and 
then append a [commit, T] to the system log.



General approach to recovery following a system crash.

Search log for:

transactions that have not yet reached commit point - the 
effects of these transactions can be undone.

transactions that have reached commit point- the effects of 
these transactions can be redone.



The system log is also kept on disk. It is common to keep block in 
memory until it is full. Hence, a part of the log may be lost is there is 
a system crash.

Hence, if a transaction T reaches its commit point, force write block 
of log to disk prior to appending {commit, T} to log.



A log may become quite large which can cause the recovery process 
to be quite slow.

Checkpoints are often used to improve performance.

A checkpoint involves:

suspend all transactions

force write all database pages in memory

append checkpoint to log

resume all suspended transactions

Usually issued a regular intervals. The recovery system need not look 
at transactions that have committed prior to the last checkpoint



Transactions usually operate under one of two protocols:

Deferred update: 
updates not made to database until the transaction has 
committed. 

Immediate update: 
updates are immediately reflected in database



Deferred Update Protocol

Recovery Protocol

1. Examine system log back as far as the last [checkpoint] entry, 
making two lists: uncommitted transactions and committed
transactions.

2. Ignore all the operations of the uncommitted transactions.

3. Redo all the operations of committed transactions.



Under the deferred update protocol, the system log needs only to
contain the following entry types:

i) [start_transaction, T]
ii) [write_item, T, X, new_value]
iii) [commit, T]



Immediate Update Protocol

1. Make two lists: uncommitted transactions and committed
transactions.

2. Undo all the operations of the uncommitted transactions

3. Undo all the operations of committed transactions that have read 
an item of previously written by a rolled back transaction.

4. Redo all the operations of committed transactions that have not 
read an item by a rolled back transaction



Can have cascading rollback. 

We need to keep extra records in log to facilitate recovery:

[write_item, T, X, old_value, new_value]
[read_item, T, X]



SQL Support for Transactions

A single SQL statement is always considered to  be 
atomic.  Either the statement completes execution 
without error or it fails and leaves the database 
unchanged.  

In SQL, there is no explicit Begin Transaction
statement. Transaction initiation is done implicitly 
when particular SQL statements are encountered.

Every transaction must have an explicit end 
statement,  which is either a COMMIT or 
ROLLBACK.



Can specify the characteristics of an SQL statement
with the SET command.

Can specify the access mode and isolation level.

Access mode:  READ ONLY or READ WRITE. 

The default is READ WRITE unless the isolation 
level of READ UNCOMITTED is specified, in which 
case READ ONLY is assumed.



Isolation level <isolation>, where <isolation> can be:

READ UNCOMMITTED, 
READ COMMITTED, 
REPEATABLE READ
SERIALIZABLE.   

The default is SERIALIZABLE. 

With SERIALIZABLE: the interleaved execution of 
transactions  will adhere to our notion of 
serializability. However, if any transaction executes 
at a lower level, then serializability may be violated. 



Potential problem with lower isolation levels:

Temporary Update Problem:

Reading a value that was written by a 
transaction which failed.

Nonrepeatable Read: 
Allowing another transaction to write a new value between 
multiple reads of one transaction. 

Phantoms: 
New rows being read using the same read with a condition. 



Sample SQL transaction:
EXEC SQL whenever sqlerror go to UNDO;  
EXEC SQL SET TRANSACTION 

READ WRITE 
DIAGNOSTICS SIZE 5 
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT 
INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY) 
VALUES ('Robert','Smith','991004321',2,35000); 

EXEC SQL UPDATE EMPLOYEE  
SET SALARY = SALARY * 1.1 
WHERE DNO = 2;   

EXEC SQL COMMIT;  
GOTO  THE_END;  

UNDO: EXEC SQL ROLLBACK;   
THE_END;



Summary:

Concurrency control – potential problems.

Transaction – states

Desirable properties of transactions

Schedules – serial, serializability

2 phase locking, timestamping

Recovery – system log, entries, algorithms for 
recovery
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Introduction Query processing Concurrency Control and Recovery

In a centralised database management system all system components and data reside
at a single site
In recent years, there has been a growing trend towards distributed database systems.

Distributed nature of some database applications: a company may have many
different locations and data at each location

Increased reliability and availability: if data and DBMS s/w is distributed, then user
is not dependent on just one site

Data Sharing

Improved Performance: local queries may be executed more efficiently.
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Introduction Query processing Concurrency Control and Recovery

Distribution leads to increased complexity in system design and implementation:

Additional functionality is required:
to allow access to remote sites
to keep track of data distribution data and replication
to devise execution strategies for queries and transactions that access many sites
to maintain consistency across sites
to allow recovery from new types of failures
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Introduction Query processing Concurrency Control and Recovery

Data Fragmentation

Horizontal Fragmentation

Fragment tables into sub-tables based on certain SELECT restrictions.

Vertical Fragmentation

Sets of attributes from a table are stored at different sites. This type of fragmentation
can be defined by a PROJECT operation.
Vertical fragmentation is never totally disjoint as the key attributes must be stored at
each site. Necessary in order to reconstruct the table.

Hybrid fragmentation

Defined by a sequence of SELECTs and PROJECTs
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Introduction Query processing Concurrency Control and Recovery

Fragmentation Schema

A fragmentation schema (which will be in every data catalog for each client) is a full set
of fragmentation definitions.

Allocation Schema
An allocation schema (also in the catalog) defines the location of fragments
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Introduction Query processing Concurrency Control and Recovery

Replication

Useful in improving availability of data

Full Replication: store whole database at each site

Partial Replication: replicate certain fragments

No replication
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Query processing
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Introduction Query processing Concurrency Control and Recovery

In a centralised DBMS, we attempt to maximise efficiency by reducing the size of
intermediate tables.

In distributed DBMS, the most significant measure of cost is the quantity of data
transferred.

The most common execution strategies are based on reducing network traffic.

The semi − join “operator”, is the standard approach where no redundant tuples
or attributes are transferred. Only attributes needed in join conditions or in the final
result are transferred.
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Introduction Query processing Concurrency Control and Recovery

Distributed Query Processing: small example

Assume relations employee, dept, and project are stored at site1, site2 and site3
respectively.

Assume also no fragmentation or replication of these relations.

We wish to join tables to obtain the result at some site sitei , i.e we need to
compute employee ./ dept ./ project.

No one strategy is always the best.

The relations involved, their size, selectivity of joins etc. will all vary over time.
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Distributed Query Processing: semi-join

The semi-join operator is a commonly adopted approach to guarantee some
degree of efficiency.
Let relations r and s be at site1 and site2 respectively. We wish to calculate r ./ s.
Often, there will be many tuples in r and s that will not be included in the result.
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Distributed Query Processing: semi-join

1 Create tmp1 comprising the join attributes of r

2 Ship tmp1 to site2

3 Execute s ./ tmp1 : −tmp2 at site2

4 Ship tmp2 to site1

5 Evaluate r ./ tmp2 at site1

Usually reduces the number of spurious tuples to be transferred.
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Concurrency Control and Recovery
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Concurrency Control and Recovery

Numerous problems arise in distributed databases that do not exist in a centralised
DBMS:

Dealing with multiple copies of data items. The concurrency control mechanism
must ensure consistency between these items

Failure of individual sites: The DBMS should continue to operate; and when the
site recovers it should be brought up to date

Failure of communication links

Distributed Commit

Distributed Deadlock
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Recovery

In order to facilitate recovery we must generate atomicity of transactions.

This becomes a more difficult problem in distributed databases as a transaction
must commit at all sites or must fail at all sites.

A two-phase commit procedure is usually adopted.

A transaction coordinator is located at one site, sitei

When a transaction T completes execution coordinator is informed.
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Phase 1

[prepare,T ] is added to log at sitei ; log is force-written.

[prepare,T ] message is sent by the coordinator to all involved sites.

Transaction managers at sites return an [abort ,T ] message or a [ready ,T ]
message (whether T has successfully terminated or not).

If [ready ,T ] entry is sent by a site, individual logs are then force-written.
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Phase 2

if all sites respond with a [ready ,T ] (within in given time), the transaction is
considered committed.

[commit ,T ] is added to the log. Force-write log.

else, [abort ,T ] is placed. Force-write log.

Coordinator then informs all sites as to whether T has committed or not.

Variations on this approach. Most of these variations attempt to increase the
efficiency of recovery.
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These algorithms require a coordinator. The coordinator is usually chosen in
advance. Measures have to be taken to ensure correctness if the coordinator
happens to crash.

Backup Coordinator: maintains up-to-date copy of coordinator. Can be extended
to have a chain of backups.

Election protocols: If the coordinator crashes, any involved sites may try to
assume control. If they obtain the majority of votes, they assume control and
inform all others.
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Concurrency Control

Most approaches merely extend centralised approaches of 2-phase locking and
time-stamping:

With locking a single Lock Manager can be chosen: one site chosen as lock
manager. All locks are granted by the lock manager at this site.

Advantage: Easy to implement.

Disadvantages: Leads to bottleneck at lock manager site; particularly if
fine-grained locking used.

Over-dependence on one site
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Multiple lock managers

Each site possesses its own lock manager for items present at that site.

For non-replicated items, no real problems arise.

For items replicated at many sites, a transaction issuing a write_item needs to
send a request to all lock managers. Each lock manager sends an acceptance or
a rejection.

A majority protocol is typically used, i.e., if the majority of responses are grants,
then transaction obtains lock.
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Distributed Deadlock

One potential problem of distributed locking protocols is the possibility of
distributed deadlock.

Further complicated by the potential of phantom deadlocks.

Many algorithms exist to try and efficiently deal with this problem.
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Timestamping

Time-stamping can also be extended:

Timestamps generated at each local site

Difficulties arise with respect to ordering transactions. If some sites have higher
throughput, they will have higher timestamps and hence timestamp ordering will
be invalid.

Usually create timestamp by actualy taking combining actual timestamp and site
identifier.

Ordering is usually enforced by using logical clock schemes.
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Logic Databases
(deductive databases)



Incorporates ideas from logic and artificial intelligence.

In addition to storing data, can store rules to infer or deduce new facts.



A declarative language to specify facts and rules. 
A variation of Prolog is used (Datalog).

An inference engine is provided to deduce new facts.

Facts are similar to instances of relations in relational databases. 

In a RDBMS, the interpretation is suggested by the attribute names; in
deductive databases, the interpretation an value depends on its
position. 

Rules can also be specified. Emphasis in deductive databases has been in the 
inference of new
facts.



Prolog

A predicate: contains a name and a set of arguments.

If the arguments are constant values (literals) then we are specifying a
fact.

If some or all of the arguments are variables then we are specifying a
rule.

Constants: denoted by using a lower case letter as the first letter.



supervise (jim, john).
supervise (john, jack).
supervise (jack, joe).

superior(X,Y) :- supervise(X,Y).
superior(X,Y) :- supervise(X,Z), superior(Z,Y).



Queries can be satisfied by checking for matches in the set of facts, or by 
applying rules to facts to infer new facts and comparing these to the query 
goal.

Two resolution techniques are possible:

• Backward chaining (aka Top-down): start with query goal and
attempt to match with facts and rules (unification). If solving a
goal with a set of subgoals, satisfy in a left-to-right manner.

Pred :- Pred1, Pred2, Pred3, Pred4.

• Forward chaining (aka Bottom-Up): check if facts match query.
Then apply each rule to all facts and rules, inferring a set of facts;
each inferred fact if compared to the query predicate.



Backward chaining is far more efficient. A large set (potentially infinite) of spurious 
facts can be generated by the forward chaining techniques.

Prolog systems and deductive databases adopt a backward chaining
approach.



The deductive database is queried by specifying a predicate goal. 

If the goal contains literals only, then a Boolean value is returned.

If the goal contains variables, then a set of facts are returned that render the
query goal true



Safety of Programs

A program (or rule) is said to be safe if it returns a finite set of facts.
To determine if a set of rules is safe or not is undecidable.

Consider the employee schema we met earlier.

We wish to define a rule that returns employees with a large salary

large_salary(Y) :- Y > 100000,
employee(X),
salary (X, Y).



Assume we have facts:

employee(jim).
employee(jack).
salary(jim, 30000).
salary(jack, 110000).



Consider:

big_salary(Y) :- employee(X),
salary (X, Y),
Y > 100000.



Can also run into problems with recursive rules and ordering of rules
and facts.

Consider rules:

...
pred1(X) :- pred(Y).
pred(Y) :- pred1(X).
...



Consider rules:

fact (N, X) :- N1 is N -1,
fact (N1, X1),
X is X1 * N.

fact (0, 1).



It is clearly important to guarantee safety of programs. 

A rule is safe if it generates a finite number of facts.

More formally, a rule is safe if all variables are limited.

A variable X is limited if:

1. it appears in a regular predicate in the rule body

2. it appears in a predicate of form X=c or (c1 <= X and X <= c2) where c, c1 and c2 
are constants

3. it appears in a predicate X=Y or Y=X, where Y is a limited variable



Relational Operators

Can easily specify relational operators as Datalog rules.

Allows incorporation of relational views and queries

Example

Assume we have 3 relations each with three arguments
rel_one(A,B,C).
rel_two(D,E,F).
rel_three(G,H,I,J).



Can specify select queries as follows:

select_one_A_eq_c(X, Y, Z) :- rel_one(c, Y, Z).

select_one_A_eq_c_and_B_less_5(X, Y, Z) :- rel_one(c, Y, Z),
Y < 5.

select_one_A_eq_c_or_B_less_5(X, Y, Z) :- rel_one(c, Y, Z).

select_one_A_eq_c_or_B_less_5(X, Y, Z) :- Y < 5.



Can specify project as follows:

project_two_D_F(X,Z) :- rel_three(X,Y,Z).

Set operators:
union_one_two(X,Y,Z) :- rel_one(X,Y,Z).
union_one_two(X,Y,Z) :- rel_two(X,Y,Z).

Note that if rel one and rel two contain matching tuples (facts), we will have duplicates in the 
result. This isn’t strictly correct. Can rewrite as:

union_one_two(X,Y,Z) :- rel_one(X,Y,Z).
union_one_two(X,Y,Z) :- rel_two(X,Y,Z),
not(rel_one(X,Y,Z)).



intersect_one_two(X,Y,Z) :- rel_one(X,Y,Z),
rel_two(X,Y,Z).

difference_one_two(X,Y,Z) :- rel_one(X,Y,Z),
not(rel_two(X,Y,Z)).

cartesian_one_three(T,U,V,W,X,Y,Z) :- rel_one(T,U,V),
rel_three(W,X,Y,Z).



Hybrid operators (join):

join_one_three_C_eq_G(U,V,W,X,Y,Z):-
rel_one(U,V,W),
rel_three(W,X,Y,Z).
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Issues

Legal and Ethical Issues

Policy Issues

System Issues - levels at which security should be enforced.

Security Levels
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DBMS typically includes security and an authorisation systems.
Areas of consideration:

Preventing unauthorised access
Access systems

1 discretionary
2 mandatory

Statistical database security.
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The database administrator (DBA) has access to a number of commands for granting
and revoking access for users and groups. These include:

account creation

privilege granting

privilege revocation

security level assignment
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Access Protection

All users have a user name and password.

Keep track of all operations (particularly updates)

expand system log.
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Operations against the database may be controlled.
Two levels of assigning privileges:

account level

relation level

Account level
Capabilities provided for the account:
These include CREATE SCHEMA, CREATE VIEW, ALTER, DROP, MODIFY, SELECT
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Access rights provided for a relation

follows the access matrix model

rows correspond to subjects

columns correspond to objects

Mi, j corresponds to the privilege subject i has on object j

Privilege ∈ {read, write, update}
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Can be extended in SQL to allow the following privileges:

SELECT

MODIFY (UPDATE, DELETE, INSERT)

REFERENCES (can refer to relation R, when specifying referential integrity)
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Can specify privileges using VIEWS.

Create a view over a base relation (or set of).

Define privileges on R.

Propagation of Privileges

One can grant privileges with the GRANT option.
GRANT SELECT
ON EMPLOYEE
TO user22
WITH GRANT OPTION

Security in Databases November 14, 2023 9 / 18



Introduction Discretionary Access Control Mandatory Access Control Statistical Database

Limiting Propagation

One can grant privileges with the GRANT option.
Techniques exist based on horizontal and vertical limits.

Horizontal: can grant to at most i users

Vertical: limits ‘depth’ of granting grants. Vertical limit zero is equivalent to granting
privilege without the grant option.
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Allows a number of security classes (e.g. TOP SECRET, SECRET, CLASSIFIED,
UNCLASSIFIED)

Can be used with discretionary access control.

Can have a number of security classes that form a lattice.

Classify subjects as belonging to a class.

Classify objects as belonging to a class.
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Two restrictions/Properties (Bell-LaPadula Model

A subject S is not allowed read access to an object O unless:
class(S) ≥ class(O) (simple security property)

A subject S is not allowed to write to an object O unless:
class(S) ≤ class(O) (star property)
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In order to incorporate multi-level security notions, we can associate classification
attributes with every attribute.

The schema then becomes

R(A1;C1;A2;C2; . . .An;Cn;TC)

where TC is the classification of the tuple, set to be max(C1, ...,CN)
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Apparent Key

The apparent key is the set of attributes that would ordinarily form the key.

store entire tuple at a high classification and produce lower-level classications
through ’filtering’

polyinstantiation: multiple copies of the same tuple. Also requires modified
definitions with respect to integrity rules.
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Statistical Databases

Used to produce statistics on various ‘populations’

Individual tuples are classified.

Queries involve applying statistical functions to a population of tuples.

Only allow: COUNT, SUM, MIN, MAX, AVERAGE. STANDARD DEVIATION.

Still potential may exist for ‘inference’ of classified data.
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Q1: SELECT COUNT(*) FROM <relation> WHERE <condition>

Q2: SELECT AVG(<attribute> FROM <relation> WHERE <condition>

By modifying <condition>, we can infer data.
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Can use this idea to create ‘linear set of equations’:

Query 1 = cond1 AND cond2 AND cond3

Query 2 = cond2 AND cond3

Query 3 = cond1 AND cond3
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Prevention Techniques

Apply to query - track user queries and disallow query in the sequence that infers
data. Very difficult to do.
Apply to data

Suppression
Concealment/Disguise
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