
The two main approaches are to guaranteeing
conflict-serializability are:

locking protocols

time-stamping

Locking

A lock is a variable associated with a data item in
the database is used to signify the status of that
variable wrt to possible access to the item.

Binary Locks:

A binary lock may have two states: locked or
unlocked. If an item is locked by one transaction it
cannot be accessed by another transaction

Transaction must be well-formed.

For a transaction T to gain any access to a database
item x, T must first issue a lock(x) request.

If this request is successful, T can access X.
Otherwise it must wait.

Having completed accessing item X, T must issue
an unlock(x) to free up the database item.

Must not unlock free item, or attempt to lock an
item it has already locked.

Consider:

T1 T2

read_item(X);
X := X + 50;

read_item(X)
X := X - 50;

write_item(X)
write_item(X)

By applying a locking procedure to the above, T2's
read_item is queued until T1 finishes and issues an
unlock(X)

Causes a different ordering of accesses to the
database items.

The binary lock approach is too restrictive for real-
world applications.

Shared and Exclusive Locks

The lock(X) variable can be in one of three states:

read locked
write locked
unlocked

It an item is write locked, no other transaction can
obtain a read or write lock on the database item.

If an item is read locked, no other transaction can
attain a write lock.

Hence, we allow multiple readers but only one
writer.

Transaction can issue read_lock(x),
write_lock(x) and unlock(x).

Often augmented with upgrade(x) and
downgrade(x).

These locking schemes on their own do not
guarantee serializability.

Two phase locking

They are used in conjunction with locking protocols
to ensure correctness. The most commonly used
protocol is the 2-phase locking protocol.

Two phase locking (2PL) states that a
transaction cannot issue a lock request once
an unlock request has been issued.

Hence, there are 2 phases: the growing phases
(where transactions obtain locks) and the shrinking
phase where the transactions release locks.

2PL locking guarantees conflict serializability.

Exercise: Apply 2PL to the example of the lost
update problem and the temporary update
problem.

Exercise: Prove that 2PL guarantees conflict
serializability (hint: proof by contradiction).

Consider the following schedule:

T1 T2
write_lock(X)
write_item(X)

write_lock(Y)
write_item(Y)

write_lock(Y)

/* queued */
write_lock(X)
/* queued */

-> Deadlock

We need some means to handle deadlock.

We need to first detect deadlock and then resolve
the deadlock.

Usually, the lowest priority transaction is
terminated. Other transactions can then continue.

Deadlock detection usually involves the creation of
a dependency graph. If a cycle exists in the
dependency graph, deadlock exists.

Usually triggered by a transaction that has been
queued for a certain period of time.

Two-Phase Locking Techniques:

Different variations exist.

Basic: Transaction locks data items incrementally.
This may cause deadlock.

Conservative:

Prevents deadlock by locking all desired data items
before transaction begins execution.

Strict: A stricter version of Basic algorithm where
unlocking is performed after a transaction
terminates (commits or aborts and rolled-back).
This is the most commonly used two-phase locking
algorithm

LOCK(X):

B: if LOCK (X) = 0 //item is unlocked
then LOCK (X) ← 1 //lock the item
else begin

wait (until lock (X) = 0) and
the lock manager wakes up the transaction);

goto B
end;

UNLOCK(X):
LOCK (X) ← 0
if any transactions are waiting for X,

wake up a waiting transaction.

Shared and Exclusive Locks:

read_lock(X)

B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “read-locked”;

no_of_reads (X) ← 1;
end

else
if LOCK (X) ← “read-locked” then

no_of_reads (X) ← no_of_reads (X) +1
else

begin wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);

go to B
end;

write_lock(X):

B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “write_locked”;

end
else

begin wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);
go to B

end;

unlock(X):

if LOCK (X) = “write-locked” then
begin LOCK (X) ← “unlocked”;

wakes up one of the transactions, if any
end
else if LOCK (X) ← “read-locked” then

begin
no_of_reads (X) ← no_of_reads (X) -1
if no_of_reads (X) = 0 then
begin

LOCK (X) = “unlocked”;
wake up one of the transactions, if any

end
end;

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

