
CT3532

DATABASE SYSTEMS II

Andreas Ó hAoḋa
University of Galway

2023-12-07

CONTENTS

Contents

1 Introduction 1
1.1 Recommended Texts . 1
1.2 Assessment . 1

1.2.1 Assignments . 1

2 Design 1
2.1 Re-cap . 1

2.1.1 Example . 2
2.1.2 General Rule . 2
2.1.3 Exercise . 2

3 Design by Synthesis 3
3.1 Background . 3

3.1.1 Armstrong’s Axioms . 3
3.1.2 Cover Sets . 4
3.1.3 Lossless Joins . 4

4 B Trees & B+ Trees 5
4.1 Generalised Search Tree . 5

4.1.1 Efficiency . 6
4.2 B Trees . 6

4.2.1 Example . 6
4.2.2 Algorithm to Insert a Value into a B Tree . 6
4.2.3 Dealing with Collisions . 6
4.2.4 Exercise . 6

4.3 B+ Trees . 6
4.3.1 Node Structure . 7
4.3.2 Example . 7
4.3.3 Example . 7

5 Hash Tables 7
5.1 Introduction . 7
5.2 Approaches . 8

5.2.1 Collision Resolution Policies . 8
5.3 Dynamic Hashing . 8

5.3.1 General Approach . 8
5.4 Dynamic Hashing Approaches . 8

5.4.1 Extendible Hashing . 9
5.5 Linear Hashing . 9

6 Joins 9
6.1 Nested Loop Join . 9
6.2 Block nested Loop Join . 10
6.3 Indexed Nested Loop Join . 10
6.4 Merge Join . 10
6.5 Hash Joins . 10

7 Sorting 10

i

CONTENTS

8 Parallel Databases 11
8.1 Query Types . 11
8.2 Partitioning Approaches . 11

8.2.1 Round Robin . 11
8.2.2 Hash Partitioning . 11
8.2.3 Range Partitioning . 12

8.3 Types of Parallelism . 12
8.3.1 Inter-Query Parallelism . 12
8.3.2 Intra-Query Parallelism . 12

ii

2 DESIGN

1 Introduction

1.1 Recommended Texts

• Fundamentals of Database Systems by Elmasri and Navathe 005.74 ELM

• Database system concepts by Silberschatz, A. 005.74 SIL

1.2 Assessment

Continuous Assessment accounts for 30% of the final grade, and the exam accounts for the remaining 70%. Plagiarism
of assignments is not permitted - This is strictly enforced.

1.2.1 Assignments

2 Design

2.1 Re-cap

Normalisation can be used to develop a normalised relational schema given the universal relation, and verify the
correctness of relational schema developed from conceptual design. We decompose relations such that it satisfies
successively restrictive normal forms.

Desirable properties of a relational schema include:

• Clear semantics of a relation: The semantics of a relation refers to how the attributes grouped together in a
relation are to be interpreted. If ERmodelling is done carefully and the mapping is undertaken correctly, it is
likely that the semantics of the resulting relation will be clear. One should try to design a relation so that it is easy
to explain its meaning.

• Reducing the number of redundant values in tuples: The presence of redundancy leads to waste of storage
space and potential for anomalies (deletion, update, insertion). One should try to design relations so that no
anomalies may occur. If an anomaly can occur, it should be noted. Normalisation will remove many of the
potential anomalies.

• Reducing the number of null values in tuples: Having null values is often necessary, but it can create
problems, such as:

– Wasted space.
– Different interpretations, i.e.: attribute does not apply to this tuple, attribute value is unknown, attribute
value is known but absent, etc.

• Disallowing the possibility of generating spurious tuples: If a relationR is decomposed intoR1 &R2 and
connected via a primary key – foreign key pair, then performing an equi-join betweenR1 &R2 on the involved
keys should not produce tuples that were not in the original relationR.

More formally, we typically have a relationR and a set of functional dependencies F , defined overR. We wish to create
a decompositionD = {R1, R2, . . . , Rn}We wish to guarantee certain properties of this decomposition. We require
that all attributes in the originalR be maintained in the decomposition, id est: R = R1 ∪R2 ∪ · · · ∪Rn

• A relation is said to be in the First Normal Form (1NF) if there are no repeating fields.

• A relation is said to be in the Second Normal Form (2NF) if it is in 1NF and if every non-prime attribute is
fully functionally dependent on the key.

• A relation is said to be in the Third Normal Form (3NF) if it is in 2NF and if no non-prime attribute is
transitively dependent on the key.

• A relation is said to be in the Boyce-Codd Normal Form (BCNF) if the relation is in 3NF and if every
determinant is a candidate key.

1

2 DESIGN

2.1.1 Example

StudentNo Major Advisor
123 I.T. Smith
123 Econ Murphy
444 Biol. O’ Reilly
617 I.T. Jones
829 I.T. Smith

Table 1: Sample Data

Constraints:

• A student may have more than one major.

• For each major, a student can have only one advisor.

• Each major can have several advisors.

• Each advisor advises one major.

• Each advisor can advise several students.

Functional dependencies:

• {StudentNo, Major}→ {Advisor}

• {Advisor}→ {Major}

An update anomaly may exist: If student 44 changes major, we lose information that O’ Reilly supervises Biology. To
solve this, we can decompose the tables so as to satisfy BCNF:

• TAKES: StudentNo, Advisor

• ADVISES: Advisor, Major

2.1.2 General Rule

Consider a relationR with functional dependencies F . IfX → Y violates BCNF, decomposeR into:

• {R− Y }

• {XY }

2.1.3 Exercise

LetR = {A,B,C,D,E, F,G,H}. The functional dependencies defined overR are:

• A → D

• B → E

• E → F

• F → G

• F → H

• {A,B} → C

• C → A

2

3 DESIGN BY SYNTHESIS

A

B
C

D

E

F
G

H

DecomposeR such that the BCNF is satisfied.

3 Design by Synthesis

3.1 Background

Typically, we have the relationR and a set of functional dependencies F . We wish to create a decompositionD =
R1, R2, . . . , Rm. Clearly, all attributes ofRmust occur in at least one schemaRi, id est: Um

i=1Ri = R. This is known
as the attribute preservation constraint.

A functional dependency is a constraint between two sets of attributes. A functional dependency X → Y ex-
ists for all tuples t1 & t2 if t1[X] = t2[X], then t2 if t1[Y] = t2[Y]. We usually only specify the obvious functional
dependencies, there may be many more. Given a set of functional dependencies F , the closure of F , denoted F+,
refers to all dependencies that can be derived from F .

3.1.1 Armstrong’s Axioms

Armstrong’s Axioms are a set of inference rules that allow us to deduce all functional dependencies from a given
initial set. They are:

• Reflexivity: ifX ⊇ Y , thenX → Y .

• Augmentation: ifX → Y , thenXZ → Y Z .

• Transitivity: ifX → Y , Y → Z , thenX → Z .

• Projectivity: ifX → Y Z , thenX → Z .

• Additivity: ifX → Y ,X → Z , thenX → Y Z .

• Pseudo-transitivity: ifX → Y ,WY → Z , thenWX → Z .

The first three rules have been shown to be sound& complete:

• Sound: Given a set F on a relationR, any dependency we can infer from F using the first three rules holds for
every state of r ofR that satisfies the dependencies in F .

• Complete: We can use the first three rules repeatedly to infer all possible dependencies that can be inferred from
F .

For any sets of attributesA, we can inferA+, the set of attributes that are functionally determined byA given a set of
functional dependencies.

3

3 DESIGN BY SYNTHESIS

3.1.2 Cover Sets

A set of functional dependencies F , covers a set of functional dependenciesE if every functional dependency inE is
in F+.

Two sets of functional dependencies E & F are equivalent if E+ = F+. We can check if F covers E by calcu-
lating A+ with respect to F for each functional dependency A → B and then checking that A+ includes all the
attributes ofB.

A set of functional dependencies, F< isminimal if:

• Every functional dependency in F has a single attribute for its right-hand side.

• We cannot remove any dependency from F and maintain a set of dependencies equivalent to F .

• We cannot replace any dependencyX → Awith a dependency Y → Awhere Y ⊂ X , and still maintain a set
of dependencies equivalent to F .

All functional dependenciesX → Y specified in F should exist in one of the schemaRi, or should be inferable from
the dependencies in Ri; this is known as the dependency preservation constraint. Each functional dependency
specifies some constraint; if the dependency is absent, then some desired constraint is also absent. If a functional
dependency is absent, then we must enforce the constraint in some other manner; this can be inefficient.

Given F & R, the projection of F on Ri, denoted πRi(F) where Ri is a subset of R, is the set X → Y in F+

such that attributesX ∪ Y ∈ Ri. A decomposition ofR is dependency-preserving if:

((πR1(F)) ∪ · · · ∪ (πRm(F)))+ = F+

Theorem: It is always possible to find a decompositionD with respect to F such that:

1. The decomposition is dependency-preserving.

2. AllRi inD are in 3NF.

We can always guarantee a dependency-preserving decomposition to 3NF.Algorithm:

1. Find a minimal cover setG for F .

2. For each left-hand sideX of a functional dependency inG, create a relationX ∪A1 ∪A2 . . . Am inD, where
X → A1,X → A2, . . . are the only dependencies inGwithX as a left-hand side.

3. Group any remaining attributes into a single relation.

3.1.3 Lossless Joins

Consider the following relation:

• EMPPROJ: ssn, pnumber, hours, ename, pname, plocation

and its decomposition to:

• EMPPROJ1: ename, plocation

• EMPLOCAN: ssn, pno, hrs, pname, plocation

If we perform a natural join on these relations, we may generate spurious tuples. When a natural join is issued against
relations, no spurious tuples should be generated. A decompositionD = {R1, R2, . . . Rn} ofR has the lossless join
(or non-additive join) property with regards to F onR if every instance r of the following holds:

./ (πR1(r), . . . πRm(r)) = r

4

4 B TREES & B+ TREES

We can automate a procedure for testing for the lossless property. We can also automate the decomposition ofR into
R1, . . . Rm such that is possesses the lossless join property.

A decompositionD = {R1, R2} has the lossless property if & only if:

• The functional dependency (R1 ∩R2) → {R1 −R2} is in F+, or

• The functional dependency (R1 ∩R2) → {R2 −R1} is in F+.

Furthermore, if a decomposition has the lossless property and we decompose one ofRi such that this also is a lossless
decomposition, then replacing that decomposition ofRi in the original decomposition will result in a lossless decom-
position.

Algorithm: To decompose to BCNF:

1. LetD = R.

2. While there is a schemaB inD that violates BCNF, do:

(a) Find the functional dependency (X → Y) that violates BCNF.
(b) ReplaceB with (B − Y)& (X ∪ Y).

This guarantees a decomposition such that all attributes are preserved, the lossless join property is enforced, and allRi

are in BCNF. It is not always possible to decomposeR into a set ofRi such that allRi satisfy BCNF and properties of
lossless joins & dependency preservation are maintained. We can guarantee a decomposition such that:

• All attributes are preserved.

• All relations are in 3NF.

• All functional dependencies are maintained.

• The lossless join property is maintained.

Algorithm: Finding a key for a relation schemaR.

1. SetK := R.

2. For each attributeA ∈ K , compute (K−A)+ with respect to the set of functional dependencies. If (K−A)+

contains all the attributes inR, the setK := K − {A}.

Given a set of functional dependencies F , we can develop a minimal cover set. Using this, we can decomposeR into a
set of relations such that all attributes are preserved, all functional dependencies are preserved, the decomposition has
the lossless join property, and all relations are in 3NF. The advantages of this are that it provides a good database design
and can be automated. The primary disadvantage is that often, numerous good designs are possible.

4 B Trees & B+ Trees

4.1 Generalised Search Tree

In aGeneralised Search Tree, each node has the format P1,K1, P2,K2, . . . , Pn−1,Kn−1, Pn where Pi is a tree
value andKi is a search value. Hence, the number of values per node depends on the size of the key field, block size, &
block pointer size. The following constraints hold:

• K1 < K2 < · · · < Kn−1 < Kn.

• For all values x in a sub-tree pointed to Pi,Ki−1 < x < Ki.

• The number of tree pointers per node is known as the order or ρ of the tree.

5

4 B TREES & B+ TREES

4.1.1 Efficiency

For a generalised search tree: T (N) = O(log(N)), assuming a balanced tree. In order to guarantee this efficiency in
searching & other operations, we need techniques to ensure that the tree is always balanced.

4.2 B Trees

A B tree is a balanced generalised search tree. B trees can be viewed as a dynamic multi-level index. The properties of a
search tree still hold and the algorithms for insertion & deletion of values are modified in order. The node structure
contains a record pointer for each key value. The node structure is as follows:

P1 < K1, P r1 > P2 < K2, P r2 > . . . Pn−1 < Kn−1, P rn−1 > Pn

4.2.1 Example

Consider a B Tree of order 3 (two values and three tree pointers per node/block). Insert records with key values: 10, 6,
8, 14, 4, 16, 19, 11, 21.

4.2.2 Algorithm to Insert a Value into a B Tree

1. Find the appropriate leaf-level node to insert a value.

2. If space remains in the leaf-level node, then insert the new value in the correct location.

3. If no space remains, we need to deal with collisions.

4.2.3 Dealing with Collisions

1. Split node into left & right nodes.

2. Propagate the middle value up a level and place its value in a node there. Note that this propagation may cause
further propagations and even the creation of a new root node.

3. Place the values less than the middle value in the left node.

4. Place the values greater than the middle value in the right node.

This maintains the balanced nature of the tree, andO(logρ(N)) for search, insertion, & deletion. However, there is
always potential for unused space in the tree. Empirical analysis has shown that B trees remain 69% full given random
insertions & deletions.

4.2.4 Exercise

Can you define an algorithm for deletion (at a high level)? Howmuch work is needed in the various cases (best, average,
worst)?

4.3 B+ Trees

The most commonly used index type is the B+ tree – a dynamic, multi-level index. B+ trees differ from B trees in terms
of structure, and have slightly more complicated insertion & deletion algorithms. B+ trees offer increased efficiency
over a B Tree and ensures a higher order ρ.

6

5 HASHTABLES

4.3.1 Node Structure

B+ trees have two different node structures: internal nodes & leaf-level nodes. The internal node structure is:

P1,K1, P2,K2, . . . Pn−1,Kn−1, Pn

All record pointers are maintained at the leaf level in a B+ tree. There are no record pointers in the internal nodes. B+
trees have less information per record and hence more search values per node.

One tree pointer is maintained at each leaf-level node, which points to the next leaf-level node. Note that there
is only one tree pointer per node at the leaf level. Each leaf-level node’s structure is:

K1, P r1,K2, PR2, . . .Km, P rm, Pnext

4.3.2 Example

LetB = 512, P = 6,K = 10. Assume 30,000 records as before. Assume that the tree is 69% full. Howmany blocks
will the tree require? Howmany block accesses will a search require?

4.3.3 Example

A tree of order ρ has at most ρ− 1 search values per node. For a B+ tree, there are two types of tree nodes; hence there
are two different orders: ρ& ρleaf. To calculate ρleaf:

|P |+ (ρleaf)(|K|+ |Pr|) ≤ B

→ 17(ρleaf) ≤ 506

ρleaf = 29

Given a fill factor of 69%:

• Each internal node will have, on average, 22 pointers.

• Each leaf-level node will have, on average, 20 pointers.

• Root: 1 node, 21 entries, 22 pointers.

• Level 1: 22 nodes, 462 entries, 484 pointers.

• Level 2: 484 nodes, …, etc.

• Leaf Level: …

Hence, 4 levels are sufficient. The number of block accesses= 4 + 1. The number of blocks is 1 + 22 + 484 + . . .

5 Hash Tables

5.1 Introduction

Can we improve upon logarithmic searching? Hashing is a technique that attempts to provide constant time for
searching & insertion, i.e. O(K). The basic idea for searching & insertion is to apply a hash function to the search field
of the record; the return value of the hash function is used to reference a location in the hash table.

Care should be taken in designing a hash function. We usually require a fair hash function. This is difficult to
guarantee if there is no or limited information available about the type of data to be stored. Often, heuristics can be
used if domain knowledge is available. We can have both internal (i.e., some data structure in memory) or external
hashing (i.e., to file locations). We must consider the size of the original table or file.

7

5 HASHTABLES

5.2 Approaches

1. Create a hash table containingN addressable “slots” which each can contain one record.

2. Create a hash function that returns a value to be used in insertion & searching. The value returned by the hash
function must be in the correct range, i.e. the address space of the hash table

If the range of the keys is that of the address space of the table, we can guarantee constant-time lookup. However, this is
usually not the case as the address space of the table is much smaller than that of the search field.

With numeric keys, we can use modulo-division or truncation for hashing. With character keys, we must first convert
to an integer value: this can be achieved by multiplying the ASCII code of the characters together and then applying
modulo-division. However, we cannot guarantee constant-time performance as collisions will occur, i.e. two records
with different search values being hashed to the same location in the table; we require a collision resolution policy.
Efficiency then will depend on the number of collisions. The number of collisions depends primarily on the load factor
λ of the file:

λ =
Number of records
Number of slots

5.2.1 Collision Resolution Policies

• Chaining: if a location is full, add the item to a linked list. Performance degrades if the load factor is high. The
lookup time is on average 1 + λ.

• Linear probing: if a location is full, then check in a linear manner for the next free space. This can degrade to a
linear scan. The performance, if successful is 0.5(1 + 1

1−λ) and if unsuccessful is 0.5 + (1 + 1
1+λ

2
). One big

disadvantage of this approach is that it leads to the formation of clusters.

• Quadratic probing: if a location is full, check the location x + 1, location x + 4, location (x + n)2. This
results in less clustering.

• Double hashing: if location x is occupied, then apply a second hash function. This can help guarantee an even
distribution (a fairer hash function).

5.3 Dynamic Hashing

The cases that we’ve considered thus far deal with the idea of a fixed hash table: this is referred to as static hashing.
Problems arise if the database grows larger than planned: too many overflow buckets and performance degrades. A
more suitable approach is dynamic hashing, wherein the table or file can be re-sized as needed.

5.3.1 General Approach

1. Use a family of hash functions h0, h1, h2, etc. hi+1 is a refinement of hi. E.g.,Kmod2i.

2. Develop a base hash function that maps the key to a positive integer.

3. Use h0(x) = xmod2b for a chosen b. There will be 2b buckets initially. We can effectively double the size of the
table by incrementing b.

We only double the number of buckets when re-organising conceptually; we do not actually double the number of
buckets in practice as it may not be needed.

5.4 Dynamic Hashing Approaches

Common dynamic hashing approaches include extendible hashing & linear hashing. Extendible hashing involves
re-organising the buckets when & where needed, whereas linear hashing involves re-organising buckets when but not
where needed.

8

6 JOINS

5.4.1 Extendible Hashing

• When a bucket overflows, split that bucket in two. A directory is used to achieve this conceptual doubling.

• If a collision or overflow occurs, we don’t re-organise the file by doubling the number of buckets, as this would
be too expensive. Instead, we maintain a directory of pointers to buckets, we can effectively double the number
of buckets by doubling the directory, splitting just the bucket that overflowed. Doubling the directory is much
cheaper than doubling the file, as the directory is much smaller than the file,

• On overflow, we split the bucket by allocating a new bucket and redistributing its contents. We double the
directory size if necessary.

Wemaintain a local depth for each bucket, effectively the number of bits needed to hash an item here. We also maintain
a global depth for the directory which is the number of bits used in indexing items. We can use these values to determine
when to split the directory.

• If overflow occurs in a bucket where the local depth = global depth, then split the bucket, redistribute its contents,
and double the directory.

• If overflow occurs in a bucket where the local depth < global depth, then split the bucket, redistribute its contents,
and increase the local depth.

If the directory can fit in the memory, then the retrieval for point queries can be achieved with one disk read.

5.5 Linear Hashing

Linear hashing is another approach to indexing to a dynamic file. It is similar to dynamic hashing in that a family
of hash functions are used (h = Kmod2i), but differs in that no index is needed. Initially, we create a file ofM
buckets;KmodM1 is a suitable hash function. We will use a family of such functionsKmod(2i ×M), i = 0 initially.
We can view the hashing as comprising of a sequence of phases: for phase j, the hash functionsKmod2i × M &
Kmod2j+1 ×M are used.

We split a bucket by redistributing the records into two buckets: the original one & a new one. In phase j, to
determine which ones go into the original while the others go into the new one, we useHj+1(K) = Kmod2j+1 ×M
to calculate their address. Irrespective of the bucket which causes the overflow, we always split the next bucket in a
linear order. We begin with bucket 0, and keep track of which bucket to split next p. At the end of a phase when p is
equal to the number of buckets present at the start of the phrase, we reset p and a new phase begins (j is incremented).

6 Joins

Many approaches & algorithms can be used to do joins.

6.1 Nested Loop Join

To perform the join r ./ s:

1 for each tuple t_r in r do:

2 for each tuple t_s in s do:

3 if t_r and t_ satisfy join condition:

4 add(t_r, t_s) to result

5 end

6 end

This is an expensive approach; every pair of tuples is checked to see if they satisfy the join condition. If one of the
relations fits in memory, it is beneficial to use this in the inner loop (known as the inner relation).

9

7 SORTING

6.2 Block nested Loop Join

The block nested loop join is a variation on the nested loop join that increases efficiency by reducing the number of
block accesses.

1 for each block B_r in r do:

2 for each block B_s in s do:

3 for each tuple t_r in B_r do:

4 for each tuple t_s in B_s do:

5 if t_r and t_s satisfy join condition:

6 add (t_r, t_s) to result

7 end

8 end

9 end

10 end

6.3 Indexed Nested Loop Join

If there is an index available for the inner table in a nested loop join, we can replace file scans with index accesses.

6.4 Merge Join

If both relations are sorted on the joining attribute, then we can merge the relations. The technique is identical to
merging two sorted lists (such as in the “merge”’ step of a Merge-Sort algorithm). Merge joins are much more efficient
than a nested join. They can also be computed for relations that are not ordered on a joining attribute, but have indexes
on the joining attribute.

6.5 Hash Joins

1. Create a hashing function which maps the join attribute(s) to partitions in a range 1..N .

2. For all tuples in r, hash the tuples toHri.

3. For all tuples in s, hash the tuples toHsi.

4. For i = 1 toN , join the partitionsHri = Hsi.

7 Sorting

Sorting is a very important operation because it is used if a query specifies ORDER BY and is used prior to relational
operators (e.g. Join) to allow more efficient processing of the operation. We can sort a relation in two ways:

• Physically: actual order of tuples re-arranged on the disk.

• Logically: build an index and sort index entries.

When the relation to be sorted fits in thememory, we can use standard sorting techniques (such as Quicksort). However,
when the relation doesn’t fit in memory, we have to use other approaches such as the external sort merge, which is
essentially anN -way merge, an extension of the idea in the merge step of the merge sort algorithm.

1 i := 0;

2 M = number of page frames in main memory buffer

3

4 repeat

5 read M blocks of the relation

6 sort M blocks in memory

7 write sorted data to file R_i

10

8 PARALLELDATABASES

8 until end of relation

9

10 read first block of each R_i into memory

11 repeat

12 choose first (in sort order) from pages

13 write tuple to output

14 remove tuple from buffer

15 if any buffer R_i empty and not eof(R_i)

16 read next block from R_i into memory

17 until all pages empty

8 Parallel Databases

Characteristics of Parallel databases include:

• Increased transaction requirements.

• Increased volumes of data, particularly in data-warehousing.

• Many queries lend themselves easily to parallel execution.

• Can reduce the time required to retrieve relations from disk by partitioning relations onto a set of disks.

• Horizontal partitioning is usually used. Subsets of a relation are sent to different disks.

8.1 Query Types

Common types of queries include:

• Batch processing: scanning an entire relation.

• Point-Queries: return all tuples that match some value.

• Range-Queries: return all tuples with some value in some range.

8.2 Partitioning Approaches

8.2.1 Round Robin

WithRound Robin, the relation is scanned in order. Assumingn disks, the ith relation is sent to diskDimodn. Round
Robin guarantees an even distribution

Round Robin is useful for batch processing, but is not very suitable for either point or range queries as all disks
have to be accessed.

8.2.2 Hash Partitioning

In hash partitioning, we choose attributes to act as partitioning attributes. We define a hash function with range
0 . . . n− 1, assuming n disks. Each tuple is placed according to the result of the hash function.

Hash partitioning is very useful if a point query is based on a partitioning attribute. It is usually useful for batch
querying if a fair hash function is used, but is poor for range querying.

11

8 PARALLELDATABASES

8.2.3 Range Partitioning

In range partitioning, a partitioning attribute is first chosen. Thepartitioning vector is defined as< v0, v1, . . . , vn−2 >.
Tuples are placed according to the value of the partitioning attribute. If tpartitioning attribute < v0, then we place tuple t
on diskD0.

Range partitioning is useful for both point & range querying, but can lead to inefficiency in range querying if many
tuples satisfy the condition.

8.3 Types of Parallelism

8.3.1 Inter-Query Parallelism

In inter-query parallelism, different transactions run in parallel on different processors, thus increasing the transaction
throughput, although the times for individual queries remain the same. Inter-query parallelism is the easiest for of
parallelism to implement.

8.3.2 Intra-Query Parallelism

Intra-query parallelism allows us to run a single query in parallel on multiple processors (& disks), which can speed
up the running time of a query. Parallel execution can be achieved by parallelising individual components, which is
called intra-operation parallelism. Parallel execution can also be achieved by evaluating portions of the query in
parallel, which is called inter-operation parallelism. Both of these types can be combined.

12

	Introduction
	Recommended Texts
	Assessment
	Assignments

	Design
	Re-cap
	Example
	General Rule
	Exercise

	Design by Synthesis
	Background
	Armstrong's Axioms
	Cover Sets
	Lossless Joins

	B Trees & B+ Trees
	Generalised Search Tree
	Efficiency

	B Trees
	Example
	Algorithm to Insert a Value into a B Tree
	Dealing with Collisions
	Exercise

	B+ Trees
	Node Structure
	Example
	Example

	Hash Tables
	Introduction
	Approaches
	Collision Resolution Policies

	Dynamic Hashing
	General Approach

	Dynamic Hashing Approaches
	Extendible Hashing

	Linear Hashing

	Joins
	Nested Loop Join
	Block nested Loop Join
	Indexed Nested Loop Join
	Merge Join
	Hash Joins

	Sorting
	Parallel Databases
	Query Types
	Partitioning Approaches
	Round Robin
	Hash Partitioning
	Range Partitioning

	Types of Parallelism
	Inter-Query Parallelism
	Intra-Query Parallelism

