
Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing Systems
& Organisation

Programming Models

Outline

• Instruction types
• Stack
• Stack architectures
• GPR architectures
• Stack used to implement procedure calls

2Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Programming Models

A processor programming model defines how
instructions access their operands and how
instructions are described in the processor’s
assembly language

3

a = b + c
Processors with different programming
models can offer similar sets of operations
but may require very different approaches to
programming

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

The Processor - Instruction Cycles
• The instruction cycle is the procedure of processing an instruction by the microprocessor:

4

Fetch
or read the

instruction from
the memory

Decode
what is to be done

Execute
Perform the

operation

• Each of the functions fetch -> decode -> execute consist of a sequence of one or
more operations inside the CPU (and interaction with the subsystems)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Types of Instructions

• Data Transfer Instructions
• Operations that move data from one place to another
• These instructions don’t modify the data, they just copy it

to the destination

5

• Data Operation Instructions
• Instructions do modify their data values
• They typically perform some operation (e.g., +/-/*)

using one or two data values (operands) and store the
result

• Program Control Instructions
• Jump or branch instructions used to go in another part of the

program; Jumps can be absolute or conditional (e.g., if then else)
• Instructions that can generate interrupts (software interrupts)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

CPU

Data Transfer Instructions (1)

Load data from memory into the microprocessor
These instructions copy data from memory into microprocessor registers (i.e., LD)

6

MemoryRegister

Register

Register

Store data from the microprocessor into the memory
Similar to load data, except that the data is copied in the opposite direction (i.e., ST)
Data is saved from internal microprocessor registers into the memory

Move data within the microprocessor
These instructions move data from one microprocessor register to another (i.e., MOV)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Data Transfer Instructions (2)

• Input data to the microprocessor
• A microprocessor may need to input data from the

outside world, these are the instructions that input
data from the input device into the microprocessor

• An example: microprocessor needs to know which key
was pressed (i.e., IORD)

7

Input: e.g.,
keyboard

CPU Register

Register

Register

Output: e.g.,
display

• Output data from the microprocessor
• The microprocessor copies data from one of its

internal registers to an output device
• In example: microprocessor may want to show on a

display the content of an internal register (the key
that has been pressed) (i.e., IOWR)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Data Operation Instructions
• Arithmetic instructions

• add, subtract, multiply or divide
• ADD, SUB, MUL, DIV, etc.

• Instructions that increment or decrement one from a value
• INC, DEC

• Floating point instructions that operate on floating point values
• FADD, FSUB, FMUL, FDIV

8

• Logic Instructions
• AND, OR, XOR, NOT, etc.

• Shift Instructions
• SR, SL, RR, RL, etc.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Program Control Instructions (1)
• Jump and branch instructions (Conditional or unconditional):

• JZ: Jump if the zero flag is set
• JNZ: Jump if the zero flag is NOT set
• JMP: Unconditional jump; flags are ignored
• Etc.

• Comparison instructions:
• TEST: logical BITWISE AND

• Calls and returns a/from a routine (Conditional or unconditional):
• CALL: call a subroutine at a certain line
• RET: return from a subroutine
• IRET: interrupt and return

9Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Program Control Instructions (2)
• Software interrupts:

• Generated by devices outside of a microprocessor (not part of the instruction set)
• called hardware interrupts
• INT

• Exceptions and traps: triggered when valid instructions perform
invalid operations,
• E.g., dividing by zero

• Halt instructions: causes the processor to stop executions,
• E.g., at the end of a program
• HALT

10

https://www.tutorialspoint.com/assembly_programming/index.htm

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 11

Stack Architectures

Stack Based Architectures
• The Stack

• Implementing Stacks
• Instructions in a stack-based architecture
• Stack based architecture instruction set

• Programs in stack-based architecture

12Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

The Stack (1)
• Last In First Out (LIFO) data structure

• Consists of locations, each of which can hold a word of data

• It can be used explicitly to save/restore data

• Supports two operations

• PUSH – takes one argument and places the value of the argument in
the top of the stack

• POP – removes one element from the stack, saving it into a
predefined register of the processor

• Used implicitly by procedure call instructions
(if available in the instruction set)

13Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

The Stack (2)
When new data is added to the stack, it is placed at the top of the stack,
and all the contents of the stack are pushed down one location

14

.

.

.

10

.

.

.

11

10

.

.

.

10

.

.

.

8

10

.

.

.

Top >

Initial State After PUSH #10 After PUSH #11 After POP After PUSH #8

Consider the code:
PUSH #10
PUSH #11
POP
PUSH #8

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Implementing Stacks

Two ways to implement a Stack:

1. Dedicated hardware stack
• It has a hardware limitation (limited number of locations)
• Very fast

2. Memory implemented stack
• Limited by the physical memory of the system
• Slow compared with hardware stack, since extra memory addressing has to take place

for each stack operation

Stack overflows can occur in both implementations
• When the amount of data in the stack exceeds the amount of space allocated to the

stack (or the hardware limit of the stack)

15Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Stack Implemented in Memory

• Every push operation will
increment the top of the
stack pointer (with the word
size of the machine)

• Every pop operation will
decrement the top of the
stack pointer

16

64KB space
dedicated for

the stack

Memory

Address

0

0x00010000 First data pushed

.

.

.

Last data pushed0x00010110

0x00020000
.
.
.

Stack Limit
(Fixed)

Bottom of the stack
(Fixed)

Top of the stack
(Moves as data is
pushed or pop)

Empty locations

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in a Stack Based Architecture

• Get their operands from the stack and write their results to the stack

• Advantage - Program code takes little memory (no need to specify the address of the operands in
memory or registers)
Push is one exception, because it needs to specify the operand (either as constant or address)

17

5Top

.

.

.

3

4

3Top

.

.

.

9Top

.

.

.

3

Initial Stak During Execution After Execution

ADD Instruction Execution

Stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Programs in Stack Based Architecture (1)

• Writing programs for stack-based architectures is not easy
• Stack-based processors are better suited for postfix notation rather than infix notation

• Infix notation is the traditional way of representing math expressions, with operation
placed between operands
• E.g., a + b

• Postfix notation – the operation is placed after the operands
• E.g., a b +

• Once the expression has been converted into postfix notation, implementing it in
programs is easy

• Exercise: Create a stack-based program that computes: A*(B-C)+(D+E)

19Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Simple Stack Based Instruction Set

stack contents (leftmost = top = most recent)

push A # A

push B # B A

push C # C B A

subtract # B-C A

multiply # A*(B-C)

push D # D A*(B-C)

push E # E D A*(B-C)

add # D+E A*(B-C)

add # A*(B-C)+(D+E)

Operation: A*(B-C)+(D+E)

Dr Takfarinas Saber
<takfarinas.saber@universityofgalway.i

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 22

General Purpose
Register Architecture

General Purpose Register Architecture

• Instructions in a GPR architecture

• A GPR instruction set

• Programs in GPR architecture

23Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

24

General Purpose Register Architecture (1)

• The instructions read their operands and write their results to random access
register file.

• The general purpose register file allows the access of any register in any order
by specifying the number (register ID) of the register

• The main difference between a general purpose register and the stack is that
reading repeatedly a register will produce the same result and will not modify
the state of the register file.
• Popping an item from a LIFO structure (stack) will modify the contents of the stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

General Purpose Register Architecture (2)

• Many GPR architectures assign special values to some registers in the register file to
make programming easier

• I.e., sometimes, register 0 is hardwired with value 0 to generate this most common constant

25

dataRegister 0

.

.

.
data

data

data

Register File

Register 1

Register 2

Register n

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in GPR Architecture (1)

• GPR instructions need to specify:
• the register that hold their input operands
• and the register that will hold the result

• The most common format is the three operands instruction format
• E.g., ADD r1, r2, r3 instructs the processor to read the contents of r2 and r3, add them

together and write the result in r1

• Instructions having two or one input are also present in GPR architecture

26Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in GPR Architecture (2)

• A significant difference between GPR architecture and stack-based architecture:
• Programs can choose which values should be stored in the register file at any given time,

allowing them to cache most accessed data

• In stack based architectures, once the data has been used, it is gone.

• GPR architectures have better performance from this point of view, at the
expense of needing more storage space for the program
• larger instructions need to encode the addresses of the operands

27Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Simple GPR Instruction Set

ST (ra), rb (ra) <- rb
LD ra, (rb) ra <- (rb)
ADD ra, rb, rc ra <- rb + rc
SUB ra, rb, rc ra <- rb - rc
AND ra, rb, rc ra <- rb & rc
OR ra, rb, rc ra <- rb | rc
MOV ra, rb ra <- rb

28

(ra): The memory location whose address is contained in ra

Programs in a GPR Architecture (1)
• Programming a GPR architecture processor is less structured than programming a stack based

architecture one.

• There are fewer restrictions on the order in which the operations can be executed

• On stack based architectures, instructions should execute in the order that would leave the
operands for the next instructions on the top of the stack

• On GPR, any order that places the operands for the next instruction in the register file before
that instruction executes is valid.

• Operations that access different registers can be reordered without making the program invalid

29Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Programs in GPR Architecture (2)

• Create a GPR based program that computes:

• 2 + (7&3)

30

• GPR programming uses infix notation:
MOV R1, #7
MOV R2, #3
AND R3, R1, R2
MOV R4, #2
ADD R4, R3, R4

• The result will be placed in R4

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Comparing Stack based and GPR Architectures
• Stack-based architectures

• Instructions take fewer bits to encode
• Reduced amount of memory taken up by programs
• Manages the use of register automatically (no need for programmer intervention)
• Instruction set does not change if size of register file has changed

• GPR architectures
• With evolution of technology, the amount of space taken up by a program is less important
• Compilers for GPR architectures achieve better performance with a given number of general purpose

registers than those on stack-based architectures with same number of registers
• The compiler can choose which values to keep (cache) in register file at any time

• Stack based processor are still attractive for certain embedded systems. GPR architectures are used by
modern computers (workstations, PCs, etc.)

31Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 32

Stacks for Procedure Calls

Using Stacks to Implement Procedure Calls (1)
• Programs need a way to pass inputs to the procedures that they call and

to receive outputs back from them

• Procedures need to be able to allocate space in memory for local
variables, without overriding any data used by their calling program

• It is impossible to determine which registers may be safely used by the
procedure (especially if the procedure is located in a library)
• So, a mechanism to save/restore registers of the calling program has to be in place

• Procedures need a way to figure out where they were called from
• So, the execution can return to the calling program when the procedure

completes (they need to restore the program counter)

33Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Using Stacks to Implement Procedure Calls (2)

• When a procedure is called, a block
of memory in the stack is allocated.
This is called a stack frame

• The top of the stack pointer is
incremented by the number of
locations in the stack frame

• When a procedure finishes, it jumps
to the return address contained in
the stack and execution of the calling
program resumes.

34

Saved Registers from caller

Stack
Frame

Return address

Inputs to procedure

Top of stack pointer
after procedure call

Top of stack pointer
before procedure call

Procedure’s local variables

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Using Stacks to Implement Procedure Calls (3)

• Nested procedure calls:

• main program calls function f(),
• function f() calls function g(),
• function g() calls function h()

35

Saved Registers from caller

Main Program’s stack frame

Stack frame for f()

Stack frame for g()

Top of stack pointer
after h() procedure

call

Bottom of the stack

Stack frame for h()

Stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

References
• “Computer Systems Organization & Architecture”, John D. Carpinelli, ISBN: 0-201-61253-4

• “Computer Architecture”, Nicholas Charter, ISBN – 0-07-136207

• Images taken from Pexels:

• Photo of dog by Jozef Fehér

• Photo of magnifying glass and fencers by cottonbro

• Photo of mirror by sum+it

• Photo of hardware by Valentine Tanasovich

• Photo of tree by Johannes Plenio

• Photo of stop sign by Mwabonje

• Photo of stack by Monstera

• Photo of drawers by Stephan Streuders

• Photo of code by Antonio Batinić

36Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

