
University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie
School of Computer Science

University
ofGalway.ie

Our Food Chain

2

Seeds Canaries Cats

• Canaries eat Seed
• Cats eat Canaries
• Energy passes from Seeds to the Canary to the Cat

University
ofGalway.ie

Canary’s eat method should do the following:
1. Check if the Food object is null
2. Checks if Food object is an instanceof Seed;
3. If it is a Seed, the canary calls the extractEnergy method and adds the value

returned to its own energy level
4. It also calls the sing method (because it is now well fed)

I would also suggest that this method is modified to return a boolean depending on
whether the Food is edible (e.g it is a Seed or not)

Implement Canary’s eat method

3

University
ofGalway.ie

“The eat method in Animal should be changed to return a boolean value. ”
“In Canary's case, the eat method should return true if the food variable is an instance of Seed.
Otherwise, the method should return false.”

Eat method

4

University
ofGalway.ie

Feline class (abstract)
Extends Animal
Fields

hasFur
Overrides

move() method
Cat class (concrete)

Extends Feline
Fields

name
Overrides

colour field (colour=black)
eat (Food) method

Adding Feline and Cat classes

5

University
ofGalway.ie

Feline class

6

University
ofGalway.ie

Cat class

7

University
ofGalway.ie

8

University
ofGalway.ie

For this to work, a Canary must be a subclass of Food, just as Seed is
However, this is not the case.
Canary is a subclass of Animal

eat method of Cat

9

University
ofGalway.ie

Furthermore, there is no way to cast a Canary object to Food
E.g. Try the following in code pad

For polymorphism to occur, Cat would have to be a subclass of Food

A Canary is not a Food type

10

University
ofGalway.ie

Arrange your classes to look like this

11

University
ofGalway.ie

Copy and paste the body of the eat method in Canary into this method. Modify
Remember a Cat can only eat a Canary
A Cat doesn’t sing

Now open the eat method of Cat

12

University
ofGalway.ie

What problems did you experience?

13

University
ofGalway.ie

Incompatible Types

14

University
ofGalway.ie

Big Problem! Food cannot be converted to Canary
However, the eat method only takes a Food reference as an input
In order to convert the Food reference to a Canary reference, Canary must be a subclass of Food, just as
Seed was
But Canary is a subclass of Animal

eat method of Cat

15

University
ofGalway.ie

A Canary is not a Food Type

16

University
ofGalway.ie

This problem could be solved using multiple inheritance – where a class
can have multiple simultaneous superclasses

Multiple Inheritance

17

University
ofGalway.ie

However, in OOP multiple inheritance has led to major problems due to conflicting field and method
implementations inherited from superclasses

Multiple Inheritance

18

University
ofGalway.ie

Multiple Inheritance

19

Java does not support multiple inheritance

University
ofGalway.ie

Java uses a structure called an interface to achieve a form of multiple
inheritance
An interface is like a class – but it is really more like an outline of what
methods a class should have
Just like a class an interface can be used as a type

Interface names often end in – able - simply by convention

Interface

20

University
ofGalway.ie

Compare and Contrast with a class definition

Interface example

21

University
ofGalway.ie

Note interface not class

Interface example

22

• Note method
definitions
have no body

University
ofGalway.ie

What does it mean?

1. Any class that implements Eatable can be treated as an Eatable type
(Polymorphism)

2. Any class that implements Eatable must provide concrete
implementations of its method

Eatable interface

23

University
ofGalway.ie

While a class can only extend one superclass (direct inheritance)
It can implement multiple interfaces

Implementing an interface

24

University
ofGalway.ie

What does it mean?

1. Any class that implements Food can be treated as a Food type (Polymorphism)
2. Any class that implements Food must provide concrete implementations of its method

Food as an interface

25

University
ofGalway.ie

A class can only extend one superclass (direct inheritance)
A class can implement multiple interfaces
the following class declaration is valid:

public class Canary extends Bird implements Food, Comparable{
…
}

“A Canary is a subclass of Bird and implements the interfaces Food and Comparable”

Implementing an interface

26

University
ofGalway.ie

We are going to make the Food class into an interface

Any object that is edible (in our domain) will be required to implement the
Food interface.

Solving the Cat’s eating problem

27

University
ofGalway.ie

• Change Food to be an interface

• This also will require Vegetable to implement the Food interface
• Seed will need to have its own version of the calories field

Step 1:

28

University
ofGalway.ie

We want Canary to be considered a type of Food
Therefore, Canary should implement the Food Interface

Canary will be required to implement the Food interface’s two methods
getCalories
extractFood

Step 2

29

University
ofGalway.ie

Canary should implement Food

Canary will also be required to implement Foods two methods

Step 2

30

University
ofGalway.ie

If you’ve followed these instructions, you should find that the eat method of Cat now compiles
A Canary is now a Food type as it implements the Food interface

31

University
ofGalway.ie

Cat’s eating problem solved

32

University
ofGalway.ie

• Write a new test method in the
FoodChainTest class

• Call it testv2
• Write Code to execute the code

instructions in the comments
below (Reuse some of the code
in the testv1 method)

• Execute the method
in the main method

• Check that the output
is as expected

Test your code

33

University
ofGalway.ie

Similarities:
• Both can be used to provide ‘templates’ for what subclasses can

implement
• An abstract method plays the same role as an interface method –

Both must be implemented in concrete form by a subclass
• An abstract class and an Interface can be used as the type for a

reference variable.
E.g. Food tasty = new Canary(“tasty”);

• This code works if Food is an abstract class or Interface

Interface vs Abstract class: Similarities

34

University
ofGalway.ie

Differences:
• An abstract class is used for classic inheritance purposes – providing an abstract structure that subclasses

inherit. The subclasses have a lot in common.
• E.g. the abstract class Bird provides common functionality for all feathered, winged animals
Bird canary = new Canary(“mary”);
Bird ossie = new Ostrich(“ossie”);

• However, an interface is often used to impose common functionality on classes that have nothing in
common.

• E.g. The interface Food imposes common (Food) functionality on two quite different classes : Seed and
Canary
Food tasty = new Canary(“tasty”);
Food sunflower = new Seed();

Interface vs Abstract class: Differences

35

University
ofGalway.ie

On the next slide, we compare the similarities and differences between
the abstract class and interface versions of Food

36

University
ofGalway.ie

vs

37

University
ofGalway.ie

• An abstract class has the term abstract class in its class declaration
• An interface has the term interface in its declaration
• An abstract class may have fields; an interface usually will not*
• An abstract class may have a constructor; an interface will not
• A class will use the keyword extends in its class declaration when inheriting from an abstract class
• A class will use the keyword implements in its class declaration to indicate that it will implement an interface
• A class can only extend one superclass (abstract or concrete). However, it can implement multiple interfaces
• An abstract class may have a concrete method; an interface will not
• An abstract method has the abstract keyword in its method declaration; an interface method does not
• An interface method and an abstract method do not have a method body

*When fields are declared in an Interface, they are public, static and, final by default
We will not be covering examples with fields declared in Interfaces

Differences/Similarities: Syntax

38

	CT2106�Object Oriented Programming
	Our Food Chain
	Implement Canary’s eat method
	Eat method
	Adding Feline and Cat classes
	Feline class
	Cat class
	Slide Number 8
	eat method of Cat
	A Canary is not a Food type
	Arrange your classes to look like this
	Now open the eat method of Cat
	What problems did you experience?
	Incompatible Types
	eat method of Cat
	A Canary is not a Food Type
	Multiple Inheritance
	Multiple Inheritance
	Multiple Inheritance
	Interface
	Interface example
	Interface example
	Eatable interface
	Implementing an interface
	Food as an interface
	Implementing an interface
	Solving the Cat’s eating problem
	Step 1:
	Step 2
	Step 2
	Slide Number 31
	Cat’s eating problem solved
	Test your code
	Interface vs Abstract class: Similarities
	Interface vs Abstract class: Differences
	Slide Number 36
	Slide Number 37
	Differences/Similarities: Syntax

