
Page 1  

CT2108 Lab - TCP Protocol Analysis 
 
General 
The objectives of this lab session are to investigate the behavior of the celebrated TCP 
protocol in detail. You will do so by analysing a trace of the TCP segments sent and 
received in downloading a large file from a server to your computer. Before starting this 
assignment, it is presumed that you know the foundations related to Wireshark, such as 
capturing and filtering packets. These were already covered in previous lab sessions. 

 
Before beginning your exploration of TCP, you will need to use Wireshark to obtain a 
packet trace of the TCP transfer of a large file from a remote server to your computer. 
You will find some large test files here: http://www.thinkbroadband.com/download.html 
However, you can use any server you want for this lab work so long as the files are fairly 
big, 10MB is a reasonable size for testing. The actual content of the file does not matter 
at all for this lab work. 

 
Now start up Wireshark and begin the packet capture as normal. Returning to your web 
browser, download a file to your computer. When the file has been fully downloaded stop 
Wireshark packet capture. Before analysing the behavior of the TCP connection in detail, 
let’s take a high-level view of the trace. First, filter the packets displayed in the Wireshark 
window by entering “tcp” (lowercase, no quotes, and don’t forget to press return after 
entering) into the display filter specification window towards the top of the Wireshark 
window. It may also help to use the Find Packet command from the Edit menu, as shown 
in the live class, to help search for and identify the HTTP GET Request for the actual 
download, you can then apply a display filter to only show packets related to that TCP 
stream using the Follow TCP Stream command from the Analyze menu. 

 
You should see a series of TCP and HTTP messages between your computer and the server 
from where you downloaded the file. You should see the initial three-way handshake 
containing a SYN message. You should see an HTTP GET message. Depending on the 
version of Wireshark you are using, you might see a series of “HTTP Continuation” 
messages being sent from your computer to the server. In reality there is no such thing as 
an HTTP Continuation message, this is Wireshark’s way of indicating that there are 
multiple TCP segments being used to carry a single HTTP message. In recent versions of 
Wireshark, you will see “[TCP segment of a reassembled PDU]” in the Info column of the 
Wireshark display to indicate that this TCP segment contained data that belonged to an 
upper layer protocol message (in our case here, HTTP). You should also see TCP ACK 
segments being exchanged between your computer and the server.  

 
Where required, when answering a question or performing analysis, you can include a 
screen shot or print out of the packet(s) within the trace that you used to answer the question 
asked. To print a packet, use File->Print, choose Selected packet only, choose Packet 
summary line, and select the minimum amount of packet detail that you need to answer the 
question. Also choose Output to File to save the selected packet into a text file for pasting 
into a document if this is needed. You should see a series of TCP segments sent between 
your computer and the server. Now follow the instructions and try to answer each of the 
following questions: 
 



Page 2  

1. What is the sequence number of the TCP SYN segment that is used to initiate the TCP 
connection between your computer and the server? What is it in the segment that identifies 
the segment as a SYN segment? Wireshark will display sequence numbers and ack 
numbers in both raw and relative format, make sure you understand the difference between 
these two formats, as explained in the live class. 

 
2. What is the sequence number of the SYN, ACK segment sent by the server to your 

computer in reply to the SYN? What is the value of the Acknowledgement field in the 
SYN, ACK segment? How did the server determine that value? What is it in the segment 
that identifies the segment as a SYN, ACK segment? 

 
3. What is the sequence number of the TCP segment containing the initial HTTP GET 

command? Note that in order to find the GET command, you’ll need to dig into the packet 
content field at the bottom of the Wireshark window, looking for a segment with “HTTP” 
or something similar within its DATA field. 

 
4. Consider the TCP segment containing the HTTP GET as the first segment in the TCP 

connection. What are the sequence numbers of the first four segments in the TCP 
connection (including the segment containing the HTTP GET)? At what time was each 
segment sent? When was the ACK for each segment received? 

 
5. What is the length of each of the first four TCP segments received from the server? What 

is the typical amount of available buffer space advertised by your computer for the entire 
trace? Give some examples of this value. Does the lack of receiver buffer space ever seem 
to throttle the sender? 

 
6. You should now examine the amount of data sent per unit time from the server to your 

computer. Rather than calculating this from the raw data in the Wireshark window, we’ll 
use one of Wireshark’s TCP graphing utilities - Time-Sequence-Graph(Stevens) to plot out 
data. Select a TCP segment from the server and then select the menu: Statistics->TCP 
Stream Graph-> Time-Sequence-Graph(Stevens). Each dot in the resulting graph 
represents a TCP segment sent, plotting the sequence number of the segment versus the 
time at which it was sent. Note that a set of dots stacked above each other represents a 
series of packets that were sent back-to-back by the sender. Can you identify where TCP’s 
slow-start phase begins and ends, and where congestion avoidance takes over if at all? If 
necessary, you can select a portion of the displayed graph to zoom in for better detail. 

 
 


