Name: Andrew Hayes Name: Cathal Lawlor
StudentID: 21321503 CT4100 StudentID: 21235456

Assignment 2: Query Term Suggestion

1 Question 1

Considering that we are given a query that a user submits to an information retrieval system, and the top /N documents that are
returned as relevant by the system, and that we want to suggest query terms to add to the query, the types of suggested terms
that would be useful to the user are terms that split the set of returned documents; that is, we want to suggest terms to the user
that narrow down their search. This requirement also contains the implicit requirement of a diverse set of suggested terms:
there is little point in suggesting several terms with near-identical semantic meaning, e.g., “car”, “automobile”, “vehicle”, as
these will do little to narrow down and refine the set of returned documents. Although there can be utility in suggesting similar
or indeed synonymous terms to expand the set of returned documents to contain documents which have similar contents even
if they don’t contain the specific query terms used, we will be focusing here on shrinking or narrowing down the set of returned
documents to enhance specificity and remove irrelevant documents.

However, we must also consider that the terms we suggest must nonetheless be relevant to the query. While we could maximise
the diversity of the terms by just randomly selecting words from a dictionary, this would not be useful to the user for their specific
search. The key challenge here is to find terms which are maximally similar to the query terms, but are also maximally dissimilar
from the other terms we are suggesting. One approach we could use to find such terms is clustering: a good clustering algorithm
maximises intra-cluster similarity (thus grouping documents with similar contents into the same cluster) while minimising
inter-cluster similarity (thus ensuring that the documents in each cluster are as dissimilar from the documents in other clusters

as possible).

Our proposed approach to query term suggestion is as follows:
1. Run the query and retrieve the top N most relevant documents from the corpus.

2. Weight the terms in the returned documents using a slightly modified TF-1DF: while inverse document frequency is
normally used to avoid giving high weights to terms that are common across the entire corpus, here we will be calculating
it not for the entire corpus but just for the returned documents. Since the documents were returned by a search query,
we know that they are similar to the terms in that query and therefore the terms with the highest frequencies would likely
already be in the original query; by calculating the TF-IDF, we reduce the weights given to terms that are common across
the IV returned documents, and thus give higher weights to terms that distinguish the document in which they occur
from the other returned documents.

3. With the TF-I1DF calculated, the documents can be represented as term vectors and have their similarity measured using
some metric such as cosine similarity. A clustering algorithm such as k-means can then be used to cluster the documents
into a series of clusters that have maximal intra-cluster similarity (that is, each cluster contains documents that are as
similar in content as possible) while also having minimal inter-cluster similarity (that is, the documents in each cluster are
as distinct as possible from documents in other clusters). Because we want the clusters to be maximally dissimilar, a hard
clustering approach such as k-means that only allows a document to belong to a single cluster is preferable.

4. Finally, for each cluster, identify the term which has the highest cumulative weight by adding together the weights
assigned to a term by each document in that cluster; we want to identify the “definitive” term for each cluster. These
highest-ranked terms are the terms which can then be suggested to the user to enhance their query. Because the clustering
has been done using TF-IDF, it is unlikely that the highest-ranked term in one cluster will be occur frequently enough to be
the highest ranked term in another cluster; however, for the sake of completeness & error-handling, if the highest-ranked
term in a cluster is the highest-ranked term in another cluster, take the second-highest, then the third-highest, et cetera.

The length of the list of terms suggested to the user can be controlled either by setting the amount of clusters £ or by only
selecting the top n highest-weighted terms found from the clustering.

We have proposed a flat clustering approach using k-means because flat clustering best facilitates diversity among the clusters;
however, a hierarchical approach to clustering could alternatively be utilised to suggest sequences of terms. For example, using
a hierarchical clustering approach, we could suggest the two terms that cause the greatest split in the search space; if the user
accepts one of these suggestions, we can then descend one level of the cluster hierarchy and suggest terms that further split the
search space of that suggested term. However, hierarchical clustering is extremely computationally expensive due to its recursive
nature, with the type of divisive hierarchical clustering that we are suggesting here having a time complexity of O(2™) which is
likely unacceptably slow, especially for a vague query that returns a large number of documents.



2 Question 2

The problem of suggesting additional query terms to a user at run-time as they enter the query is an interesting contrast to the
previous question: because we have not yet executed the query, we don’t actually know what the documents returned will be like
and therefore it is difficult to try and split this search space. We are also restrained from making Google-like auto-completion:
the queries are stored unordered as a “bag of words” and therefore we cannot finish the user’s sentences for them, just suggest
terms that have previously occurred in similar queries. Furthermore, because the timestamp of a query is not stored, we cannot
try to identify how users have refined similar queries. If the timestamp was stored, we could see what queries were made in quick
succession, and if they were very similar we could infer that each subsequent query is a refinement on the preceding query, and
that the final query in that short time frame was the optimal query that provided the best results.

Instead, the best we can do is suggest terms that we think might go with the query that the user has entered, either because of
the query’s similarity to other queries in the database, or because of the user’s similarity to other users in the database. There are
three primary ways in which such a system could be of use to a user:

* Saving the user typing: the system could suggest terms that the user was going to enter anyway, but that the user now
doesn’t have to manually type, not dissimilar to Google’s auto-complete, just without the word-order;

* Helping to refine vague queries: if the user is searching for a term such as “jaguar” and the system suggests adding the
terms “cat” and “car”, the query can be refined before the search has even been executed;

* Even if none of the suggested terms are relevant to the query, it can still provide utility to the user by showing them that
the system isn’t understanding what they are trying to search for. For example, if a classicist entered the search term
“Paris”, looking for information on the prince of Troy of the same name in The Il/iad, and all the suggested terms were
related to the capital city of France and not ancient Greek poetry, the user would quickly understand that they need to
add more specificity to their search as the system has not understood what they are looking for. In this way, we can kind
of get away with not suggesting terms that are very specific to a certain type of query, as even the unrelated query term
suggestions can provide information on how to refine the query to a human user, without ever running the query.

The other primary issue is that all this needs to happen live, as we’re making these suggestions before the user has even executed
the search, and so time is of the essence. All this being said, our proposed approach is as follows:

1. Before run-time, analyse the set of queries that each user has made using some similarity metric such as cosine similarity,
and add the users into a series of soft clusters of users who make similar queries. Soft clustering is important here as it
allows a user to belong to a number of clusters instead of just one. In this way, a user who works as a front-end software
engineer could belong to a “front-end” cluster and a “software development” cluster based off the types of searches they
make and thus could be recommended the terms from the types of searches that are made by both front-end designers
and back-end engineers.

2. Then, at run-time when a user has entered some search terms, search the database for similar queries made by users in the
same cluster as the user in question, using some metric such as cosine similarity to identify similar queries. The returned
list of similar historical queries can be limited either by just selecting the top 7 most similar queries or by specifying a
minimum level of similarity, or both.

If the user is new to the system, and thus does not have enough historical queries to be accurately clustered, or just has
not yet been clustered, just search the entire query history instead. While this is less efficient and will be less accurate,
there is nothing that can really be done about this without guessing which clusters a user should belong to.

3. For the set of similar queries obtained, identify the top 7 most common terms across the queries that do not occur in the
original query that the user has entered. Suggest these terms to the user to add to their query.

Advantages of this approach include:

* The clustering of the users occurs before run-time, reducing run-time computation and increasing speed & responsiveness.

Clustering the users allows us to limit the number of queries we have to search through to find similar queries, and
increases the likelihood that the queries to which we are comparing the user’s query are relevant.

* The soft clustering approach allows users to belong to multiple clusters, and therefore we aren’t “pigeon-holing” users
and thus restricting our understanding of what types of searches they might make.

* The system can handle a user not yet belonging to a query or not having made enough searches to have been accurately
clustered.

Disadvantages of this approach include:



* The clusters need to be pre-computed in advance, and need to be updated regularly to ensure that the clustering is as
accurate as possible.

* Ifa user makes an uncharacteristic search for whatever reason, it is unlikely that relevant similar queries will be found in
the clusters to which that user belongs. This can be handled by falling back on searching the entire query history if there
are too few historical queries found that meet a minimum similarity requirement.

* Because we just search for similar queries made by similar users, there is no guarantee of diversity among the terms that
we suggest to the user. While we know that the suggested terms will be similar to the user’s query, we also know that the
suggested terms will also probably be similar to each other and thus not do much to split the search space. Therefore,
this approach to query term suggestion may be more useful as a form of auto-complete than as a way of refining vague
queries. However, as mentioned previously, we can get away with this to a certain extent, as the user can infer from the
fact that the suggested terms are not relevant to their intended search that they need to add their own terms to the query
to narrow it down, although this is not entirely ideal.

* Because we are trying to suggest terms before the query is submitted, it is likely that query terms entered do not constitute
a complete query. Therefore, when we compare these query terms to historical queries, we are comparing an incomplete
query to complete queries, which may have unintended consequences.

* Because the historical queries are not timestamped, we cannot consider only recent queries and are forced to search
through the entire historical record to find similar queries, which could become quite slow as the database grows and
could negatively influence our term suggestions, as older queries are less likely to be relevant. However, there’s not much
that we can do to mitigate this, and it’s primarily just a flaw in the database design.

* Another consequence of the lack of timestamping is that we cannot distinguish old queries from new queries when
clustering users. While this problem is offset by our choice of soft clustering as users won’t just belong to a single cluster,
users will nonetheless be added to clusters based off potentially very old queries. A user who used to work as a developer
and made searches related to that role who has since been promoted to a manager will still get term suggestions related to
their past as a developer, as the system cannot distinguish their old development-related queries from their more recent
management-related queries.



	Question 1
	Question 2

