
CT255 NGT2
Digital Media

[2D Games in Java] 

Dr Sam Redfern
sam.redfern@nuigalway.ie

@psychicsoftware

mailto:sam.redfern@nuigalway.ie


2D Games Programming in Java

• As a direct support for CT2106 and CT2109
• Problem-Based approach
• 'Just in Time' focus
• Emphasis on researching features of Java 

yourselves (under my direction)
• Various useful topics related to input/output, 

graphical display, realtime update, etc.
• Even some Artificial Intelligence! (A.I.)



Labs & Lectures etc.

• Lecture/Discussion:
– Mondays 12-1pm, AC213

• Workshop/Practical Work:
– Mondays 2-4pm, Lab IT101  (CS Building) 
– Some weeks we'll do less than an hour in the 

lecture/discussion, plus 2 hrs in the lab

• Course notes:
– Blackboard



Discord

• I have created a Discord server for this module
• Please use this to make comments, ask questions, 

share resources etc.
• Using this approach, I can generally answer 

questions fairly quickly anytime during the 
semester, not just during class/lab times

• Use this Discord link to join the server:
– https://discord.gg/uWem2rQg7a

https://discord.gg/uWem2rQg7a


Grading

• Weekly assignments will account for 25% of my 
part of the CT255 course (M. Schukat did the 
other half of CT255 in sem. 1)

• Assignments are always due at the start of the 
subsequent lecture (where you will be given a 
sample solution and we'll spend some time 
discussing it)

• There will also be questions in the Summer exam 
paper, accounting for 75% of my part of the 
CT255 course





Topics will include
• Graphics with the JFrame class
• Raster & vector graphics methods of the Graphics class
• Graphics contexts, double buffering
• 2D ‘sprite’ animation
• Constructing game object classes
• Collision detection
• Multi-threading
• Keyboard and mouse input
• Game states using 2D arrays, hash tables and other 

collection classes
• Mazes and A.I. pathfinding using the A* algorithm





2D Co-ordinate System

width

height

height

width

x

y

The JFrame class will 
provide a Window 
with associated 
graphics canvas, and 
a pixel-based 
coordinate system

Origin (0,0) at top-
left

Top 50 pixels or so 
are hidden by the 
window’s title bar 
(depends on 
Operating System)



Creating a Window-based Application

• Create a new Java project in Eclipse (or other IDE)
• Right-click the project
• New > class
• Name your class, e.g. ‘MyApplication’

• In Java, you need to have a method named main in at least one 
class.

• A JFrame is a top-level window with a title and a border. To have 
access to JFrame and associated methods:

import java.awt.*;
import javax.swing.*;



A Minimal JFrame-based app.
package MyApplication;
import java.awt.*;
import javax.swing.*;

public class MyApplication extends JFrame {

private static final Dimension WindowSize = new Dimension(600,600);

public MyApplication() {
//Create and set up the window.
this.setTitle("Pacman, or something..");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Display the window, centred on the screen
Dimension screensize = java.awt.Toolkit.getDefaultToolkit().getScreenSize();
int x = screensize.width/2 - WindowSize.width/2;
int y = screensize.height/2 - WindowSize.height/2;
setBounds(x, y, WindowSize.width, WindowSize.height);
setVisible(true);

}

public static void main(String [ ] args) {
MyApplication w = new MyApplication();

}

}

A note about Eclipse:
- It will attempt to suggest code fixes 

such as creating new methods for you
- Be careful! A method call from your 

base class that can’t be compiled often 
means you have mistyped or forgotten 
an import, or forgotten to extend from 
a base class

- So don’t let it trick you into creating an 
empty method in its place!



Basic graphics in Java
• 2D graphics can be drawn using the Graphics class
• This provides methods for drawing 'primitives' (lines, 

circles, boxes), also images (.jpg, .png, etc.)

• The paint() method of the JFrame class is automatically 
invoked whenever it needs to be painted (system-invoked)

• Or you can force it to happen via repaint()if you need to 
repaint when the OS doesn’t think it’s needed:

public void paint ( Graphics g ) {
// use the ‘g’ object to draw graphics

}



Drawing text using methods of the 
Graphics class

setColor(Color c)
setFont(Font font)
drawString(String str, int x, int y)

public void paint ( Graphics g ) {
Font f = new Font( "Times", Font.PLAIN, 24 );
g.setFont(f);
Color c = Color.BLACK;
g.setColor(c);
g.drawString("Pacman!", 20, 60);

}

• This should be added as a method of the MyApplication class
• Note the usefulness of the context-help in Eclipse – tells you 

method names, their parameters and a description of them



The graphics class has lots of useful 
methods!



Week 1 Assignment
• Write a JFrame-based program that 

fills its window with randomly 
coloured squares

Hints:
• Use nested loops to produce the 

squares
• Think about your co-ordinate system 

(x/y).. what are the min/max values 
of these you want to stay between?

• Investigate the fillRect() 
method of the Graphics class

• Investigate how to specify an 
arbitrary Color rather than using a 
stock Color

To get a random integer between 0 and 255:  int red = (int)(Math.random()*256);

Your assignment code should be submitted via Blackboard.



CT255  NGT2
Digital Media/ 2D Games

Week 2
[2D Games in Java] 

sam.redfern@universityofgalway.ie
@psychicsoftware

https://discord.gg/uWem2rQg7a

https://discord.gg/uWem2rQg7a


Week 1 Assignment
• Write a JFrame-based program that 

fills its window with randomly 
coloured squares

Hints:
• Use nested loops to produce the 

squares
• Think about your co-ordinate system 

(x/y)
• Investigate the fillRect() 

method of the Graphics class
• Investigate how to specify an 

arbitrary Color rather than using a 
stock Color

To get a random integer between 0 and 255:  int red = (int)(Math.random()*255);



Topics this week

• Animation with threads
• Creating a simple game object class
• Making a game which animates an array of 

game object instances



Animation with Threads
• Animation is the changing of graphics over time
• E.g. moving a spaceship across the screen, changing its 

position by 1 pixel every 0.02 seconds
• One of the best ways to do periodic execution of code is to 

use threads
• Threads: allow multiple tasks to run 

independently/concurrently within a program
• Essentially, this means we spawn a separate execution 

‘branch’ that operates independently of our program’s 
main flow of control

• The new Thread repeatedly sleeps for (say) 20ms, then 
carries out animation, and calls this.repaint() on the 
application



Implementing Threads in Java
• Your application class should implement the Runnable interface, i.e.:

public class MyApplication extends JFrame implements Runnable {  
}

• Your class must now provide an implementation for the run() method, which is 
executed when a thread is started, and serves as its “main” function i.e.:

public void run() { 
}

• To create and start a new thread running from your application class:

Thread t = new Thread(this);
t.start();



Typical Actions of an Animation Thread

1. Sleep for (say) 20ms using Thread.sleep(20);
• Note that you will be required to handle 
InterruptedException

2. Carry out movement of game objects 
3. Call this.repaint(); which (indirectly) invokes our 

paint(Graphics g) method
4. Go back to step 1



Threads Test



Game object classes

• Games typically have game object classes 
(spaceships, aliens, cars, bullets etc.), numerous 
instances of each may exist at runtime

• This class encapsulates the data (position, colour 
etc.) and code (move, draw, die, etc.) associated 
with the game object

• Typically we store these instances in a data 
structure such as an array, so that during our 
animation and painting phases, we can iterate 
through them all and invoke the animate() and 
paint() methods on each instance



Week #2 Assignment
• Create a program which performs simple random 

animation of coloured squares
• Use two classes:

1. MovingSquaresApplication
• extends JFrame
• Implements Runnable
• has main() method
• Member data includes an array of GameObject instances
• Constructor method does similar setup as last week’s code, 

and in addition instantiates the GameObjects in the array, 
and creates+starts a Thread

• Uses a Thread to perform animation of the GameObjects by 
calling their move() methods

• Paint() method draws the GameObjects by calling their 
paint(Graphics g) methods

2. GameObject
• Member data includes x,y,color
• Constructor method randomises the object’s position and 

color
• Public move() method is used to randomly alter x,y

members
• Public paint(Graphics g) method draws the object as a 

square using g.fillRect()

Code should be uploaded on Blackboard (deadline: see Blackboard)



Assignment #2
Suggested Class Interfaces



CT255 / NGT II
Digital Media / 2D Games Dev.

Week 3

sam.redfern@universityofgalway.ie
@psychicsoftware



Last Week’s Assignment
• Create a program which performs simple random 

animation of coloured squares
• Use two classes:

1. MovingSquaresApplication
• extends JFrame
• Implements Runnable
• has main() method
• Member data includes an array of GameObject instances
• Constructor method does similar setup as last week’s code, 

plus instantiates the GameObjects in the array, and 
creates+starts a Thread

• Uses a Thread to perform animation of the GameObjects by 
calling their move() methods

• Paint() method draws the GameObjects by calling their 
paint(Graphics g) methods

2. GameObject
• Member data includes x,y,color
• Constructor method randomises the object’s position and 

color
• Public move() method is used to randomly alter x,y

members
• Public paint(Graphics g) method draws the object as a 

square using g.fillRect()



Topics this week

• Handling the keyboard in Java
• Loading and displaying raster images (.jpg, 

.png etc.)
• Moving a player’s game object under control 

of the keyboard



Handling Keyboard Input

• In GUI-based languages such as Java (with 
AWT) the mouse and keyboard are handled as 
‘Events’

• They may happen at any time
• They are queued as they happen and are dealt 

with at the next free idle time
• AWT handles events coming in from the 

operating system by dispatching them to any 
listeners registered to those events



Handling Keyboard Input

• Make a class that implements KeyListener
• Make sure you have an instance of this class
• Add this instance as a key listener attached to 

the JFrame that receives the messages from 
the Operating System

• The simplest way is to make your JFrame-
derived class itself handle the events it 
receives.. (see next slide)



Handling Keyboard Input
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyApplication extends JFrame implements KeyListener {

public MyApplication() {  // constructor

// send keyboard events arriving into this JFrame to its own event handlers
addKeyListener(this);

}

// Three Keyboard Event-Handler functions
public void keyPressed(KeyEvent e) {
}

public void keyReleased(KeyEvent e) {
}

public void keyTyped(KeyEvent e) {
}
//

} 

Notes:
• The KeyEvent parameter ‘e’ provides the ‘virtual 

keycode’ of the key that has triggered the event, and 
constants are defined to match these values: e.g. 
KeyEvent.VK_Q or  KeyEvent.VK_ENTER

• To get the keycode, use e.getKeyCode()
• For our game applications, our application class will 

implement both KeyListener and Runnable
• Note the extra import!! - java.awt.event.*



Loading and displaying raster images

• The constructor of the ImageIcon class 
(defined in javax.swing) loads an image from 
disk (.jpg, .gif, or .png) and returns it as a new 
instance of the ImageIcon class.

• The getImage() method of this ImageIcon
object gives you a useable Image class object, 
which can be displayed in your paint() method 
by the Graphics class



Example
import java.awt.*;
import javax.swing.*;
public class DisplayRasterImage extends JFrame {

// member data
private static String workingDirectory;
private Image alienImage;

// constructor
public DisplayRasterImage() {

// set up JFrame
setBounds(100, 100, 300, 300);
setVisible(true);

// load image from disk. Make sure you have the path right!
// NB Windows uses \\ in paths whereas MacOS uses / in paths
ImageIcon icon = new ImageIcon(workingDirectory + "\\alien_ship_1.png");
alienImage = icon.getImage();

repaint();
}

// application's paint method (may first happen *before* image is finished loading, hence repaint() above)
public void paint(Graphics g) {

// draw a black rectangle on the whole canvas
g.setColor(Color.BLACK);
g.fillRect(0, 0, 300, 300);
// display the image (final argument is an ‘ImageObserver’ object)
g.drawImage(alienImage, 150, 150, null);

}

// application entry point
public static void main(String[] args) {

workingDirectory = System.getProperty("user.dir");
System.out.println("Working Directory = " + workingDirectory);
DisplayRasterImage d = new DisplayRasterImage();

}

}



Week 3 exercise
• Create a JFrame-based, Runnable KeyListener application 

class and a separate class for handling game objects
• Use these names for your classes:

– InvadersApplication
– Sprite2D

• The InvadersApplication class should have, as its member 
data, an array of Sprite2D objects for aliens, and another 
single Sprite2D object for the player ship

• The InvadersApplication class should use Thread-based 
animation to move the aliens randomly (similar to last 
week)

• The Sprite2D objects display a raster image that you have 
loaded from disk (instead of a coloured square)
– See ct255-images.zip for png files to use

• Use the left and right arrow keys to move the player 
spaceship, rather than moving it randomly like the aliens
– Do NOT move the spaceship directly in the keyboard event handlers, 

since that will mean it will move in steps based on your keyboard 
repeat rate

– The correct way to do it is to have the keyboard events notify the 
spaceship when movement should start and stop; the actual 
movement should be done every frame (i.e. 50 times per second) by 
the movePlayer() method suggested on the next slide

• Code should be submitted on 
Blackboard. 

• Deadline: before next lecture.



Assignment #3
Suggested Class Interfaces



CT255 / NGT2
2D games using Java

Week 4

Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@nuigalway.ie


Last week’s exercise
• Create a JFrame-based, Runnable KeyListener

application class and a separate class for handling 
game objects

• Use these names for your classes:
– InvadersApplication
– Sprite2D

• The InvadersApplication class should have an array 
of Sprite2D objects for aliens, another single 
Sprite2D object for the player ship, and should use 
Thread-based animation to move them all (similar 
to last week)

• The Sprite2D objects display a raster image that 
you have loaded from disk (instead of a coloured 
square)

• Use the left and right arrow keys to move the 
player spaceship, rather than moving it randomly 
like the aliens



Screen Flicker

• Caused by software redrawing a screen out-of-sync with 
the screen being refreshed by the graphics hardware (so 
occasionally a half-drawn image is displayed)

• Solution: use ‘double-buffering’:
– Render all graphics to an offscreen memory buffer
– When finished drawing a frame of animation, flip the 

offscreen buffer onscreen during the ‘vertical sync’ period
• Java awt provides a BufferStrategy class which applies 

the best approach based on your computer’s capabilities



Implementing Double Buffering
• In the imports section at the top of the program:
import java.awt.image.*;

• Add a new member variable to the Application class:
private BufferStrategy strategy;

• In the Application class’ constructor function:
createBufferStrategy(2);
strategy = getBufferStrategy();
• NB this code should be executed *after* the JFrame has been displayed, i.e. after 

setBounds() and setVisible()..   why might that be?

• At the start of the paint(Graphics g) method (redirect our drawing calls to the offscreen 
buffer):

g = strategy.getDrawGraphics();

• At the end of the paint(Graphics g) method (indicate that we want to flip the buffers):
strategy.show();



Let’s consider some refactoring..

Sprite2D

private double x,y;
private double xSpeed=0;
private Image myImage;

public Sprite2D(Image i)
public void moveEnemy()
public void setPosition(double xx, double yy)
public void movePlayer()
public void setXSpeed(double dx)
public void paint(Graphics g)

We’re currently using one class to 
handle both Aliens and the PlayerShip
objects

Some member variables and methods 
are used by both types of objects, while 
others are specific to one or the other

What about when we add Bullets as a 
third type of object? -> the Sprite2D 
class gets bloated, confusing and 
inefficient



Let’s consider some refactoring..

Sprite2D

Alien Spaceship Bullet

private double x,y;
private double xSpeed=0;
private Image myImage;

public Sprite2D(Image i)
public void setPosition(double xx, double yy)
public void setXSpeed(double dx)
public void paint(Graphics g)

Base (super) class 
contains only data 
and methods that 
are useful to all 
subclasses

Sub- (‘extends’) 
classes add specific 
extra data and 
methods

public void move()
public void checkCollision()

public void move() public void move()



This week’s assignment
• We’re moving closer to a finished game!
• Refactor the game:

– Make the application window larger (800x600)?
– Create an Alien class and a Spaceship class, both 

subclasses of Sprite2D. Move functionality from 
Sprite2D to the new classes as appropriate.

– Modify the member variables of the 
InvadersApplication class so that it stores an 
array of Alien objects and a single Spaceship
object (previously all were Sprite2D objects)

– Make sure all of the above is working before 
moving on!

• Implement double buffering to get rid of flickering
• Initialise the aliens in a grid formation rather than randomly positioned 
• Modify alien movement so that they all move left or right together (i.e. 

aliens should use the xSpeed variable similar to how the spaceship does)
• Make all the aliens reverse their movement direction and move down a 

bit when *any* of them hits the edge of the screen.. but how?



Some useful points regarding class 
inheritance

1. Rather than using ‘private’ members in the 
superclass, declare them as ‘protected’ in order for 
the subclass to be able to access them

2. To call the constructor from a base class, use 
super();

• E.g: public class Spaceship extends Sprite2D {
public Spaceship(Image i) {

super(i); // invoke constructor on superclass (Sprite2D)

// and do any Spaceship-specific initialisation here..

}
}



Suggested class interfaces



CT255 / NGT2 / Digital Media

Week 5
[2D Games in Java] 

Dr. Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@nuigalway.ie


Last week’s assignment
• We’re moving closer to a finished game!
• Refactor the game:

– Make the application window larger (800x600)?
– Create an Alien class and a Spaceship class, both 

subclasses of Sprite2D. Move functionality from 
Sprite2D to the new classes as appropriate.

– Modify the member variables of the 
InvadersApplication class so that it stores an 
array of Alien objects and a single Spaceship
object (previously all were Sprite2D objects)

– Make sure all of the above is working before 
moving on!

• Implement double buffering to get rid of flickering
• Initialise the aliens in a grid formation rather than randomly positioned 
• Modify alien movement so that they all move left or right together (i.e. 

aliens should use the xSpeed variable similar to how the spaceship does)
• Make all the aliens reverse their movement direction and move down a 

bit when *any* of them hits the edge of the screen.. somehow



Topics this week

• Animated 2D sprites
• Collision detection in 2D raster games
• ArrayLists
• Game States



Animated 2D sprites

• Simply load two or more images, 
rather than just one

• Alternate between, or cycle 
through, the images

• For our game, switching image 
once per second (i.e. every 50th re-
draw) is about right

public void paint(Graphics g) {
framesDrawn++;
if ( framesDrawn%100<50 )

g.drawImage(myImage, (int)x, (int)y, null);
else

g.drawImage(myImage2, (int)x, (int)y, null);
}

e.g. use this in a modified Sprite2D class:



Collision Detection
• Check for overlapping 

rectangles..

if (
(  (x1<x2 && x1+w1>x2) ||

(x2<x1 && x2+w2>x1)  ) 
&&

(  (y1<y2 && y1+h1>y2) ||
(y2<y1 && y2+h2>y1)  )

) 

x1, y1

w1

h1

x2, y2

w2

h2



Game States

• Games normally have at least two high-level 
‘states’ – i.e. is the game in progress or are we 
currently displaying a menu before the game 
starts (or after it finishes)?

• We can simply add a boolean member to the 
application class: isGameInProgress

• Depending on the value of this, we can handle 
various things differently:
– Keypresses
– The paint method
– The thread’s game loop



This week’s assignment – Finishing off 
the Invaders game!

• Modify the Sprite2D class so that it has two 
separate member Images, rather than one. 
When painting, it should alternate between 
these images every 50 frames

• For the Alien class constructor, receive two 
animation frames. For the Spaceship class, one 
frame will do.

• Create a new class, public class PlayerBullet
extends Sprite2D, and program it to fire when 
the spacebar is pressed. It should be initialised 
to the player ship’s x/y position, and move 
upwards (negative y direction) every frame

• While calling the move method on the bullet, 
check for collision with each Alien object. 

• You’ll need some way of knowing whether the 
bullet and each Alien are alive, in order to 
decide whether to paint them

• If possible, enable several bullets at a time 
rather than just one

• Add game states (in progress or in menus): you 
will need to modify various methods of the 
application class based on the state it’s in

• Add scoring
• Add collision detection between aliens and the 

player spaceship (game over when this 
happens => switch back to menus state)

• When all aliens are killed, re-create a new, 
faster-moving wave of them

• I would suggest you carefully assess where 
certain code is running (e.g. setting the initial 
positions of aliens and player ship) – the 
constructor is no longer the best place for this 
– you will need to create new methods such as 
startNewWave() and startNewGame()





Suggested class interfaces 



A note on Java Collection Classes
• Java provides a number of useful classes for dealing with collections of 

objects
• More advanced/flexible than arrays
• To allow a number of bullets rather than just one at a time, consider using 

an ArrayList
• See: http://tutorials.jenkov.com/java-collections/list.html [discuss in 

class]
• E.g. code to add a PlayerBullet object, and to draw all PlayerBullet objects:

public void shootBullet() {
// add a new bullet to our list
PlayerBullet b = new PlayerBullet(bulletImage,WindowSize.width);
b.setPosition(PlayerShip.x+54/2, PlayerShip.y);
bulletsList.add(b);

}

Iterator iterator = bulletsList.iterator();
while(iterator.hasNext()){

PlayerBullet b = (PlayerBullet) iterator.next();
b.paint(g);

}

To remove an element while 
iterating the list:
iterator.remove();
(a ‘for’ loop is not safe for this)

http://tutorials.jenkov.com/java-collections/list.html


CT255 / NGT2

Week 6
[2D Games in Java] 

Dr Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@nuigalway.ie


Last week’s assignment:
Finishing off the Invaders game

• Add game states (in progress or in menus): 
you will need to modify various methods 
of the application class based on the state 
it’s in

• Add scoring
• Add collision detection between aliens 

and the player spaceship (game over 
when this happens => switch back to 
menus state)

• When all aliens are killed, re-create a new, 
faster-moving wave of them

• I would suggest you carefully assess where 
certain code is running (e.g. setting the 
initial positions of aliens and player ship) –
the constructor is no longer the best place 
for this – you will need to create new 
methods such as startNewWave() and 
startNewGame()



Conway’s Game of Life..

• http://en.wikipedia.org/wiki/Conway's_Game_of_Life
• A famous ‘cellular automata’ 0-player game from 1970
• Each cell follows a simple set of rules as the game progresses, 

and a (relatively) complex system behaviour emerges 
• Gives us the opportunity to study:

– Handling the mouse in Java
– 2D arrays
– Reading/writing files

• And will also form the basis of two further projects:
– Making procedural ‘cave-like’ maps with cellular automata
– Solving mazes /pathfinding using the A* algorithm

http://en.wikipedia.org/wiki/Conway's_Game_of_Life


Mouse Events
• Mouse events notify when the user uses the mouse (or similar input device) to 

interact with a component. Mouse events occur when the pointer enters or exits a 
component's onscreen area and when the user presses or releases one of the 
mouse buttons.

• Additional events such as mouse movement, and the mouse wheel, can be 
handled by implementing the MouseMotionListener and MouseWheelListener
interfaces

• Step 1: have your class implement MouseListener
• Step2:  In the class constructor:   addMouseListener(this);
• Step 3: implement the methods below
// mouse events which must be implemented for MouseListener

public void mousePressed(MouseEvent e) { }

public void mouseReleased(MouseEvent e) { }

public void mouseEntered(MouseEvent e) { }

public void mouseExited(MouseEvent e) { }

public void mouseClicked(MouseEvent e) { }



Methods of the MouseEvent class
• int getClickCount()

– Returns the number of quick, consecutive clicks the user has 
made (including this event). For example, returns 2 for a double 
click.

• int getX()
• int getY()
• Point getPoint() 

– Returns the (x,y) position at which the event occurred, relative 
to the component that fired the event.

• int getButton() 
– Returns which mouse button, if any, has a changed state. One of 

the following constants is returned: NOBUTTON, BUTTON1, 
BUTTON2, or BUTTON3.



This week’s assignment
Starting the Game of Life

• Create a new Java project, with a main application 
class that extends JFrame and implements 
Runnable and MouseListener

• The window should be 800x800 pixels in size
• Use double buffering to avoid flicker when we 

animate [next week]
• Implement periodic repainting (and later, 

animation) via a Thread
• Create a 2 dimensional array to store the game 

state: e.g. a 40x40 array of Booleans, assuming that 
we want each cell to be 20x20 pixels

• When the mouse clicks on the window, toggle the 
state of the game state cell at that position (i.e. 
true becomes false, and false becomes true)

• The paint method should paint, as a rectangle, each 
game state cell that is currently ‘true’



CT255 / NGT2

Week 7
[2D Games in Java] 

Dr. Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@nuigalway.ie


Last week’s assignment
Starting the Game of Life

• Create a new Java project, with a main 
application class that extends JFrame and 
implements Runnable and MouseListener

• The window should be 800x800 pixels in size
• Use double buffering to avoid flicker when we 

animate [next week]
• Implement periodic repainting (and later, 

animation) via a Thread
• Create a 2 dimensional array to store the 

game state: e.g. a 40x40 array of boolean
• When the mouse clicks on the window, toggle 

the state of the game state cell at that 
position (i.e. true becomes false, and false 
becomes true)

• The paint method should paint, as a rectangle, 
each game state cell that is currently ‘true’



This week’s assignment

• Add game states (playing and not playing)
• When not playing, render two rectangles as ‘buttons’
• Modify the mousePressed method so that it checks for clicks on the button’s regions

• Start – switches the game state to ‘playing’
• Random – randomises the game state

• When in playing state, apply the rules of Conway’s Game of Life at each repaint (see 
next slide)



Conway’s Life: Rules
1. Any live cell with fewer than two live neighbours dies, 

as if caused by under-population.
2. Any live cell with two or three live neighbours lives on 

to the next generation.
3. Any live cell with more than three live neighbours 

dies, as if by overcrowding.
4. Any dead cell with exactly three live neighbours 

becomes a live cell, as if by reproduction.

• We will need to iterate through all game cells, counting 
the amount of live neighbours that each has, before 
applying the above rules



Conway’s Life: Rules
• Each generation (iteration) is created by applying 

the above rules simultaneously to every cell in its 
preceding generation: births and deaths occur 
simultaneously

• To implement this properly, we will need to have 
two separate game states in memory:
– one is the ‘front buffer’ that we’re currently 

displaying, and which we are checking the above rules 
on

– the other is the ‘back buffer’ that we’re applying the 
results of the rules to.

– the ‘back’ is switched to ‘front’ after applying the 
rules to every cell

private boolean gameState[][][] = new boolean[40][40][2];



Checking the 8 neighbours of each cell

for (int x=0;x<40;x++) {
for (int y=0;y<40;y++) {

// count the live neighbours of cell [x][y][0]
for (int xx=-1;xx<=1;xx++) {

for (int yy=-1;yy<=1;yy++) {
if (xx!=0 || yy!=0) {

// check cell [x+xx][y+yy][0]
// but.. what if x+xx==-1, etc. ?

}
}

}
}      

}

NB we need to define the neighbours for cells at the edges of the map. The
usual procedure is to ‘wrap around’ to the opposite side.



Another example of a Cellular 
Automata algorithm in use 

• The image on the next slide is of an algorithmically-
generated cave-like structure, for use in a 2D computer 
game. Each of the cells, laid out in a 60x30 grid, either has a 
wall (denoted by ‘#’) or a floor (denoted by ‘.’).

• The cellular automata algorithm which generated this 
output uses the following steps:
– For each cell, randomly define it as: wall (60% chance) or floor

(40% chance)
– Perform the following procedure 4 times:

• Calculate the number of wall neighbours of each cell, and define each 
cell which has at least 5 neighbouring wall cells, as a wall cell itself. 
Otherwise (i.e. if it has less than 5 wall neighbours) define it as a floor 
cell.



############################################################
#####################################################..#####
#####.....##################...###############............##
#####......###########.####....########....................#
#####.......#########..###.....###############.............#
####.............####..###....###################.........##
###...............###.####...####################........###
##.................##.####...####################........###
##.......##.........#.###.....##################.........###
##......####..........##.......################...........##
##.....########.................#######..######...........##
##...###########................######...#######..........##
#########..######..............######....########........###
########............#####......#####.....##########......###
#######......#############...............###########.....###
#######.......############......###.......###########.....##
#######.......###########.......###.......###########.....##
######.......####..######.......####.......#########......##
#####.......####....#####.......####.....................###
####........####......####......####...........#####.....###
####.........###.......###......####...##......######.....##
####...##.....###.......#......###########.....#######.....#
#####.####.....#####...........############....########....#
##########.....######..........############....#########..##
#########.......#####...........##########.....#############
#########.......####...............#####........############
##########......####................###...........##########
###########....#####.....######.....####...........#########
################################...##########.....##########
############################################################



Exam Question (2017)
• Your task is to write a Java class to implement this cellular 

automata algorithm:

• The class should store the cave-like structure in suitable 
member data  

• The data should be randomly initialized according to the 1st 
step of the algorithm indicated above. 
– Hint: use Math.random() to generate a random float between 0 

and 1
• The 2nd step of the algorithm (which repeats 4 times) 

should be implemented. You should pay particular 
attention to array bounds when examining a cell’s 
neighbours.

• The resulting data should be printed to the console, (using 
System.out.println) as the ‘#’ and ‘.’ symbols, as shown 
below.



“Genetix”

http://www2.it.nuigalway.ie/~sredfern/genetix.html

An artificial life program I wrote a while ago (1998) – in order to learn Java!

This Artifical Life program simulates the evolution of a population of abstract creatures ('agents'). 
The 'genetic make-up' of each agent is defined by its speed and vision abilities, which determine 
how fast it can move and how far it can see. The colour of an agent reflects its genetics- the 
greener the agent, the better its vision is; the redder an agent is, the faster it can move. When the 
program starts, all agents have speed and vision scores of 1, and appear as khaki-green blobs.

In order to survive, agents must eat food, and on each move ('epoch') an agent will move towards 
the greatest source of food that is within its vision range. Food is depicted by grey blobs: light grey 
indiciates a strong food source, while dark grey indicates a weak food source.

Healthy agents may reproduce (asexually). In most cases, an agent's offspring will be identical to it; 
occasionally, a newly born agent may have either its speed or its vision abilities increased or 
decreased ('mutated’).

Before running the program, you can decide the number of food deposits, the size of each deposit, 
the speed at which food replenishes after being eaten, and the number of agents.

http://www2.it.nuigalway.ie/~sredfern/genetix.html


Some examples of “Genetix” running

• “Conquest”
– in this example, the effect of population pool size is evident as 

several separate populations develop on the 'islands' of food, 
and the agents from the larger islands eventually discover and 
conquer the less advanced agents from the other islands.

– https://www.youtube.com/watch?v=30ztf6bMZSY

• “Extinction”
– in this example, slow-growing food leads to cycles of population 

explosion, famine, and mass migration. Eventually, the 
instability of this model becomes evident as total extinction 
occurs.

– https://www.youtube.com/watch?v=RJv0Z-sO17o

https://www.youtube.com/watch?v=30ztf6bMZSY
https://www.youtube.com/watch?v=RJv0Z-sO17o


CT255
NGT2 – 2D Games in Java

Week 8
[2D Games in Java] 

Dr. Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@universityofgalway.ie


Last week’s assignment
Conway’s Game of Life

• Add game states (playing and not playing)
• When not playing, render two rectangles as ‘buttons’
• Modify the mousePressed method so that it checks for clicks on the button’s regions

• Start – switches the game state to ‘playing’
• Random – randomises the game state

• When in playing state, apply the rules of Conway’s Game of Life at each repaint (see 
next slide)



Topics this week

• Loading and saving using text files
• Mouse move events
• Introducing A* pathfinding



Reading from text files

• The java.io package provides file handling classes
• FileReader to read from a text file
• BufferedFileReader to do so more efficiently 

(reads larger blocks and buffers/caches them)
• Exception handling is required..
• BufferedFileReader:
– Use FileReader class constructor to open a file
– Use readLine() method to read a line of text (returns a 

String)
– Use close() method to close file



Sample code
String filename = "C:\\Users\\Sam\\Desktop\\lifegame.txt";
String textinput = null;
try {

BufferedReader reader = new BufferedReader(new FileReader(filename));
textinput = reader.readLine();
reader.close();

} 
catch (IOException e) { }

This reads just one line from the file (stopping at 
end of file or when a carriage return is 
encountered)



Sample Code
String line=null;
String filename = "C:\\Users\\Sam\\Desktop\\lifegame.txt";
try {

BufferedReader reader = new BufferedReader(new FileReader(filename));
do {

try {
line = reader.readLine();
// do something with String here!

} catch (IOException e) { }
}
while (line != null);

reader.close();

} catch (IOException e) { }

This reads all (CR-separated) lines from the file



Writing to text files
• Use the FileWriter and BufferedWriter classes
• BufferedFileWriter:
– Use FileWriter class constructor to open a file
– Use write(String s) method to write a line to the file (CR 

appended automatically)
– Use close() method to close file

• E.g., to write a single string to a file:

String filename = "C:\\Users\\Sam\\Desktop\\lifegame.txt";
try {

BufferedWriter writer = new BufferedWriter(new FileWriter(filename));
writer.write(outputtext);
writer.close();

} 
catch (IOException e) { }



Handling mouse motion events
• As well as mouse button events, we can also receive 

mouse movement events
• .. This is useful for making it less tedious to manually 

create a new initial game set-up
• Have the class implement the MouseMotionListener

interface as well as MouseListener
• In the application class constructor:

addMouseMotionListener(this);
• Add these methods (receives same data as the mouse 

events we have already seen):
public void mouseMoved(MouseEvent e)
public void mouseDragged(MouseEvent e)



This week’s assignment

• Implement mouse dragging 
for game state setup

• Implement game state 
loading and saving (via 
‘buttons’ as before)
– How to encode the game 

state as string(s) ?

• Read the following A* 
webpage for next week!

http://www.psychicsoftware.com/AStarForBeginners.html



A* Pathfinding

• An important AI algorithm used in games and 
elsewhere

• Next week we will discuss implementing this in Java, 
and will use the Game of Life project as a basis for 
making a maze-solving AI game

• Read this A* webpage for next week!

• These are good introductions too:
http://www.psychicsoftware.com/AStarForBeginners.html

https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.raywenderlich.com/3016-introduction-to-a-pathfinding

http://www.psychicsoftware.com/AStarForBeginners.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.raywenderlich.com/3016-introduction-to-a-pathfinding


CT255
NGT2
Week 9

[2D Games in Java] 

Dr. Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@universityofgalway.ie


Last week’s assignment
[Conway’s Game of Life]

• Implement mouse 
dragging for game state 
setup

• Implement game state 
loading and saving (via 
‘buttons’ as before)

• Read the following A* 
webpage for next week! 

http://www.psychicsoftware.com/AStarForBeginners.html



A* Pathfinding
• The fundamental operation of the A* algorithm is to traverse a map 

by exploring promising positions (nodes) beginning at a starting 
location, with the goal of finding the best route to a target location. 

• Each node has four attributes other than its position on the map:
§ g is the cost of getting from the starting node to this node
§ h is the estimated (heuristic) cost of getting from this node to the 

target node. It is a best guess, since the algorithm doesn't (yet) know 
the actual cost

§ f is the sum of g and h, and is the algorithm's best current estimate as 
to the total cost of travelling from the starting location to the target 
location via this node

§ parent is the identity of the node which connected to this node along 
a potential solution path



A* Pathfinding
• The algorithm maintains two lists of nodes, the open list and the closed

list. 
• The OPEN LIST consists of nodes to which the algorithm has already found 

a route (i.e, one of its connected neighbours has been evaluated or 
expanded) but which have not themselves, yet, been expanded. 

• The CLOSED LIST consists of nodes that have been expanded and which 
therefore should not be revisited. 

• Progress is made by identifying the most promising node in the open list 
(i.e., the one with the lowest f value) and expanding it by adding each of 
its connected neighbours to the open list, unless they are already closed. 

• As nodes are expanded, they are moved to the closed list. 
• As nodes are added to the open list, their f, g, h and parent values are 

recorded. 
• The g value of a node is, of course, equal to the g value of its parent plus 

the cost of moving from the parent to the node itself. 







https://qiao.github.io/PathFinding.js/visual/

(PathFinding.js.html )



Implementing A* Pathfinding..
• What data do we need? How might we structure the 

data?
– Start loc, target loc
– Nodes to map the game board (2D array of nodes)
– Walkable/unwalkable map (i.e. our original  2Darray of booleans) 
– Open list  (as linked list of nodes?)
– Storage of final path (as a  stack of nodes?)

• What are the initial conditions for this data?
– Each wall node is unwalkable -> ‘closed’
– All the rest are not open and not closed
– Calculate f,g,h for the starting node and set to ‘open’ 



Implementing A* Pathfinding..
• What is the initial algorithmic step?
• What is the general algorithmic step?

– Find open node with lowest f (call it X)
– EXPAND: Look at its neighbours: any not closed and not open should become opened: 

calculate f,g,h and record parent position (i.e. position of X)
– Close node X 

• How will we know when we’re finished?
– If a neighbour is the target, we’re done searching
– If there are no open nodes, the maze is unsolvable

• How will we use what we found in order to have an AI-controlled ‘badguy’ 
chase after a ‘player’?
– Push target onto stack, 
– Push its parent onto stack
– Push its parent onto stack
– Etc.. Until we  have pushed start node



Data for A*
• It makes sense to define a ‘node’ class, and to store nodes in specific kinds 

of data structures. I suggest:
– a 2D array covering the whole game area (quick to find based on x,y)
– a linked-list for the Open List (quick to add/remove members)
– a stack storing the calculated path to follow (good for reversing order via LIFO)

• Of course, each node instance can happily exist in multiple data 
structures, since they're actually only storing pointers to it

• The nature of the A* algorithm means that we obtain our calculated path 
in the reverse order to how we need it 
– use a 2D array to store all possible node cells during calculations, then when 

the target is found:
– use a stack to store the path that a ‘badguy’ will follow, as this is a handy way 

to reverse the order of data
• The linked list is not strictly required, but since only a subset of all nodes 

will be Open at any given time, it's more efficient to store these in a 
separate data structure rather than have to search all nodes to find the 
best Open node to expand next



Stack



• Very efficient for insertion and deletion
• Can only be iterated sequentially (i.e. not 

random access)



From:  https://www.tutorialspoint.com/java/java_linkedlist_class.htm

Iteration:

Iterator i = ll.iterator();
while (i.hasNext()) {

string s = (String)i.next();
}



Assignment
• Download base code for ‘badguy

chases the player’ game
• This provides maze drawing, 

loading, saving
• It also moves the player with 

arrow keys, and badguy moves 
according to a dumb ‘straight 
line’ chase path – stops at walls

• Your goal is to implement A* 
pathfinding to make the badguy
chase more effectively

• The A* path should be 
recalculated whenever the 
player moves or the maze is 
modified

Base code:
AStarDemoBaseCode.zip

(posted on Blackboard)



Debugging

• I’d recommend using System.out.print to 
debug the A* calculations and path following 
code



CT255
NGT2
Week 10

[2D Games in Java] 

Dr. Sam Redfern
sam.redfern@universityofgalway.ie

mailto:sam.redfern@universityofgalway.ie


Last Week’s Assignment (A*)
• Download base code for ‘badguy

chases the player’ game
• This provides maze drawing, 

loading, saving
• It also moves the player with 

arrow keys, and badguy moves 
according to a dumb ‘straight 
line’ chase path – stops at walls

• Your goal is to implement A* 
pathfinding to make the badguy
chase more effectively

• The A* path should be 
recalculated whenever the 
player moves or the maze is 
modified

Base code:
AStarDemoBaseCode.zip

(posted on Blackboard)



Another example of a Cellular 
Automata algorithm in use 

• The image on the next slide is of an algorithmically-
generated cave-like structure, for use in a 2D computer 
game. Each of the cells, laid out in a 200x200 grid, either 
has a wall (white) or a floor (black).

• The cellular automata algorithm which generated this 
output uses the following steps:
– For each cell, randomly define it as: wall (60% chance) or floor

(40% chance)
– Perform the following procedure 4 times:

• Calculate the number of wall neighbours of each cell, and define each 
cell which has at least 5 neighbouring wall cells, as a wall cell itself. 
Otherwise (i.e. if it has less than 5 wall neighbours) define it as a floor 
cell.





Assignment

• Write a Java program which implements the 
above algorithm
– You’ll need to deal with the ‘edge wrapping’ issue
– Put a sizeable delay between each iteration of the 

algorithm, so that the user can see progress rather 
than just the end result

– There’s no need to use double buffering


