L L
AT OLLSCOILNAGAILLIMHE
. i'ﬁ': N
O‘ Ca_1l4

A UNIVERSITY OF GALWAY




OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

Y
"K‘N
o /ClE\ =
- w|mfz -
C‘“'
> e A
4LWP

Acknowledgement

These notes are adapted from material kindly
provided by Dr Des Chambers.



OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

JL Ly
"K‘N
o /ClE\ =
- w|mfz -
C‘“'
> vav
4w

Obijectives for today

- Revise important concepts of object-orientation in Java
- Understand how to overload constructors
- Understand what abstract classes are and how to code them

- Demonstrate polymorphism through inheritance and abstract
methods



OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

Y
"K‘N
o /ClE\ =
- w|mfz -
C‘“'
> v A
4LWP

Java - Textbook for this course

- Java — How to Program by Deitel & Deitel
- Available in University Bookshop



OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

Java - Revision

- Java uses a class to represent objects.

- An object is a thing upon which your application performs different
operations.

- A class contains members - these may be:
- Information (or data) often called class variables.
- Functions (methods) that operate on the data.
- Each class has a unique name.
- To create an instance of a class variable, you must use the new operator.



L L,

A OLLSCOILNAGAILLIMHE
(R

jl-lf* UNIVERSITY oF GALWAY
LW

C av

Using Overloaded Constructors

- Overloaded constructors
- Methods (in same class) may have same name
- Must have different parameter lists



O 00O NO UL, WN PR

// Fig. 8.6: Time2.java
// Time2 class definition with overloaded constructors
package com.deitel. jhtp4.ch08;

// Java core packages
import java.text.DecimalFormat;

public class Time2 extends Object ({

private int hour; // 0 - 23
private int minute; // 0 - 59
private int second; // 0 - 59 Default constructor has no arguments

s each instance variable
ime object starts in a

// Time2 constructor initialj
// to zero. Ensures that
// consistent state.
public Time2 ()
{

Overloaded constructor

setTime( 0, 0, 0 ); .
has one int argument

}

// Time2 constructor: hour su
// defaulted to O

ied, minute and second

public Time2( int h )
{ Second overloaded constructor has

setTime( h, 0, 0 ); two int arguments

}

// Time2 constructor: hour and minute s
// defaulted to O
public Time2( int h, int m )

{

ied, second

setTime( h, m, 0 );

}

Time2. java

Lines 16-19
Default constructor has
no arguments

Lines 23-26
Overloaded constructor
has one int argument

Lines 30-33

Second overloaded
constructor has two int

arguments

© Prentice Hall.
All rights reserved.



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

// Time2 constructor: hour, minute and second supplied

public Time2( int h, int m, int s )

{ \ Third overloaded constructor has
setTime( h, m, s );

} three int arguments

// Time2 constructor: another Time2 object supplied
public Time2 ( Time2 time )

{

setTime ( time.hour, time.minute,\time.second );

Time2. java

Lines 36-39
Third overloaded
constructor has three int

}

// Set a new time value using universal tim
// validity checks on data. Set invalid val

Time2 argument

Fourth overloaded constructor has

uments

1es 42-45

public void setTime( int h, int m, int s )

{

hour = ( (h > 0 &8& h < 24 ) ? h : 0);
minute = ( (m > 0 & m < 60 ) ? m : 0 );
second = ( ( s >= 0 && s < 60 ) ? s 0 ),

}

// convert to String in universal-time format
public String toUniversalString/()

{

DecimalFormat twoDigits = new DecimalFormat( "00" ) ;

return twoDigits.format( hour ) + ":" +
twoDigits.format( minute ) + ":" +
twoDigits.format( second ) ;

}

// convert to String in standard-time format
public String toString/()

{

DecimalFormat twoDigits = new DecimalFormat( "00" ) ;

Fourth overloaded
constructor has Time2

argument

© Prentice Hall.
All rights reserved.



70
71
72
73
74
75
76
77

return ( (hour == 12 || hour == 0) ? 12
":" 4+ twoDigits.format( minute ) +
":" + twoDigits.format( second ) +
( hour < 12 ? " AM" : " BPM" );

}

// end class Time2

hour % 12 ) +

Time2. java

© Prentice Hall.
All rights reserved.



0oJdJo LT WDN K

// Fig. 8.7: TimeTest4.java
// Using overloaded constructors

// Java extension packages
import javax.swing.¥*;

// Deitel packages

import com.deitel.jhtp4.ch08.Time2;

public class TimeTest4 {

Declare six references to Time2 objects

// test constructo
public static

Time2 tl1, t2, t3, t4,

tl = new Time2 () ;

t5, t6;

of class Time?2

TimeTest4. java

Line 15
Declare six references to
Time2 objects

id main( String args[] )| [pgtantiate each Time2 reference

using a different constructor

“nes 17-22
stantiate each Time2

ference using a

00:00:00

t2 = new Time2( 2 ); :00:00
t3 = new Time2( 21, 34 ); 21:34:00
t4 = new Time2( 12, 25, 4 12:25:42
t5 = new Time2( 27, 74, // 00:00:00
t6 = new Time2( t4 ) ; // 12:25:42
String output = "Constructed with: " +

"\ntl: all arguments defaulted" +

"\n " + tl.toUniversalString() +

"\n " 4+ tl.toString() ;

output += "\nt2: hour specified; minute and " +

"second defaulted" +

"\n " + t2.toUniversalString() +
"\n " + t2.toString() ;

different constructor

© Prentice Hall.
All rights reserved.



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5)5)
56
57
58

}

output += "\nt3: hour and minute specified; " +
"second defaulted" +
"\n " + t3.toUniversalString() +
"\n " 4+ t3.toString() ;

output += "\nt4: hour, minute, and second specified" +
"\n " + t4.toUniversalString() +
"\n " + td.toString() ;

output += "\nt5: all invalid values specified" +
"\n " + t5.toUniversalString() +
"\n " + t5.toString() ;

output += "\nt6: Time2 object t4 specified" +
"\n " + t6.toUniversalString() +
"\n " + t6.toString() ;

JOptionPane.showMessageDialog( null, output,
"Demonstrating Overloaded Constructors",

JOptionPane.INFORMATION MESSAGE ) ;

System.exit( 0 );
}

// end class TimeTest4

TimeTest4. java

© Prentice Hall.
All rights reserved.



E&3 Demonstrating Overloaded Constructe x|

o) Constructed with: TimeTest4. java

t1: all arguments defaulted
00:00:00 Different outputs,
12:00:00 AM because each Time2

t2: hour specified; minute and second defaulted reference was instantiated
02:00:00 with a different
2:00:00 AM constructor

t3: hour and minute specified; second defaulted
21:34:00
9:34:00 PM

t4: hour, minute, and second specified
12:25:42
12:25:42 PM

t5: all imvalid values specified
00:00:00
12:00:00 AM

t6: Time2 object t4 specified

12:25:42
OK I

Different outputs, because each
Time2 reference was instantiated
with a different constructor

12:25:42 PM

© Prentice Hall.
All rights reserved.



OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

Java — Class Inheritance

- When your applications use inheritance, you use a super class
to derive a new class:
- The new class inherits the super class members.

- To initialise class members for an extended class (called a
subclass), application invokes the super class and subclass
constructors.

- Use the this and super keywords to resolve.

- There are three types of members:
- public, private and protected



A /@\ QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Java — Access Level Specifiers

I N N

private N N
no specifier Y Y N N
protected Y Y Y N
public Y Y Y Y



Case Study: A Payroll System Using Polymorphism

» Abstract methods and polymorphism

— Abstract superclass Employee

* Method earnings applies to all employees

* Person’s earnings dependent on type of Employee
— Concrete Employee subclasses declared £inal

* Boss

e CommissionWorker

« PieceWorker

e HourlyWorker

— Chapter 10 of Deitels Book covers a similar
example and has the code on the CD.

© Prentice Hall. All rights reserved.



0oJdJo LT WDN K

// Fig. 9.16: Employee.java
// Abstract base class Employee.

public abstract class Employee ({
private String firstName;

private String lastName;

// constructor

public Employee( String first,

firstName = first;
lastName = last;

}

// get first name
public String getFirstNa

{

return firstName;

}

// get last name
public String getLastName/()

{

return lastName;

}

public String toString()
{

abstract class cannot be instantiated

Employee. java

abstract class can have instance data and
non abstract methods for subclasses
abstract class cannot
be instantiated

ing last )

abstract class can have constructors for
subclasses to initialize inherited data

5-6 and 16-30
ract class can

have instance data and
nonabstract methods

for subclasses

Lines 9-13
abstract class can
have constructors for
subclasses to initialize
inherited data

return firstName + ' ' + lastName;

}

© Prentice Hall.
All rights reserved.



32
33
34
35
36
37

}

// Abstract method that must be implemented for each

// derived class of Employee from
// are instantiated.
public abstract double earnings() ;

// end class Employee

which objects

Subclasses must implement
abstract method

Employee. java

Line 35
Subclasses must
implement abstract

method

© Prentice Hall.
All rights reserved.



0oJdJo LT WDN K

// Fig. 9.17: Boss.java
// Boss class derived from Emplo -

Boss is an Employee subclass

public final class Boss extends Employee ({
private double weeklySalary;

}

// constructor for class Boss
public Boss( String first, String last, double salary )

{

setWeeklySalary( salary );

Boss inherits Employee’s public
methods (except for constuctor)

super ( first, last ); // call superclass constructor
y Explicit call to Employee

// set Boss's salary
public void setWeeklySalary( double salary )

{
weeklySalary =

}

// get Boss's pay

public double earnings ()

{

( salary > 0 ? salary

constructor using super

0);

LIIIC =F

Boss is an Employee
subclass

Line 4

Boss inherits
Employee’s public
methods (except for
constuctor)

o

Required to implement Employee’s

method earnings (polymorphism) |10

return weeklySalary;

}

// get String representation of Boss's name
public String toString()

{

return "Boss:

}

// end class Boss

" + super.toString();

Explicit call to
Employee constructor
using super

Lines 21-24

Required to implement
Employee’s method
earnings
(polymorphism)

© Prentice Hall.
All rights reserved.



0oJdJo LT WDN K

// Fig. 9.18: CommissionWorker.java CommissionWorker is an
// CommissionWorker class derived fr mp ] Employee subclass

public final class CommissionWorker extends Employee ({
private double salary; // base salary per week
private double commission; // amount per item sold
private int quantity; // total items sold for week

// constructor for class CommissionWorker
public CommissionWorker( String first, String last,
double salary, double commission, int quantity )

{

super ( first, last ); /{ call superclass constructor
setSalar salar ; .

=y ( y); _ Explicit call to Employee
setCommission( commission ) ;

setQuantity( quantity ) ; constructor using super

}

// set CommissionWorker's weekly base salary
public void setSalary( double weeklySalary )

{
salary = ( weeklySalary > 0 ? weeklySalary : 0 )

}

// set CommissionWorker's commission
public void setCommission( double itemCommission )

{

commission = ( itemCommission > 0 ? itemCommission : 0 );

CommissionWorker.
Jjava

Line 4
CommissionWorker
i1s an Employee
subclass

Line 13
Explicit call to
Employee constructor

using super

© Prentice Hall.
All rights reserved.



31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

}

// set CommissionWorker's quaptits: cald

public void setQuantity( int t Required to implement Employee’s

{ C :
quantity = ( totalsold > 0 method earnings; thls.1mp1ementat10n

} differs from that in Boss

// determine CommissionWorkifig/earﬁiﬁagz/////—

public double earnings ()

{

return salary + commission * quantity;

}

// get String representation of CommissionWorker's name
public String toString()
{

return "Commission worker: " + super.toString()

}

// end class CommissionWorker

CommissionWorker.
Jjava

Lines 38-41

Required to implement
Employee’s method

earnings; this
implementation differs
from that in Boss

© Prentice Hall.
All rights reserved.



0oJdJo LT WDN K

// Fig. 9.19: PieceWorker.java PieceWorker is an
// PieceWorker class derived from Em; Ze Employee subclass

public final class PieceWorker extends Employee ({
private double wagePerPiece; // wage per piece output
private int quantity; // output for week

// constructor for class PieceWorker
public PieceWorker( String first, String last,
double wage, int numberOfItems )

{

super ( first, last ); // call superclass constructor

setWage ( wage ) ;
setQuantity ( numberOfItems) ;

Explicit call to Employee
} constructor using super

// set PieceWorker's wage
public void setWage( double wage )
{
wagePerPiece = ( wage > 0 ? wage : 0 );

}

// set number of items output
public void setQuantity( int numberOfItems )

{
quantity = ( numberOfItems > 0 ? numberOfItems : 0 );

PieceWorker. java

Line 4
PieceWorker is an
Employee subclass

Line 12

Explicit call to
Employee constructor
using super

Lines 30-33
Implementation of
Employee’s method
earnings; differs from
that of Boss and
CommissionWorker

}

public double earnings ()

( CommissionWorker

Implementation of Employee’s method
// determine PieceWorker's earnings —— earnings; differs from that of Boss and

return quantity * wagePerPiece;

}

© Prentice Hall.
All rights reserved.



35
36
37
38
39
40

}

public String toString()
{

return "Piece worker:

}

// end class PieceWorker

" + super.toString() ;

PieceWorker. java

© Prentice Hall.
All rights reserved.



0oJdJo LT WDN K

HourlyWorker is an
Employee subclass

// Fig. 9.20: HourlyWorker.java
// Definition of class HourlyWorker

public final class HourlyWorker extends Employee ({
private double wage; // wage per hour
private double hours; // hours worked for week

// constructor for class HourlyWorker
public HourlyWorker( String first, String last,
double wagePerHour, double hoursWorked )

{

super ( first, last ); / call superclass constructor

setWage ( wagePerHour ) ; .
setHours ( hoursWorked ) ; Explicit call to Employee

} constructor using super

// Set the wage
public void setWage( double wagePerHour )

{

wage = ( wagePerHour > 0 ? wagePerHour : 0 );

HourlyWorker. java

Line 4
PieceWorker is an
Employee subclass

Line 12

Explicit call to
Employee constructor
using super

Line 31

Imnlomaontatinn af

}

// Set the hours worked
public void setHours( double hoursWorked )

{

Implementation of Employee’s method |g
earnings; differs from that of other
Employee subclasses

from
yee

hours = ( hoursWorked >= 0 && hoursWorked < 168 ?
hoursWorked : 0 );

}

// Get the HourlyWorker's pay
public double earnings() { return wage * hours; }

subclasses

© Prentice Hall.
All rights reserved.



33
34
35
36
37
38

}

public String toString()
{

return "Hourly worker:

}

// end class HourlyWorker

" + super.toString();

HourlyWorker. java

© Prentice Hall.
All rights reserved.



0oJdJo LT WDN K

// Fig. 9.21: Test.java
// Driver for Employee hierarchy

// Java core packages
import java.text.DecimalFormat;

// Java extension packages
import javax.swing.JOptionPane;

public class Test {

// test Employee hierarchy
public static void main( String ar

{
Employee employee; /
String output = ;

Boss boss = new Boss( ,

CommissionWorker commisionWorker

new CommissionWorker (

4 4 ’ ’

PieceWorker pieceWorker =
new PieceWorker ( ,

HourlyWorker hourlyWorker =
new HourlyWorker ( 0

Test. java

Line 15

Test cannot instantiate Employee but
can reference one

Test cannot instantiate
Employee but can

superclass reference

reference one

Instantiate one instance each of
Employee subclasses

ANCe

DecimalFormat precision2 = new DecimalFormat ( ) ;

cach of Employee
subclasses

© Prentice Hall.
All rights reserved.



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Use Employee to reference Boss

// Employee refereﬁifzggfg,Bcss—”’
employee = boss;

output += employee.toString() +

precision2. format( employee.earnings() ) + +

boss.toString() + +
precision2. format ( boss.earnings ()

// Employee reference to a CommissionWorker

employee = commissionWorker:;

output += employee. toString/(
precision2.format( employee.e
commissionWorker.toString () +
precision2. format (
commissionWorker.earnings() ) +

// Employee reference to a PieceWorker

employee = pieceWorker;

output += employee.toString() +

N Test. java

) + t\\\\\ Method employee.earnings

dynamically binds to method to
boss.earnings

N Line 36

+ Method
employee.earnings
Do same for CommissionWorker and fo
PieceWorker
boss.earnings

+

precision2.format( employee.earnings() ) + + Lines 41-55

pieceWorker. toString() +

precision2.format( pieceWorker.earnings() ) + ;

i Do same for

CommissionWorker
and PieceWorker

© Prentice Hall.
All rights reserved.



57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

}

// Employee reference to an HourlyWorker
employee = hourlyWorker;

output += employee. toString/(

Test. java

precision2.format( employee.ea +
hourlyWorker.toString() + +
precision2. format( hourlyWorkex.earnings() ) + 5 Lines 58-63

JOptionPane.showMessageDialog( null, tput,

JOptionPane.

System.exit (

}

// end class Test

)

@ Demonstrating Polymorphism 7 ﬂ

=10

Repeat for
HourlyWorker

14

& Repeat for HourlyWorker

Boss: John Smith earned $800.00

Boss: John Smith earned $800.00

Commission worker: Sue Jones earned $850.00
Commission worker: Sue Jones earned $850.00
Piece worker: Bob Lewis earned $500.00

Piece worker: Bob Lewis earned $500.00
Hourly worker: Karen Price earned $550.00
Hourly worker: Karen Price earned $550.00

=

© Prentice Hall.
All rights reserved.



OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

Next time...

- A practical example of using using the command line and a text
editor to develop Java programs

- Common programming errors and how to address them



