CT2109 - OBJECT ORIENTED PROGRAMMING: DATA
STRUCTURES & ALGORITHMS

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

Andrew Hayes

2BCT

University of Galway

April 20, 2023

Contents

1 Abstract Data Types

1.1 Stacks & Queues e e e e e
LILL Stacks o oo
LI2 QUEUES o o i e e e e e
1.2 Linked Lists
1.2.1 Implementation of Linked Lists
1.2.2 Singly Linked List Class i

2 Algorithm Analysis

2.1 Algorithm Analysis Basics
2.1.1 Counting Primitive Operations
2.2 ONOtation oL e e e e e e e
2.2.1 Important Functions Usedin O Notation
2.2.2 Efficiency & ONotation e
2.3 RecursionReview

3 Dynamic Programming
3.1 MoreBigGreek Letters
3.2 P,NP, & NP-Complete Problems

4 Searching & Sorting

4.1 Keys& Values e
4.2 Javalnterface: Comparator e e e e e e
4.3 Javalnterface: Comparable L
4.4 Insertion SOIt o it e e e e e e e e
4.5 Shell Sort L
4.6 Quick Sort e e e e e
5 Trees
5.1 Binary Trees o e e e

52 GenericsinJava e e

10
10
10
10
10
12
12

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

1 Abstract Data Types

An Abstract Data Type (ADT) is an abstract model of a data structure that specifies the data stored &
oeprations that may be performed on the data. An ADT specifies what each operation does, but not zow. In
object-oriented languages such as Java, this naturally corresponds to an interface definition. An ADT is
realised as a concrete data structure. In Java, this is a class that implements the interface.

Abstract data type

Data structure

Composite ADTs are used manage collections of data, e.g., Arrays, Lists, Stacks, Queues, Hash Tables, etc.

1.1 Stacks & Queues

Stacks & Queues are linearly ordered ADTs for list-structured data.

1.1.1 Stacks

A Stack is a last in, first out (LIFO) data structure. No sort order is assumed. Items can only enter or leave
via the top of the stack. Items can be pushed & popped to add & remove. Example applications of a stack
include processing nested structures or the “undo” operation in an editor. Objects stored in a stack are a finite
sequence of elements of the same type.

Stacks have few operations. For a stack s, node n, & boolean value b:

* s.push(n) - Place item n on top of the stack.

.pop() — n - Remove top item from the stack & return it.

.isEmpty() — b - Returns b = true if the stack is empty.

s
* s.top — n - Examine the top item on the stack without removing it.
S
S

.isFull() — b = true if the stack is full (relevant if storage is limited).

Java has a built-in stack interface from java.util.Stack. However, we will look at making our own for the
sake of learning. Our stack implementation may look something like this:

1 Stack {

2 push(Object n);

3 Oject pop();

4 Object top();
5 isEmpty () ;
6 isFull () ;

Other stack operations include size () & makeEmpty(). We could implement this stack using an array,
linked list, or other storage type.

1.1.2 Queues

A Queue is a first in, first out (FIFO) data structure. No sort order is assumed. Items enter at the rear of the
queue, and leave at the front of the queue. Items can be enqueued & dequeued to add & remove them from

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

the queue. Example applications of a queue include ensuring “fair treatment” to each of a list of pending
tasks (first come, first served) or simulation: modelling & analysis of real-world problems. Objects stored in
a queue are a finite sequence of elements of the same type. The item at the front of the queue has been in the
queue the longest, while the item at the rear has entered the queue most recently.

Queues have few operations. For a queue g, element e, & boolean value b:

* q.enqueue(e) - Place e at the rear of g, assuming there is space.
* gq.dequeue() — e - Remove fron item e from q and return it.
* q.front () — e - Returns front element e without removing it.
* q.isEmpty() — b - Returns b = true if the queue is empty.
* q.isFull() — b - Returns b = true if the queue is full.
With an array implementation of a queue, items must be “shuffled” towards the front after a dequeue. Note

that with an array implementation, once rear becomes equal to N — 1, no further items can be enqueued
(array space limitation).

1.2 Linked Lists

A Linked List is an abstract data type which stores an arbitrary-length list of data objects as a sequence of
nodes. Each node consists of data and has a link to the next node. Each node, excepting the last, is links to a
successor node.

a (head) b ¢ (tail)

1 [e 2 [«p =3 [NULL

Characteristics of Linked Lists:

* Self-referential structure type - Every node has a pointer to a node of the same type.
* Very useful for dynamically growing/shrinking lists of data.

» Compared to arryas, drastically reduces the effort required to add/remove items from the middle of
the list.

* Solves the potential problem of overflow that arrays have.

* Sequential access - It is inefficient to retrieve an element at an arbitrary position, relative to an array.

1.2.1 Implementation of Linked Lists

We define a Node class, with members data (whichever variables are required) & next (reference to another
Node object).

Each node occcurrence is linked to a succeeding occurence by way of the member next. If next is null,
then there is no item after this node in the list (termed the tail node). The starting point for the list is the head
node. We can trace from the head node to any other node.

.—

data next

1 Node {
2 // instance variables

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

3 Object element;
4 Node next;

6 // creates node with null refs to its element \& next node
7 Node () {
8 (5)

11 // creates node with the given element & next node
12 Node (Object e, Node n) {

13 element = e;

14 next = n;

15 }

16

17 // accessor methods

18 Object getElement () {

19 element;

20 T

21 Node getNext () {

22 next;

23 T

24

25 // mutator methods

26 setElement (Object newElem) {
27 element = newElem;

28 T

29 setNext (Node newNext) {
30 next = newNext;

1 }

2 }

Generally, we don’t create nodes manually, rather we just supply element data to a method which keeps track
of the current position in the list.

Typical methods in a Linked List ADT include:

* long size() - Returns the size of the list.

* boolean isEmpty() - Returns true if the list is empty, false otherwise.

* Object getCurr() - Returns the element at the current position.

* boolean gotoHead() - Sets the current position to head, returning true if successful.
* boolean gotoNext() - Moves to the next position, returning true if successful.

* void insertNext(Object el - Creates a new node after the current node.

* void deleteNext() - Removes the node after the current node.

* void insertHead(Object el) - Creates a new node at the head.

* void deleteHead() - Removes the head node.

1.2.2 Singly Linked List Class

A singly linked list is one in which each node links to a single other node.

The Singly Linked List Class should store the head of the list & the current position. For efficiency, it also
keeps track of the current size of the list (alternatively, we could just count its nodes when needed).

SLinkedList {

2 Node head; // head node of the list
3 Node curr; // current position in list
4 size; // number of nodes in the 1list

6 // default constructor which creates an empty list
7 SLinkedList () {

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

8 curr = head = 5
9 size 0;

10 T

12 // insert, remove, & search methods go here

2 Algorithm Analysis

All algorithms take CPU time & memory space. Often, we can make tradeoffs, choosing algorithm variants
that either user more memory, or more CPU. If the memory space requirements of an algorithm are large,
the program may use disk sawp space rather than RAM, which is much slower. If the memory requirements
are too large, then the program cannot run. Often, we identify the algorithms that don’t require “too much”
spaace, and then choose the one with the lowest CPU requirements. The purpose of algorithm analysis is
comparing the time & space requirements of various algorithms.

“Why not just run the algorithm and measure the time & space used?” - While this is sometimes done when
theoretical analysis is difficult, it is better to be able to evaluate algorithms “on paper” without first having
to implement, debug, and test them all. It’s important to have a measure that’s independent of particular
computer configurations and to be able to compare algorithms reliably, without being influenced by variations
in implementation. We want to understand how an algorithm will perform on large problems and identify
“hot spots” to give our attention to when developing & optimising programs.

2.1 Algorithm Analysis Basics

Theoretical Analysis uses a high-level pseudocode description of the algorithm instead of a real implementa-
tion, and characterises run-time as a function of input size n. This function specifies the order of growth of
rate of runtime as n increases. Theoretical analysis takes into account all possible inputs and evaluates speed
independent of hardware or software.

2.1.1 Counting Primitive Operations

The basic approach is deriving the function for the count of the primitive operations. The primitive
operations are the individual steps performed by a program. We assume that each step takes the same amount
of time and examine any terms that control repetition.

Example: Algorithm to find the largest element of an array. We count the maximum number of operations as
function of array size n.

| Algorithm arrayMax (A, n) // Number of Operations
2 currentMax = A[0] // 2

3 for i = 1 to n -1 do // 2n

4 if A[i] > currentMax then // 2(n-1)

5 currentMax = A[il] // 2(n-1)

6 {increment coutner i} // 2(n-1)

7 return currentMax // 1

8 // Total: 8n-3

We could consider the average, best, or worst case. Usually, we analyse the worst case, as we want our
algorithms to work well even in bad cases. The average case is quite important too, if different from the worst
case. These counts are the basis of (big) O notation.

2.2 O Notation

The basic approach to O Notation involves deriving an expression for the count of basic operations (as
discussed). We focus on the dominant term, and ignore constants. E.g., O(5n2 + 1000n — 3) — O(n?).
Since contants & low-order terms are eventually dropped, we can disregard them when counting primitive
operations.

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

O Notation is used for asymptotic analysis of complexity - the trend in the algorithms runtime as n gets
large. We look at the order of magnitude of the number of actions, independent of computer/compiler/etc.

Note: We specifically care about the tightest upper bound. Technically speaking, an algorithm that is O(n?)
is also O(n?), but the former is more informative. The function specified in O notation is the upper bound
on the behaviour of the algorithm being analysed. This can be the best/average/worst case behaviour.

Example: Let f(n) = 6n* — 2n3 + 5. Apply the following rules:
e If f(n) is a sum of several terms, then only the one with largest rate of growth is kept.

* If f(n) is a product of several factors, any constants that do not depend on n are ommitted.

Thus, we say that f(n) has a “big-oh” of (n*). We can write f(n) is O(n?).

2.2.1 Important Functions Used in O Notation

Functions commonly used include:

 Constant: O(1).

* Logarithmic: O(logn).
* Linear: O(n).

* n-Log-n: O(nlogn).

* Quadratic: O(n?).

* Cubic: O(n?).

* Exponential: (1").

* By convention, all logs are base 2 unless otherwise stated.

* Two algorithms having the same complexity doesn’t been that they are exactly the same, it means
that their running times will be proportional.

n const. log n n nlogn n’ n’ 2"
8 1 3 8 24 64 512 256
16 1 4 16 64 256 4096 65536
32 1 5 32 160 1024 32768 4294967296
64 1 6 64 384 4096 262144 1.84467E+19
128 1 7 128 896 16384 2097152 3.40282E+38
256 1 8 256 2048 65536 16777216 1.15792E+77
512 1 9 512 4608 262144 1.34E+08 1.3408E+154
http://bigocheatsheet.com/
Data Structure Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion
Array ' fw] [fpw] [em] bw] [[omw] (B
Stack [em] [otm) [om)] [otm)] [otm]
Queue ew| [[om] [om)] [ocm]
Singly-Linked List ~ [e(m)] [8(n)] [om] (o] [otm]
Doubly-Linked List [om)| [a(m] [om] [om] [otm]

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

Big-O Complexity Chart
o] (4] | coo] RRRERRRE

o(nl)| O(2%n) om2)

Operations

O(log n), O(1)

Elements

2.2.2 Efficiency & O Notation
* Constant: Most efficient possible, but only applicable to simple jobs.

* Logarithmic, Linear, & n-Log-n: If an algorithm is described as “efficient”, this usually means
O(logn) or better.

* Quadratic & Cubic: Not very efficient, but polynomial algorithms are usually considered “tractable”
(acceptable for problems of reasonable size).

* Exponential: Very inefficient. Problems that (provably) require an algorithm of O greater than
polynomial complexity are called “hard”.

2.3 Recursion Review
Methods can call other methods, but they can also call themselves, either directly, or indirectly, via another
method. This creates a type of loop called recursion.

Iteration can be used anywhere that you can use recursion. Sometimes, recursion can be a more elegant
solution, if it reflects the way that the problem is usually thought about, as we aim to use the most intuitive
representation of the problem. Recursion can make complexity analysis easier in some cases.

The drawbacks of recursion include:

* Inefficient use of the function: Large amount of concurrent, deeply nested method calls.
* If done naively, the number of calls can explode.

* Depending on the algorithm, we need to take care not to recompute values unnecessarily.

3 Dynamic Programming

The basic idea of Dynamic Programming is to solve complex problems by breaking them into simpler
sub-problems. When a solution to a sub-problem is found, store it (“memo-ize”) so that it can be re-used
without recomputing it. Combine the solutions to the sub-problems to get the overall solution.

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

This is particularly useful when the number of repeating sub-problems grows exponentially with the problem
size.

In general, dynamic programming takes problems that appear exponential and produces polynomial-time
algorithms for them. The trade-off in dynamic programming is between storage & speed. Dynamic
programming is widely used in heuristic optimisation problems.

For Dynamic Programming, the problem structure requires three components:

1. Simple sub-problems: Must be able to break the overall problem into indexed sub-problems &
sub-sub-problems.

2. Sub-problem decomposition: Optimal/correct solution to the overall problem must be composed
from sub-problems.

3. Sub-problem overlap: So that elements can be re-used.
The basic steps in the approach to DynProg:

1. Set up the overall problem as one that is decomposable into overlapping sub-problems that can be
indexed.

2. Solve the sub-problems as they arise and store solutions in a table.

3. Derive the overall solution from the solutions in the table.

3.1 More Big Greek Letters
O(nlogn) (“Big Oh™):

» Upper bound on asymptotic complexity.

* In this case, there is a constant cy such that conlogn is an upper bound on asymptotic complexity.
Q(nlogn) (“Big Omega”):

* Specifies a lower bound on asymptotic complexity.

* In this case, the algorithm has a lower bound of c¢ynlogn.
©(nlogn) (“Big Theta”):

* Specifies the upper & lower bounds.

* In this case, there exist two constants, ¢; & ¢z, such that cynlogn < f(n) < conlogn.

Of these, O() makes the strongest claims: It specifies that the rate of growth is no better and no worse than
some level. Requires additional analysis relative to O.

There are also some others that are common in Mathematics but not in Computer Science:

* Little 0: 0(g(n)) specifies a function g(n) that grows much faster than the one that we are analysing.

* Little omega: w(g(n)) specifies a function g(n) that grows much slower than the one that we are
analysing.

Don’t confuse upper/lower bounds with best/worst case: all cases have bounds.

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

3.2 P, NP, & NP-Complete Problems

P Problems are those for which there is a deterministic algorithm that solves it in Polynomial Time. In
other words, the algorithm’s complexity is O(p(n)) where p(n) is a polynomial function.

A (trivial) example of a P problem is searching an array of integers for a certain value.

Problems that can be solved in polynomial time are termed tractable, while worse problems are termed
intractable.

NP Problems (Non-deterministic Polynomial) are those algorithms which have two repeating steps:

* Generate a potential solution, either randomly or systematically.

* Verify whether the potential solution is right, and if not, repeat.

If the verification step is polynomial, the algorithm & associated problem are NP.

An example of an NP problem is factoring large integers as used in RSA encryption. Another example of an
NP problem is the subset problem: Given a set of integers, does some non-empty subset of them sum to
07 There is no polynomial algorithm to solve this problem. However, verification of a potential solution is
polynomial (O(n) (just add up the numbers in the potential solution)).

Note that P is a subset of NP.

NP-Complete problems are those that are “as hard as all others” in NP, i.e. algorithms that are comparable to
(“polynomially reducible to”) others in NP but not reducible to P. If an algorithm is polynomially reducible,
there is some polynomial-time transformation that converts the inputs for Problem X to inputs for Problem
Y.

NP-Complete is a complexity class which represents the set of all problems X in NP for which it is possible to
reduce any other NP problem Y to X in polynomial time. Intuitively, this means that we can solve Y quickly
if we know how to solve X quickly. What makes NP-complete problems inportant is that if a deterministic
polynomial time algorithm can be found to solve one of them, every NP problem is solvable in polynomial
time.

NP-Hard problems are those that are “as hard or harder” than all others in NP. A problem X is Np-Hard if
NP-Complete problems are polynomially reducible to it.

Intuitively, NP-hard problems are problems that are at least as hard as the NP-complete problems. Note
that NP-hard problems do not have to be in NP, and they do not have to be decision problems. The precise
definition here is that “a problem X is NP-hard, if there is an NP-complete problem Y, such that Y is
reducible to X in polynomial time”. An example of an NP-hard problem is the halting problem: Given a
program P and input I, will it halt?

The “P versus NP” problem is a major unsolved problem in computer science: “If the solution to a problem is
easy to verify, is the problem also easy to solve?” or “whether every problem whose solution can be quickly
verified by a computer can also be quickly solved by a computer”. “Quickly” here means that there exists
an algorithm to solve the task that runs in polynomial time. An answer to the P = N P question would
determine whether all problems that can be verified in polynomial time can also be solved in polynomial
time. If it turned out that P # N P, then it would mean that there are problems in NP (such as NP-complete
problems) that are harder to compute than to verify. We already know that P C N P.

In theoretical computer science, the problems considered for P & NP are decision problems, i.e. problems
that don’t produce numeric results but yes or no answers.

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

NP-Hard NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

P = NP P =NP

* P (Polynomial): Solvable in polynomial time.
* NP (Non-Deterministic Polynomial): Only verifiable in polynomial time.

4 Searching & Sorting

4.1 Keys & Values

Each object to be sorted can be considered to have a key & a value, e.g. A Student has properties Name, 1D,
& grade.

4.2 Java Interface: Comparator

The Comparator interface compares two objects to say which should come first. In Java, any class that
implements java.util.Comparator interface is only required to implement one method:

I compare (Object obl, Object ob2);

This returns a negative number if ob1 is less than ob2, a positive number if ob1 is greater than ob2, and 0 if
ob1 is equal to ob2.

4.3 Java Interface: Comparable

The Comparable interface compares a given object to another to see which object should come first. The
two objects that are being compared must be of a class that implements java.lang.Comparable, which has
just one method to implement:

I compareTo (Object other);

Standard classes such as String implement this.

4.4 Insertion Sort
Consider sorting a bookshelf using Insertion Sort:

1. Remove the next unsorted book.
2. Slide the sorted books to the right one by one until you find the right sport for for the removed book.

3. Insert the book into its new position once it is found.

10

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

Algorithm 1 Insertion Sort Pseudocode

Require: A[0...N — 1] > Unsorted Array
Ensure: A[0...N —1] > Sorted Array
procedure INSERTION SORT(A[0... N — 1])
for ToSort < 1to N — 1 Step 1 do
Index =ToSort — 1
ToSortEl = A[ToSort]

while Index > First AND A[Index] > ToSortEl do

AlIndex + 1] < A[Index] > Shuffle elements to the right
Indexr < Indexr — 1
end while
AlIndex + 1] = ToSortEl > Insert the element to sort in its appropriate place
end for
return A[] > Return the sorted array

end procedure

The worst case efficiency of Insertion Sort is O(n?). The best case efficiency of Insertion Sort is O(n). If the
array is closer to sorted order, the algorithm does less work, and the operation is more efficient. This leads to
a related algorithm: Shell Sort.

11

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

4.5 Shell Sort

Shell Sort is more efficient than Selection Sort or Insertion Sort. It works by comparing distant items first,
and works its way down to nearby items. The interval is called the gap. The gap begins at one half of the
length of the list and is successively halved until each item has been compared with its neighbour.

Insertion Sort only tests elements in adjacent locations - it might take several steps to get to the final location.
Insertion Sort is more efficient if an array is partially sorted. By making larger jumps, Shell Sort makes the
array become “more sorted” more quickly.

Algorithm 2 Shell Sort Pseudocode

Require: A[0...N —1] > Unsorted Array
Ensure: A[0...N —1] > Sorted Array

procedure SHELL SORT(A[0... N —1])
Gap + f loor(%) > Round to the nearest odd number, as it’s best with an odd-sized gap

while Gap > 1 do
for ToSort < 1to N — 1 Step 1 do
Indexr =ToSort — 1
ToSortEl = AlToSort]

while Index > First AND A[Index] > ToSortEl do

AlIndex + 1] < A[Index] > Shuffle elements to the right
Index < Index — 1
end while
AlIndex + 1] = ToSortEl > Insert the element to sort in its appropriate place
end for
Gap + floor(%)

end while
end procedure

The worst-case complexity of Shell Sort is O(n?). However, this is because the gap is sometimes even which
results in sub-arrays that include all the elements of an array that was already sorted. To avoid this, we
round the gap up to the nearest odd number which gives us a worst-case complexity of O(n'-®). Other gap
sequences can improve performance a little more, but this is beyond the scope of this topic.

4.6 Quick Sort
Quick Sort is a divide-and-conquer algorithm.

1. Firstly, it partitions the array into two sub-arrays that are partially sorted.

2. Then, it picks a pivot value, and re-arranges the elements such that all elements less than or equal to
the pivot value are on the left of the pivot, and all elements that are greater than it are on the right.

3. The array is now divided into sub-arrays and a pivot value.
4. This procedure is then repeated recursively for each sub-array, to further sort each of them.

5. When the algorithm has reached the level of a sub-array with just one element, that sub-array is
sorted. All sub-arrays are sorted relative to each other, so the whole array is sorted when all the
sub-arrays are.

12

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

5 'Trees

The data structures that we looked at previously placed data in linear order, but we sometimes need to organise
data into groups & sub-groups. This is called hierarchical classification, where data items appear at various
levels within the organisation.

In Computer Science, a tree is an abstract model of a hierarchical structure which consists of nodes with a
parent-child relation. Trees have applications in organisation charts, file systems, programming environments,
& more. A tree is a set of nodes, connected by edges. The edges indicate relationships between nodes.

Nodes are arranged in levels, which indicate the node’s position in the hierarchy. Nodes with the same parent
node are called siblings. The only node with no parent is the root node. All other nodes have one parent
each. A node with no child nodes is called a leaf node or an external node. All other nodes are referred to as
internal nodes.

A node is reached from the root by a path. The length of a path is the number of edges that compose it.
This is also referred to as the depth of the node. The height of a tree is the number of levels in the tree. The
number of nodes along the longest path is equal to the maximum depth plus one. Note that we talk about the
depth of a node, but the height of a tree.

The ancestors of a node include its parent, grandparent, great-grandparent, etc. The descendants of a node
include its children, grandchildren, great-grandchildren, etc. A subtree of a node is a tree that has that node
as its root, including the node, all its descendants, and the arcs connecting them.

5.1 Binary Trees

]

A binary tree is one in which each internal node has at most two children (& exactly two if it is a “proper’
binary tree). The children of a node are an ordered pair. We refer to the children of an internal node as the
left child & the right child. Non-binary trees are termed general trees.

An alternative (recursive) definition for binary trees is a tree that is either just single node or a tree whose root
has an ordered pair of children, each of which is a binary tree.

A full binary tree is one in which is a proper binary tree, and in which all the leaves are on the same level.
This is only achievable for certain numbers of nodes. A complete binary tree is a binary tree which is full to
the penultimate level and the leaves on the last level are filled frmo left to right. This is achievable for any
number of nodes.

The height of either a complete or full binary tree with n nodes is loga(n + 1).

(a) Full tree (b) Complete tree (c¢) Tree that is not full
and not complete

(&) (i)
® (1) ©

Left children: B, D, F
Right children: C,E, G

©®©@

5.2 Generics in Java

The < > operators relate to the concept of generics. Generics are used to specify a specific type parameter
for a generic collection class. This saves us from having to cast objects in methods such as add (), set, &

13

OBJECT ORIENTED PROGRAMMING: DATA STRUCTURES & ALGORITHMS

remove. This is a big advantage, as type checking is now done at compile time. Without generics, compile-
time type-checking is impossible, since we don’t have a type specification for the list. Other object-oriented
programming languages have similar concepts, such as templates in C++.

ArrayLists are part of the Java Collections framework, a standard library of pre-built data structures. The
underlying storage of an ArrayList is an array. The ArrayList class looks after resizing it as required.
ArrayLists can be used with or without generics notation.

1 // Arraylist code without generics:

> Arraylist words = ArrayList(); // holds objects

3 words.add("hello") ;

4 String a = (String) words.get (0); // return type of get() is object, so must
cast to String

6 // ArraylList parameterised to specifically hold Strings

7 ArrayList <String> words = ArrayList<String>();
3 words.add("hello") ;
9 String a = words.get (0); // no cast needed

Creating a Generics collection:

1

2 List<E> {

3 add (E x);

1 Iterator<E> iterator ();

5}

6 Iterator<E> {
7 E next ();

8 hasNext () ;

o }

6 Search Trees

A Search Tree organises its data so that searching it is efficient.

6.1 Binary Search Trees

A Binary Search Tree (BST) is a binary tree with nodes that contain Comparable objects. A node’s data is
greater than the data in the left subtree and less than the data in the right subtree. Usually, no duplicates are
allowed.

An in-order traversal of a BST will visit all nodes in ascending order.

BSTs are not uniquely structured - The structure of a BST depends on what node is chosen as the root of the
tree and the order in which all the other nodes are added.

14

	Abstract Data Types
	Stacks & Queues
	Stacks
	Queues

	Linked Lists
	Implementation of Linked Lists
	Singly Linked List Class

	Algorithm Analysis
	Algorithm Analysis Basics
	Counting Primitive Operations

	O Notation
	Important Functions Used in O Notation
	Efficiency & O Notation

	Recursion Review

	Dynamic Programming
	More Big Greek Letters
	P, NP, & NP-Complete Problems

	Searching & Sorting
	Keys & Values
	Java Interface: Comparator
	Java Interface: Comparable
	Insertion Sort
	Shell Sort
	Quick Sort

	Trees
	Binary Trees
	Generics in Java

