
Container Orchestration 1

�
Container Orchestration
Managing Containerised Applications at Scale

What is Container Orchestration?
Container orchestration automates the management, deployment, scaling, 
and networking of containers. It's crucial when dealing with a large number 
of containers running across multiple environments.

Why itʼs needed? 

As the number of containers grows, manually managing them becomes 
unfeasible. Orchestration tools provide automation for deploying, 
scaling, and managing these containers in a controlled manner.

Key Components of Container Orchestration



Container Orchestration 2

Scheduling Automatically assigns containers to host machines based 
on resource availability.

Scaling Dynamically adds or removes containers based on demand.

Networking Manages the communication between containers and 
ensures they can interact securely.

Load Balancing Distributes traffic across multiple containers to optimize 
resource usage.

Service Discovery Automatically detects and connects services 
running in different containers.

Popular Container Orchestration Tools
Kubernetes:



Container Orchestration 3

Most widely adopted container orchestration platform.

Manages containerized applications across clusters of machines.

Handles self-healing, automated rollouts, and scaling.

Docker Swarm:

Built-in Docker tool for orchestration.

Easier to set up but less feature-rich compared to Kubernetes.

Ideal for smaller setups with Docker-native capabilities.

Apache Mesos:

General-purpose distributed systems platform that supports 
container orchestration.

Suitable for large-scale environments requiring both container and 
non-container workloads.

Kubernetes Architecture Overview
Master Node Manages the Kubernetes cluster.

API Server Entry point for REST operations.

Scheduler Assigns containers to nodes.

Controller Manager Ensures the desired state of the system.

Worker Nodes Hosts running containerized applications.

Kubelet Ensures containers are running on a node.

Pod Smallest deployable unit consisting of one or more containers.



Container Orchestration 4

Kube-Proxy Handles networking within Kubernetes.

Key Kubernetes Concepts
Pod A group of one or more containers, with shared storage and 
network resources.

Service An abstraction that defines a logical set of pods and a policy 
for accessing them.

Deployment Manages pod scaling and rolling updates for your 
application.

Namespace Provides scope for resources within a Kubernetes cluster, 
helping organize and manage resources.



Container Orchestration 5

How Orchestration Benefits DevOps
Automation Simplifies repetitive tasks such as deployment, scaling, and 
rollback.

High Availability Distributes workloads across different machines, 
ensuring that services remain available.

Fault Tolerance Automatically restarts or replaces failed containers and 
reroutes traffic to healthy containers.

Scalability Orchestrators can dynamically scale the number of running 
containers to handle increased traffic.

How to Setup Kubernetes:
On macOS

� Install Minikube:

Minikube is a tool that runs a single-node Kubernetes cluster 
locally.

Command: brew install minikube  (for macOS



Container Orchestration 6

� Start Minikube:

Command: minikube start

This will spin up a local Kubernetes cluster on your machine.

� Deploy an Application:

Use kubectl  to deploy a container to your Kubernetes cluster.

Example: kubectl create deployment hello-world --
image=k8s.gcr.io/echoserver:1.4

� Expose the Application:

Command: kubectl expose deployment hello-world --type=NodePort --
port=8080

This exposes the application to the internet, allowing users to 
access it.

� Scale the Application:

Command: kubectl scale deployment hello-world --replicas=3

This scales the application to run three instances of the 
container.

On Windows
� Install Docker Desktop for Windows

Why? Docker Desktop comes with a built-in Kubernetes option that 
allows for a simple installation and setup.

Instructions:

� Download and install Docker Desktop for Windows from the 
official site.

� During the installation, make sure "Enable Kubernetes" is 
selected.

� Once installed, open Docker Desktop and navigate to Settings > 
Kubernetes.

� Enable Kubernetes and apply the changes.

� Wait for Kubernetes to start, which may take a few minutes.

� Install kubectl



Container Orchestration 7

kubectl  is the command-line tool for interacting with Kubernetes.

� Download the kubectl.exe binary for Windows from the official 
Kubernetes site.

� Add the binaryʼs path to your system PATH for easy access from 
the command line.

� Verify Installation

Open a terminal CMD or PowerShell).

Run kubectl version  to check if Kubernetes is installed properly.

Run kubectl get nodes  to see if the local cluster is running.

� Minikube Alternative)

If you donʼt want to use Docker Desktop, you can set up 
Kubernetes with Minikube:

� Download Minikube from the official site.

� Install Minikube using the installer.

� Run minikube start  to set up a single-node Kubernetes cluster.
On Linux:

� Install Docker

On Linux, Docker needs to be installed to manage containers.

Update the system:

sudo apt-get update

sudo apt-get install -y docker.io

Enable and start Docker:

sudo systemctl enable docker

sudo systemctl start docker

� Install Minikube

Minikube allows you to run Kubernetes on a single node.

Download Minikube:



Container Orchestration 8

curl -LO https://storage.googleapis.com/minikub

e/releases/latest/minikube-linux-amd64

sudo install minikube-linux-amd64 /usr/local/bi

n/minikube

Start Minikube:

minikube start

� Install kubectl :

sudo apt-get install -y apt-transport-https

curl -s https://packages.cloud.google.com/apt/doc/a

pt-key.gpg | sudo apt-key add -

echo "deb https://apt.kubernetes.io/ kubernetes-xen

ial main" | sudo tee -a /etc/apt/sources.list.d/kub

ernetes.list

sudo apt-get update

sudo apt-get install -y kubectl

Verify the installation by running kubectl version .

� Running Kubernetes

Use the following commands to start interacting with your 
Kubernetes cluster:

kubectl cluster-info

kubectl get nodes

You can deploy containers and pods using kubectl apply -f <your-
deployment-file>.yaml .

� Manage Kubernetes with Helm Optional)

Helm is a package manager for Kubernetes that makes 
deployment easier.

Install Helm:



Container Orchestration 9

curl https://raw.githubusercontent.com/helm/h

elm/main/scripts/get-helm-3 | bash

Start deploying applications using Helm Charts.

Deploying song-suggester App with Kubernetes
� Step 1 Create a Docker image for the suggest-music app.

Command: docker build -t song-suggester .

� Step 2 Deploy the Docker container in a Kubernetes pod.

Example: Use kubectl create deployment song-suggester --image=song-
suggester

� Step 3 Expose the app using a service to make it accessible outside the 
Kubernetes cluster.

Command: kubectl expose deployment song-suggester --type=LoadBalancer --
port=8080

� Step 4 Scale the application to run multiple instances.

Command: kubectl scale deployment song-suggester --replicas=5

Challenges with Container Orchestration
Complexity Orchestration platforms can introduce significant 
complexity, especially for small teams.

Learning Curve Tools like Kubernetes have a steep learning curve for 
new users.

Resource Overhead Orchestrators can consume considerable 
resources, particularly when managing large-scale systems.

Networking Configuring secure and reliable networking between 
containers can be challenging.


